
Complexity-Bounded Relaxed Dynamic Programming

R.M. Beumer, M.J.G. van de Molengraft, D.J. Antunes

Abstract— The idea behind relaxed dynamic programming
for optimal control problems is to settle with a suboptimal
but simpler control policy that guarantees a cost within a
fixed constant factor from the optimal cost. Such a policy
results from parameterized approximate value functions and
the complexity of these functions determines the complexity of
the policy. Typically, the more stringent the constant factor from
the optimal cost is, the larger the complexity. However, relaxed
dynamic programming does not give any guarantees on the
complexity, which might still be unpractical. To tackle this issue,
we propose to rather find the best factor away from optimality
for a given complexity bound. We consider a large class of
problems where the value functions can be represented as the
minimum of quadratic functions. For this class, we propose a
modified relaxed dynamic programming algorithm that ensures
bounded complexity while still providing tight cost guarantees.
A crucial step in the algorithm is the search for the best cost
factor for a given policy with desired complexity, shown to be
an optimization problem subject to Linear Matrix Inequalities
(LMIs). We provide a new subclass of problems within this
class and illustrate the effectiveness of our policy in a numerical
instance of this subclass.

I. INTRODUCTION

Dynamic programming (DP) is an iterative procedure to
solve optimal control problems that finds optimal policies
by first computing optimal value functions. It has been
successfully applied to various problems in several areas.
However, the curse of dimensionality limits its applicability.
In many problems, the optimal value functions can be pa-
rameterized at each algorithm iteration, bypassing the curse
of dimensionality. Still, the complexity of the optimal value
functions, measured by the required number of parameters,
often grows fast at each algorithm iteration. Thus, even then,
DP is not practical.

For these problems, one can relax the demand for optimal-
ity to reduce the complexity of the value functions. This is the
idea behind relaxed dynamic programming (RDP) [1]. RDP
computes, at each iteration, approximate value functions
within a constant factor from the optimal value functions,
expectedly (but not certainly) resulting in a smaller complex-
ity. Based on the approximate value functions, a suboptimal
control policy is then provided that guarantees a cost within ϵ
from the optimal one.1This constant factor ϵ can be a relative
and multiplicative guarantee with respect to the optimal cost
J , bounding the approximate cost by (1 + ϵ)J , or absolute
and additive, guaranteeing rather a bound J + ϵ. RDP and

The authors are with the Control Systems Technology Group,
Department of Mechanical Engineering, Eindhoven University
of Technology, the Netherlands. E-mails:{r.m.beumer,
m.j.g.v.d.molengraft,d.antunes}@tue.nl. This research
is part of the research program SYNERGIA (project number 17626), which
is partly financed by the Dutch Research Council (NWO).

approaches inspired by it have been successfully applied in
several contexts [2]–[5].

However, RDP provides no guarantees on the complexity
of the approximate value functions, which determines the
complexity of the policy. Typically, the less stringent ϵ is,
the smaller the complexity, but even this might not be the
case; see the example in Section IV-A. The absence of
complexity guarantees leads to some undesirable features.
First, for a given desired ϵ, the complexity can still grow
fast at each algorithm iteration, in which case the method
is unpractical. Second, tuning the complexity by changing ϵ
is hard. The complexity might not only be a non-monotone
function of ϵ, but it might also have large discontinuities.
Third, a guaranteed bound on complexity is desirable and
even more important than a stringent cost guarantee in
many applications, such as real-time applications with low
computational budgets. Moreover, the bound on the cost
determined by ϵ is often conservative and can be improved
for the final policy retrieved by RDP.

To tackle this challenge, we propose to rather find the
best ϵ for a given complexity bound for the value functions.
We focus on problems where the value functions can be
represented as the minimum of a finite set of quadratic
functions that are used as a parameterization. This provides
a unifying framework for several problems in different
areas, including (i) switched linear systems with quadratic
cost [1], [6], (ii) partially observable Markov decision pro-
cesses (POMDPs) [1], (iii) optimal control problems for LTI
systems with piecewise affine cost [1], (iv) optimal joint
maximum a posteriori probability (JMAP) estimate of the
state and mode of a Markov jump linear system (MJLS) [7],
and (v) linear quadratic control problems with discretized
input, a novel subclass of problems proposed in the present
paper. For problems of this class, we propose a modified
RDP algorithm that ensures bounded complexity while still
providing cost guarantees in the same form (additive and
multiplicative) as RDP. The algorithm aims to find the
smallest ϵ subject to complexity guarantees. To this end, at
each iteration, the algorithm relies crucially on optimizing
ϵ for a given policy with desired complexity. We show this
subproblem can be solved through an optimization problem
subject to Linear Matrix Inequalities (LMIs).

