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Abstract— In this article, we consider a problem of strate-
gic communication between a sender (Alice) and a receiver
(Bob) akin to the now-traditional model of Bayesian Persua-
sion introduced by Kamenica & Gentzkow, with the crucial
difference that Bob is not assumed Bayesian. In lieu of
the Bayesian assumption, Alice assumes that Bob behaves
“almost like” a Bayesian agent, in some sense, without
resorting to any specific model.

Under this assumption, we study Alice’s strategy when
both utilities are quadratic and the prior is scalar. We
show that, contrary to the Bayesian case, Alice’s optimal
response may be more subtle than revealing “all or nothing.”
More precisely, Alice reveals the state of the world when it
lies outside a specific interval, and nothing otherwise. This
interval increases (and the amount of information shared
decreases) as Bob further departs from Bayesianity, much
to his detriment.

I. INTRODUCTION
In recent years, the relevance and interest in problems

related to strategic information transmission (SIT) have
expanded beyond the field of Information Economics
and reached communities in decision & control, informa-
tion theory, and computer science. These communities
have explored new applications of SIT ideas, concepts,
and modeling paradigms, including adversarial sensing
and estimation [1]–[3], persuasive interactions between
humans and autonomous agents/vehicles [4]–[6], and
congestion mitigation [7]–[13]. Furthermore, these fields
have facilitated the investigation of more complex SIT
problem formulations, such as communication over lim-
ited channels [14], [15] and algorithmic approaches [16].

The Bayesian Persuasion model introduced by Ka-
menica & Gentzkow [17] involves two actors: a Sender
(henceforth referred to as “Alice”) who has knowledge
of the state of the world and seeks to convince an unin-
formed Receiver (“Bob”) to take actions that benefit her.
The model in [17] has two critical features. First, Alice
commits to a signaling strategy, creating a Stackelberg
game in which she is the leader. This distinguishes it from
the perfect Bayesian equilibria considered in the cheap-
talk formulation of [18]. This commitment assumption
defines the Bayesian Persuasion framework and is present
in all extensions of [17], which includes multiple receivers
[19], [20] and/or senders [21], costly messages [22], online
settings [20], [23], [24], and the possibility of Bob gaining
additional information [25]–[27].
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The second crucial component of [17] is the assumption
that Bob uses Bayes’ rule to update his belief after
receiving Alice’s message. This not only defines the situ-
ations the model captures, but also plays a central role in
enabling the computation of Alice’s signaling policy. In
later scenarios where Bob’s response and Alice’s reward
are determined by the mean of the posterior, such as
[28]–[30], Gentzkow & Kamenica utilize a result from
Blackwell [31], [32] in [29] to parametrize the set of
posterior mean distributions that Bob can have upon
receiving Alice’s message. This reformulation and, hence,
Bob’s Bayesianity, makes Alice’s program theoretically
tractable and has been instrumental in most methods
for determining her policy (e.g., [16], [25], [29], [30]).

Given the instrumental importance of the way in which
Bob is assumed to update his prior in [17], multiple
recent studies (e.g., [26], [27], [33]–[35]) have attempted
to reconcile the framework of [17] with the empirical fact
(confirmed in many behavioral economics experiments
such as [36], [37]) that human decision makers can and
often do fail to be perfectly Bayesian, either through lack
of access to a correct prior, or by accessing or incorrectly
(according to Bayes’ rule) processing information.

The present work is a continuation of a study of
our own [38] which overcomes its main shortcomings
by offering an exact solution to the signaling problem
of interest, albeit in a simpler situation. Much like [33],
we consider Bob to be non-Bayesian, however we do
not make any explicit assumption regarding the process
replacing Bayes rule. Instead, we model Bob’s possible
posteriors via a generic robust hypothesis, in a manner
resembling the notion of an almost-maximizing agent
[39]. More precisely, we assume that, upon receiving
Alice’s message, Bob’s posterior lies within an adequately
defined neighborhood of the correct Bayesian posterior,
regardless of how it was computed. This notion of
“almost-Bayesianity”, hinted at in [33] and formalized in
[38], sets us apart from other models which either rely
on parametric uncertainty (which assume Bob’s thought
process is known to Alice, save for few parameters such
as unknown mismatched prior [34], [35]) or make Alice
account for the fact that Bob may receive private side
information (before [27] or after [26] messaging).

While this robust hypothesis approach could model
Bob’s default to apply Bayes’ rule in general persuasion
and SIT problems, we focus on the particular linear
quadratic setting introduced by [40]. Even this relatively
simple case presents interesting non-trivial features:
much like the celebrated Witsenhausen’s counterexample
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[41], it presents a “linear-quadratic-Gaussian” situation
in which linear policies may not be optimal. In addition,
and in contrast with Witsenhausen’s counterexample,
finding the optimal linear policy is itself challenging.
These difficulties motivate the present article, in which
the prior is scalar.

We show that it is optimal to disclose x when it lies
outside of a specific interval, and nothing otherwise.
This interval is the unique interval J of length 2α—a
parameter that scales linearly with the size of the neigh-
borhood defining the robust hypothesis and otherwise
only depends on Alice’s utility—such that

E[x |x ∈ J ] = t0.

This policy provides a subtle compromise between full-
disclosure, corresponding to J = ∅, and no-disclosure,
corresponding to J = R. J grows with α, thus Bob
receives less information from Alice as she believes he
strays further from Bayes’ rule, this can only harm him.