The paper is organized as follows. Section II provides
background on RDP and introduces the class of problems

1The RDP framework proposed in [1] is very broad. Here we take some
liberty to narrow it down to a special case also considered in [1] where the
lower bounds on the value function approximations coincide with the value
function and the upper bounds are obtained by multiplying the running cost
by α = 1 + ϵ.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 4279

considered. Section III discusses the proposed RDP proce-
dure with complexity guarantees. Section IV applies this
procedure to a numerical instance of the novel subclass of
problems. Concluding remarks are provided in Section V.
The proofs of the results are omitted for the sake of brevity.

II. BACKGROUND AND PROBLEM FORMULATION

Consider a standard deterministic optimal control problem

min
{uk|k∈{0,1,...,h−1}}

h−1∑
k=0

gk(xk, uk) + gh(xh)

for the system

xk+1 = f(xk, uk), k ∈ {0, 1, . . . , h− 1},

where xk ∈ X ⊆ Rn and uk ∈ U are the state and
control input at time k, respectively; U can be countable
or uncountable. The DP algorithm obtains iteratively, for
k ∈ {h− 1, h− 2, . . . , 0}, the optimal value functions

Jk(xk) = min
uk∈U

gk(xk, uk) + Jk+1(f(xk, uk)),

for all xk ∈ X with Jh(xh) = gh(xh), for all xh ∈ X , from
which an optimal policy can be obtained, for all xk ∈ X and
all k ∈ {0, . . . , h− 1}:

µk(xk) ∈ argmin
uk∈U

gk(xk, uk) + Jk+1(f(xk, uk)). (1)

For many instances of this general problem we can param-
eterize the optimal value functions as a pointwise minimum
(or maximum) of a finite set of functions, that is,

Jk(x) = min
β∈Jk

p(x, β), x ∈ X, k ∈ {0, . . . , h} (2)

(or Jk(x) = maxβ∈Jk
p(x, β)) where β is a set of parame-

ters that belongs to a finite set Jk. This is the case for several
applications, including but not limited to:

1) Switched linear systems xk+1 = Auk
xk, xk ∈ Rn,

uk ∈ {1, 2, . . . ,m}, with positive semi-definite quadratic
state cost gk(xk, uk) = x⊤

k Quk
xk, gh(xh) = x⊤

hQhxh,
see [1], [6]. In this case p(x, P) = x⊤Px with P ∈ Jk,
for some finite set of positive semi-definite matrices Jk.

2) Linear time-invariant systems xk+1 = Axk +
Buk, xk ∈ Rn, uk ∈ Rm, with piecewise affine
costs gk(x, u) = maxc∈C c

⊤ [
x⊤ u⊤ 1

]⊤
, gh(xh) =

maxc∈Ch
c⊤

[
x⊤
h 1

]⊤
, see [1]. In this case, Jk(x) =

maxβ∈Jk
p(x, β), where p(x, β) = β⊤ [

x⊤ 1
]⊤

with β ∈
Jk, for a finite set Jk.

3) POMDPs with finite state, control and observation
spaces. While this problem does not fit the problem de-
scription above, it is well-known that the optimal policy for
the control input can be obtained by solving a standard DP
problem where the value function takes the form (2) with
p(x, q) = q⊤x, q ∈ Jk, for a finite set Jk, and where xk is
the probability distribution of a discrete-state at step k [1].

4) Optimal joint maximum a posteriori probability (JMAP)
estimate of the state and mode of a Markov jump linear
system (MJLS). Here the state corresponds to estimates of

the state x̂ and mode σ̂ of an MJLS (x̂k and σ̂k at time
k). The input, model and cost can be found in [7] and are
omitted here. The value function takes the form (2) with

p(x, P, ξ̂, γ) = 1
2

(
x̂− ξ̂

)⊤
P
(
x̂− ξ̂

)
+ γ, x =

[
x̂⊤ σ̂

]⊤
,

(P, ξ̂, γ) ∈ Jk for finite sets Jk and positive semi-definite P .
5) Linear quadratic control with a finite number of control

input options. This is a new application. As shown in
Section IV, here p(x, P, q, r) = x⊤Px + q⊤x + r with
(P, q, r) ∈ Jk, for finite sets Jk and positive semi-definite P .

For all these applications except 2) the value functions can
be written in the general form (where Jk is a set of tuples):

Jk(x) = min
(P,q,r)∈Jk

x⊤Px+ q⊤x+ r. (3)

Moreover, for application 2) the value function takes the
same form but with the min operation replaced by the max
operation. The results proposed here still apply to this case by
exchanging these two operations. Our results can be applied
to application 3) with proper adaptations along the lines
of [3] since (3) holds, even though, as already mentioned, the
framework is different. Hereafter we assume that X = Rn

so that (3) is assumed to hold for every x ∈ Rn.

A. Relaxed Dynamic Programming

The idea behind RDP proposed in [1] is to approximate
the optimal value functions by approximate value functions

Vk(x) = min
β∈Vk

p(x, β), x ∈ Rn, k ∈ {0, . . . , h}, (4)

where Vk ⊆ Jk is a pruned version of Jk. For problems with
non-negative value functions (the negative case is discussed
in the sequel), the pruning procedure must be such that

Jk(x) ≤ Vk(x) ≤ (1 + ϵ)Jk(x), x ∈ Rn, (5)

for a predefined ϵ ≥ 0. By doing so, the cost of an
approximate policy obtained by replacing Jk+1 by Vk+1

in (1) is guaranteed to be within a factor 1+ϵ of the optimal
policy. In [1] infinite-horizon problems (h → ∞) are also
addressed, but here we focus on the finite-horizon case.

To describe the RDP algorithm we define the functions

V ϵ
k (xk) = min

uk∈U
(1 + ϵ)gk(xk, uk) + Vk+1(f(xk, uk)), (6)

for all xk ∈ Rn, k ∈ {0, . . . , h− 1} and Vh(xh) = Jh(xh).
This can still be written in the following form in all the
mentioned applications:

V ϵ
k (xk) = min

(P (ϵ),q(ϵ),r(ϵ))∈Vϵ
k

x⊤
k P (ϵ)xk+q(ϵ)⊤xk+r(ϵ). (7)

This implicitly defines the sets Vϵ
k; see how these sets are

constructed for application 5) in Section IV. In all the
applications, each member (P (ϵ), q(ϵ), r(ϵ)) ∈ Vϵ

k is param-
eterized by ϵ in an affine manner. Therefore, we make the
following assumption, which is crucial to obtain numerical
efficient tests for the proposed method:

P (ϵ) = P̄0 + P̄1ϵ, q(ϵ) = q̄0 + q̄1ϵ, r(ϵ) = r̄0 + r̄1ϵ. (8)

4280

Algorithm 1 Original RDP

Given: ϵ ≥ 0 and heuristic H .
1: Set Vh = Jh.
2: for k = h− 1 : −1 : 0 do
3: Set Vk = ∅ and compute Vϵ

k.
4: while Vϵ

k ̸= ∅ do
5: Remove (P (ϵ), q(ϵ), r(ϵ)) ∈ Vϵ

k with smallest H .
6: if for all x ∈ Rn

min
(P,q,r)∈Vk

x⊤Px+ q⊤x+ r ≤ x⊤P (ϵ)x+ q⊤(ϵ)x+ r(ϵ)

(11)
then

7: Continue ((P (ϵ), q(ϵ), r(ϵ)) can be pruned).
8: else
9: Add (P (0), q(0), r(0)) to Vk.

10: end if
11: end while
12: end for

While Vϵ
k is not an ordered set, to each (P (ϵ), q(ϵ), r(ϵ)) ∈

Vϵ
k there is an associated (P (0), q(0), r(0)) = (P̄0, q̄0, r̄0) ∈

V0
k , which will often be referred to in the sequel.
A general and recursive procedure for pruning Jk and

obtaining Vk is described in Algorithm 1. It is a special
case of the broad framework of RDP proposed in [1] that is
tailored to the problems that admit an optimal value function
taking the form (3). Only this special case is considered
hereafter and referred to as RDP, although RDP as defined
in [1] is broader. It relies on a heuristic H which assigns a
real value to each tuple (P (ϵ), q(ϵ), r(ϵ)); H should be large
when a tuple does not contribute to the minimum in (7).

An additive factor ϵ can be used by defining

V ϵ
k (xk) = min

uk∈U
gk(xk, uk) + ϵ+ Vk+1(f(xk, uk)), (9)

for all xk ∈ Rn, instead of (6), see [3]. In this case, (7) still
defines Vϵ

k but P (ϵ) and q(ϵ) do not depend on ϵ; only r(ϵ)
does again depend on ϵ in an affine manner. Additive factors
are convenient when the value functions can be negative,
see [3]. The cost guarantee is then different:

Jk(x) ≤ Vk(x) ≤ Jk(x) + (h− k)ϵ, x ∈ Rn. (10)

The results discussed next consider both cases.

B. Problem statement

Let |A| denote the cardinality (number of elements) of
a discrete set A and note that |Vk| is a direct measure of
the complexity of the approximate policy that results from
replacing Jk+1 by Vk+1 in (1). Typically, in both cases of
RDP considered in the previous section (with additive and
multiplicative factor guarantees) the larger ϵ is, the smaller
|Vk| is. However, while |Vk| is expected to reduce with re-
spect to the non-pruned version, this procedure does not give
any guarantee on the complexity, e.g., a complexity bound.
The achieved complexity will depend on the specific problem
at hand and can still become computationally intractable.
This motivates the problem considered here:

Algorithm 2 Proposed RDP with complexity guarantees

Given: complexity bound C ∈ N, heuristic H and
selection procedure selectM with 1 ≤ M ≤ C.

1: Set ϵh = 0 and Vh = Jh.
2: for k = h− 1 : −1 : 0 do
3: Set Vk = ∅ and compute Vϵk+1

k .
4: Remove M members of Vϵk+1

k and add the corre-
sponding (P (0), q(0), r(0)) to Vk using selectM.

5: while Vϵk+1

k ̸= ∅ and |Vk| < C do
6: Remove (P (ϵk+1), q(ϵk+1), r(ϵk+1)) ∈ Vϵk+1

k

with smallest H .
7: if there exists α ∈ P|Vk| such that for all x ∈ Rn∑

(P,q,r)∈Vk,α∈P|Vk|

αi(x
⊤Px+ q⊤x+ r) ≤ x⊤P (ϵk+1)x+

q⊤(ϵk+1)x+ r(ϵk+1) (12)

then
8: Continue ((P (ϵk+1), q(ϵk+1), r(ϵk+1)) can

be pruned).
9: else

10: Add (P (0), q(0), r(0)) to Vk.
11: end if
12: end while
13: if Vϵk+1

k ̸= ∅ then
14: Compute the smallest ϵ∗k such that all remaining

(P (ϵk+1), q(ϵk+1), r(ϵk+1)) ∈ Vϵk+1

k satisfy (12) (can
be pruned) if ϵk+1 ≥ ϵ∗k.

15: Set ϵk = ϵ∗k. (13a)
16: else
17: Set ϵk = ϵk+1. (13b)
18: end if
19: end for

Given a desired bound C ∈ N on the complexity of the
approximate value functions, i.e.,

|Vk| ≤ C, for all k ∈ {0, 1, . . . , h− 1},

provide a numerical method that still provides a tight bound
on performance ϵ and ensures the complexity bound is met.

III. RELAXED DYNAMIC PROGRAMMING WITH
COMPLEXITY GUARANTEES

Algorithm 2 describes the proposed RDP method with
complexity guarantees and multiplicative cost guarantees.
It is explained and analyzed in Section III-A, where its
cost guarantees are formally established. A crucial step of
this RDP method is to determine the smallest ϵ guarantee
for a policy resulting from a cost-to-go approximation with
fixed complexity. We show that this can be obtained by
an LMI optimization problem in Section III-B. Another
important feature, which is shared with the original RDP,
is the heuristic H . This is discussed in Section III-C.

A. RDP algorithm and cost guarantees

Let us first consider that the optimal value functions (10)
are non-negative (Jk(xk) ≥ 0) and remove this restriction in

4281

the sequel (see Theorem 2). Let Pn := {α =
[
α1 · · ·αn

]⊤ ∈
Rn|

∑n
i=1 αi = 1, αi ≥ 0}.

Algorithm 2 starts (line 4) by adding M members from
Vϵk+1

k to the pruned set Vk, according to a selection pro-
cedure selectM. This procedure aims at finding tuples
(P, q, r) that have strong chances of remaining in the final set
Vk. An example selection procedure is to pick M different
minimizers of

argmin
(P,q,r)∈V

ϵk+1
k

xi⊤Pxi + q⊤xi + r (14)

for M different state values xi, i ∈ {1, . . . ,M}, e.g.,
randomly chosen. These tuples cannot be pruned according
to (11), which corresponds to (12) in Algorithm 2, when
ϵ = 0. If M different xi values cannot be found,
the remaining tuples can themselves be picked randomly,
although in such a case picking a smaller M is more
suitable. Another selection procedure is to simply pick the
tuples that correspond to the smallest M values of heuristic
H . Section III-C discusses possible heuristics. Note that
Algorithm 1 in fact uses a special case of this selection
procedure with M = 1 and based on H . If a strong procedure
to select M members is present for a given problem, then
M = C might make sense in which case the algorithm moves
directly to the last step (line 14).

When M < C, the algorithm finds a non-decreasing se-
quence of ϵk that will lead to guarantees on the approximate
value function Vk(x), see Theorem 1 below. At time k, the
algorithm runs the steps of a slightly modified version of
RDP with ϵk+1 (using (12) rather than (11), as explained
in Section III-B), compare lines 5-12 of the proposed RDP
algorithm with lines 4-11 of the original RDP algorithm.
However, according to line 5 of the proposed RDP algorithm,
these steps are only run until either budget C is reached
(meaning that ϵk+1 is stringent) or not (ϵk+1 is not stringent
as the complexity at time k is smaller than the bound C).
In the former case, in the last step (line 14), ϵ∗k ≥ ϵk+1 is
computed that guarantees that the yet unpruned members in
Vϵk+1

k would be pruned if ϵk+1 ≥ ϵ∗k and ϵk is set to ϵ∗k.
As will be discussed in Section III-B, we can test (12)

through a feasibility test of LMIs and we can use LMIs to
compute ϵ∗k in the last step (line 14) of Algorithm 2.

We will now provide a cost guarantee similar to the
original RDP but with ϵ replaced by ϵ0.

Theorem 1: Suppose that the optimal value functions (10)
are non-negative, that is, Jk(xk) ≥ 0. Let

Vk(x) = min
β∈Vk

p(x, β), x ∈ Rn, (15)

where Vk ⊆ Jk is obtained with Algorithm 2 based on Vϵ
k

computed according to (6), (7), which ensures that |Vk| ≤
C, for all k ∈ {0, 1, . . . , h− 1}. Then

Jk(x) ≤ Vk(x) ≤ (1+ϵk)Jk(x),∀x∈Rn, k∈{0, . . . , h−1}.
□

Note that since ϵk ≥ ϵk+1, this theorem indeed implies

Jk(x) ≤ Vk(x) ≤ (1+ϵ0)Jk(x),∀x ∈ Rn, k ∈ {0, . . . , h−1},

which is a similar guarantee to the one provided by RDP (5).
However, instead of fixing ϵ a priori, a complexity bound C
is fixed a priori and Algorithm 2 aims at finding the smallest
ϵ that still guarantees (5) with this complexity bound.

Algorithm 2 applies with almost no changes to the additive
case. There are two main differences. First, the sets Vϵ

k are
computed based on (9) and (7) rather than on (6) and (7).
Second, (13a) and (13b) are both replaced by ϵk = ϵ, as
well as the initial ϵh = ϵ for some constant ϵ ≥ 0, which
is an extra parameter of the algorithm. This follows from
the fact that now the additive cost guarantee associated with
ϵk at each step does not need to depend on the previous
step. Moreover, in this case we do not need the non-
negative assumption on the cost. Then, we also obtain similar
guarantees to the ones of the standard RDP algorithm as
stated next.

Theorem 2: Let

Vk(x) = min
β∈Vk

p(x, β), x ∈ Rn, (16)

where Vk ⊆ Jk are obtained with Algorithm 2 based on Vϵ
k

computed according to (9), (7), and with (13a) and (13b)
replaced by ϵk = ϵ for a given ϵ ≥ 0 and ϵh = ϵ, which
ensures that

|Vk| ≤ C, for all k ∈ {0, 1, . . . , h− 1}.

For times k for which (13b) is run instead of (13a), let ϵ∗ℓ = ϵ.
Then

Jk(x) ≤ Vk(x) ≤ Jk(x) +

h−1∑
ℓ=k

ϵ∗ℓ , for all x ∈ Rn.

□
This theorem implies that

Jk(x) ≤ Vk(x) ≤ Jk(x) + (h− k)ϵ for all x ∈ Rn,

with ϵ = max{ϵ∗ℓ |ℓ ∈ {k, k+1, . . . , h−1}}, which is similar
to the guarantee provided by RDP.

B. LMI-based ϵ optimization for complexity-bounded policy

This section provides numerical methods based on LMIs
to check (12) and the last step (line 14) of Algorithm 2.

Proposition 3 below states that (11) holds if (12) holds
with ϵk+1 = ϵ. Moreover, it states that (12) is equivalent to

∃α ∈ P|Vk| s.t.
∑

(P,q,r)∈Vk

αiDi ⪯ D(ϵ) (17)

where

Di =

[
Pi

1
2qi

1
2q

⊤
i ri

]
and D(ϵ) =

[
P (ϵ) 1

2q(ϵ)
1
2q(ϵ)

⊤ r(ϵ)

]
. (18)

Proposition 3: If (12) holds with ϵk+1 replaced by ϵ,
then (11) holds. Moreover, (12) with ϵk+1 replaced by ϵ is
equivalent to the LMI condition (17). □

The crucial fact that P (ϵ), q(ϵ) and r(ϵ) depend on ϵ in an
affine manner (8) allows us to write the last step (line 14) of
Algorithm 2 as an optimization subject to LMI constraints.

4282

Lemma 4: Consider the disjoint sets Vϵk+1

k and Vk at
a given arbitrary step of Algorithm 1. Then the small-
est ϵ∗ such that for ϵk+1 ≥ ϵ∗ (12) holds for all
(P (ϵk+1), q(ϵk+1), r(ϵk+1)) ∈ Vϵk+1

k is given by the optimal
value of the following optimization problem

min ϵ∗

such that ∃α ∈ P|Vk| for which∑
(P,q,r)∈Vk

αiDi ⪯ D̄0 + ϵ∗D̄1, ∀(D̄0, D̄1) ∈ D (19)

where

D̄0 =

[
P̄0

1
2 q̄0

1
2 q̄

⊤
0 r̄0

]
, D̄1 =

[
P̄1

1
2 q̄1

1
2 q̄

⊤
1 r̄1

]
and

D :=
{
(D̄0, D̄1)|(P̄0, q̄0, r̄0) + ϵk+1(P̄1, q̄1, r̄1) ∈ Vϵk+1

k

}
□

Proof: Follows directly from Proposition 3, and the
affine dependency of P (ϵ), q(ϵ), r(ϵ) on ϵ (see (8)).

This theorem applies both for the case of multiplicative
cost guarantees, in which case ϵ∗k is an increasing sequence,
and the additive case, in which case ϵ∗k is free.

Note that we can solve jointly the LMI optimization
problem posed in Lemma 4 or sequentially by considering
the optimization problems with restriction (19) for each
member of D, taking the maximum of the solutions of
each problem, denoted here by ϵ∗j , j ∈ {1, . . . , |D|} and
finally computing ϵ∗ = max{ϵ∗j | j ∈ {1, . . . , |D|}}. The
constraints on α imposed by α ∈ P|Vk| can be written as a
set of inequality constraints that can be incorporated into an
extended version of the LMI.

C. Heuristic H

Algorithm 2 relies on a heuristic H , which assigns a
positive real number to each tuple (P, q, r). The heuristic
aims to assign small values to tuples with large chances of
remaining in Vk at step k and large values to tuples with
little chances. In general, the tightness of the provided ϵk
guarantee at each step k strongly depends on H .

The heuristic proposed in [1] for a given application
(switching linear systems) is H = trace(P). Another heuris-
tic for a different application (POMDPs) in [3] is to simply
consider H = r. These are also valid heuristics for the
problem at hand.

Here, we propose an additional heuristic that not only
depends on the tuple in question but also on the values of a
given set of tuples. Since this heuristic is to be applied at each
step k in line 6 of the proposed RDP algorithm, the tuple
in mind is (P (ϵk+1), q(ϵk+1), r(ϵk+1)) and the set of tuples
in mind is Vk. Note that this form of the heuristic does not
pose any problem neither from an implementation point of
view, nor for the formal results provided, Theorems 1, 2. The
proposed heuristic is obtained by applying the same approach
as to determine the performance bound ϵ∗ explained at

the end of Section III-B pertaining to the last step of the
algorithm (line 14):

H((P (ϵ), q(ϵ), r(ϵ)),V) =
{

1
ϵ̄ if ϵ̄ > 0
∞ otherwise (20)

where
min ϵ̄ ≥ 0

such that for all x ∈ Rn there exists α ∈ P|V| for which∑
(P,q,r)∈V

αi(x
⊤Px+q⊤x+r) ≤ x⊤P (ϵ̄)x+q⊤(ϵ̄)x+r(ϵ̄). (21)

The rationale behind this heuristic is that a tuple that
should be added to V by satisfying

x⊤P (ϵ)x+ q⊤(ϵ)x+ r(ϵ) <
∑

(P,q,r)∈V,α∈P|V|

αi(x
⊤Px+ q⊤x+ r)

which is a proxy to

x⊤P (0)x+ q⊤(0)x+ r(0) <
∑

(P,q,r)∈V,α∈P|V|

αi(x
⊤Px+ q⊤x+ r)

will require a large ϵ̄ to meet (21). This corresponds to a
small H . In turn, a tuple for which (21) is met even with
ϵ = 0 can simply be discarded, leading to a value of H equal
to infinity.

It should be noted that by selecting the tuples in this way in
line 6 of the proposed RDP algorithm, the selection made is
not necessarily the optimal one. This selection procedure can
be regarded as a greedy approach, as it only adds the tuples
one by one without already considering the next additions.
However, since the added tuple in every step is based on a
heuristic that is directly linked to the performance measure,
it can in general be expected to yield reasonable results.

IV. APPLICATION TO DT-LTI SYSTEM WITH
DISCRETIZED INPUTS

We provide here a novel application of RDP. Consider a
discrete-time linear time-invariant system xk+1 = Axk +
Buk, with xk ∈ Rn and uk ∈ U ⊆ Rm and a quadratic cost

min
{uk|k∈{0,...,h−1}}

h−1∑
k=0

x⊤
k Qxk + u⊤

k Ruk + x⊤
hQhxh (22)

restricted here to be over a finite time horizon h. This would
be the standard linear quadratic control if U = Rm, but here
we assume U := {ui | i ∈ {1, . . . , nu}} is a finite set.

This class of problem falls under the framework consid-
ered since: (i) the optimal value functions take the form (3)
and (ii) the sets (6) can be written as (7). In fact, using
induction, (i) is established by noticing that (3) holds at
k = h with Jh = Vh = {(Qh, 0, 0)} and, assuming that
it holds when k is replaced by k + 1 in (3) we also get (3)
at time k ∈ {h− 1, . . . , 0} since, for all x ∈ Rn,

Jk(x) = min
u∈U

x⊤Qx+ u⊤Ru+

min
(P̄ ,q̄,r̄)∈Jk+1

(Ax+Bu)⊤P̄ (Ax+Bu) + q̄⊤(Ax+Bu) + r̄

= min
(P,q,r)∈Jk

x⊤Px+ q⊤x+ r

4283

with
Jk = {(P, q, r) = (Q+A⊤P̄A,A⊤q̄ + 2A⊤P̄Bu,

u⊤(R+B⊤P̄B)u+q̄⊤Bu+r̄)|u ∈ U, (P̄ , q̄, r̄) ∈ Jk+1}.
In a similar fashion we can conclude that the sets (6) can be
written as (7) with

Vϵ
k = {(P, q, r) = ((1 + ϵ)Q+A⊤P̄A,A⊤q̄ + 2A⊤P̄Bu,

u⊤((1+ϵ)R+B⊤P̄B)u+q̄⊤Bu+r̄)|u∈U, (P̄ , q̄, r̄)∈Vk+1}.
A. Simulation results

Consider a point mass in 2D with time step size ∆t with
state xk =

[
x̄ vx ȳ vy

]⊤
k

representing the position
and velocity in 2D. The matrices of the linear system are

A =

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 , B =

1
2∆t2 0
∆t 0
0 1

2∆t2

0 ∆t

 . (23)

The input set is considered to be

U = {u1, u2, u3, u4, u5} =

{[
1
0

]
,

[
−1
0

]
,

[
0
1

]
,

[
0
−1

]
,

[
0
0

]}
in which the last element represents no input. The state costs
are given by (22) with

Q = diag([10 5 10 5]) R = 02×2, Qh = 04×4.

where diag([a1 · · · an]) is a diagonal matrix with diagonal
entries a1, . . . , an. Furthermore, we set ∆t = 0.25s and
h = 5. The results after the pruning procedure in the final
iteration step (k = 0) for the original (performance-based)
RDP algorithm and our proposed complexity-bounded RDP
algorithm are compared in Fig. 1. The performance bound
ϵ corresponds to the cost guarantee with the multiplicative
factor given in (5) and the complexity C represents |V0|. The
performance-based RDP algorithm here applies Algorithm 1
with H(P, q, r) = r. For the complexity-bounded RDP
algorithm we apply Algorithm 2 with H given by (20),
i.e., the greedy selection procedure, and with the selectM
procedure relying on the minimizer of (14) when x1 = 0;
thus the first tuple (P, q, r) ∈ Vϵk+1

k (0) that is added is the
one with the minimum r.

The figure shows that complexity-bounded pruning using
the greedy selection procedure gives similar, in fact even bet-
ter, results compared to performance-based pruning. Besides,
a significantly stricter performance bound could be provided
in some cases of performance-based pruning if it would be
computed a posteriori as is done with complexity-bounded
pruning, even if the pruned set is the same, as can be seen in
the results for several values of ϵ that all result in C = 10.
As already mentioned in Section I, the complexity resulting
from the original performance-based RDP algorithm is not
guaranteed to be a monotone function of the performance
bound. Similarly, the performance bound resulting from the
complexity-bounded RDP algorithm is not guaranteed to be
a monotone function of the complexity, but the advantage is
that the complexity is bounded in advance and, even if the
model or cost function would change, will not suddenly lead
to an intractable problem.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

Performance-based

Complexity-bounded

Fig. 1: Complexity and performance bounds resulting from
performance-based pruning and complexity-bounded pruning
for the 2D point mass example with ∆t = 0.25s and h = 5.

V. CONCLUSIONS

We presented a modified relaxed dynamic programming
algorithm with a guaranteed complexity bound. Our results
apply when the value functions can be represented as minima
of quadratic functions. This unifies several problems in
different areas, including the LQR problems with discretized
input, proposed here. The new approach removes a key
limitation of the original RDP algorithm, namely the lack of
complexity bounds. Instead of fixing the performance bound
a priori and getting a complexity bound a posteriori, we
rather find the best factor away from optimality for a preset
complexity bound.

REFERENCES

[1] B. Lincoln and A. Rantzer, “Relaxing dynamic programming,” IEEE
Trans. on Automatic Control, vol. 51, no. 8, pp. 1249–1260, Aug 2006.

[2] D. Görges, M. Izák, and S. Liu, “Optimal control and scheduling of
switched systems,” IEEE Transactions on Automatic Control, vol. 56,
no. 1, pp. 135–140, 2011.

[3] D. J. Antunes, R. M. Beumer, M. J. G. van de Molengraft, and
W. P. M. H. Heemels, “Adaptive sampling and actuation for pomdps:
Application to precision agriculture,” in 2022 IEEE 61st Conference on
Decision and Control (CDC), 2022, pp. 2399–2404.

[4] Q. Wei, D. Liu, and Y. Xu, “Neuro-optimal tracking control for a
class of discrete-time nonlinear systems via generalized value iteration
adaptive dynamic programming approach,” Soft Computing, vol. 20, pp.
697–706, 2016.

[5] L. Lu and J. M. Maciejowski, “Self-triggered mpc with performance
guarantee using relaxed dynamic programming,” Automatica, vol. 114,
2020.

[6] D. J. Antunes and W. Heemels, “Linear quadratic regulation of switched
systems using informed policies,” IEEE Transactions on Automatic
Control, vol. 62, no. 6, pp. 2675–2688, 2017.

[7] A. R. P. Andriën and D. J. Antunes, “Near-optimal map estimation
for markov jump linear systems using relaxed dynamic programming,”
IEEE Control Systems Letters, vol. 4, no. 4, pp. 815–820, 2020.

4284