We first present the background necessary to place the
problem in context in Section II: Sections II-A and II-
B summarize our previous study with its shortcomings,
whereas Section II-D is a self-contained tutorial on the
notion of information in the sense of Blackwell and its
application to strategic information design when Bob’s
best response is a function of the mean of his posterior.
Section III-A is dedicated to solving the problem of
interest using the recent developments presented in
Section II-D, and deriving structural insights as corollar-
ies. Section IV compares the results obtained with our
previous findings and discusses their relative importance.

For the sake of brevity, a few simplifying assumptions
on the prior have been made and elementary proofs have
been omitted. In this article, bold symbols represent
random variables and their regular variant denotes a
realization.

II. Background
A. Quadratic persuasion

In this article, we study strategic information trans-
mission games where both the sender (Alice) and the
uninformed receiver (Bob) have quadratic utilities (pre-
cisely in (x,a) with the coming notation). Alice chooses
a messaging scheme, communicates this choice to Bob,
then observes the state of the world x ∈ Rn and messages
y ∈ Rp to Bob according to the messaging scheme
she has committed to earlier. Bob then plays action
a ∈ Rm according to his posterior belief µy over x.
As both utilities are quadratic, a usual reduction is
to assume Bob plays a = x̂ = E[x | y], the mean
square estimate, modifying Alice’s utility as necessary.
In dimension n = 1, these games resemble the original
cheap talk setting [18], save for the commitment element
that is peculiar to Bayesian persuasion [17].

To fix the notation, we denote by ν the prior distribu-
tion of the random variable x, it is a Borel probability
measure over Rn which, with further modifications of

Alice’s utility, can be centered and of covariance In.
When ρ is a Borel distribution over Rn, we denote by ρ̄
its mean and Σρ its covariance, so that ν̄ = 0, Σν = In
and x̂ = µ̄y. Much like when the prior is discrete, it is
more fruitful to reason using the induced distribution τ
of the Bayesian belief µy than the signaling policy itself,
[17]. In actuality, only the distribution τ̂ of the estimate
x̂ is ever relevant to the analysis thanks to the quadratic
utilities.

Let us denote Alice’s cost under realized state x and
action a by

v(x, a) =

([
x
a

]
− l

)⊤

Q

([
x
a

]
− l

)
+ r,

where r ≥ 0, Q ≽ 0. As observed in [40], a simple
calculation shows that Alice’s expected cost is an affine
function of the covariance of the estimate x̂, Στ̂ :

E[v(x,a)] = Tr(DΣτ̂ ) + c,

where

D = Q12 +Q21 +Q22

c = TrQ11 + l⊤Ql + r.

This, added to the fact that 0 ≼ Στ̂ ≼ Σν = In no matter
the signaling policy, allows [40] to conclude that Alice’s
optimal cost is at least

min
0≼X≼In

Tr(DX) + c. (1)

Being concave, this program admits an orthogonal pro-
jection matrix P ∗ as a solution. When ν is Gaussian [40]
(or even just isotropic [38]), signaling y = Px with P
orthogonal projection matrix yields x̂ = Px and thus
Στ̂ = P . As a result, y = P ∗x is an optimal messaging
policy. Given its importance, we call the signaling policy
y = Px the projective policy of (orthogonal projection)
matrix P . It reveals the component of x that belongs to
the image of P , and eclipses the one in its kernel.

When n = 1 and ν is any distribution, the lower bound
(1) can be achieved with a projective policy since the
only two projective policies are y = 0 and y = x, which
yield x̂ = 0 and x̂ = x respectively. When n ≥ 2 and ν
is not isotropic, however, there might be a gap between
the optimal cost of Alice and the lower bound (1). Even
when ν is discrete, an optimal solution remains elusive
[42].

B. Almost-Bayesian persuasion
There are many reasons why Bob may not follow

Bayes’ rule exactly, e.g., if he makes computations
errors in doing so, if the computation is costly, or
if the representation of the posterior distributions are
not accurate in the formula. In [33], different models
have been considered to replace Bayes’ rule, such as
conservative Bayesianism, motivated update or Grether’s
α–β model. The latter all propose an alternative to
Bayes’ rule, however they require Alice to know precisely
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how Bob forms his posterior, which seems excessively
demanding.

In an attempt to capture Bob’s worst behavior without
a specific assumption on how he fails to be Bayesian, it
seems natural for Alice to consider that the erroneous
posterior of Bob always lies within a safety set around
the true posterior. In a previous article [38] where we
lay the foundations to the study of quadratic persuasion
of almost-Bayesian agents, we show that many generic
robust hypotheses (for instance that Bob’s posterior µ′

y is
close to µy in a certain statistical sense, or that he plays
almost optimally) amount to assuming the response of
Bob lies in an ellipsoid of given shape, centered on the
mean square estimate given the message, i.e.,

a ∈ x̂+ CB,
where B is the Euclidean unit ball.

This calls for a revisit of Alice’s expected cost. It
is equal to the Bayesian objective, plus the following
penalty term,

E
[
sup
η∈B

2((Q21 +Q22)x̂− (Ql)2)
⊤Cη + η⊤C⊤Q22Cη

]
.

(2)
When n ≥ 2, it is not possible to analytically solve the
inner program, let alone take its expectation. In [38], we
frame this term between two matching bounds (up to a
multiplicative ratio, approximately equal to 0.46 when ν
is Gaussian). Using the upper bound, we could derive a
pessimistic program in terms of the covariance Στ̂ , much
like (1),

min
0≼X≼In

Tr(DX) + c+ λ̄+
√
f +Tr(EX), (3)

where λ̄, f, E are constants.
This program is concave, hence admits a solution

Q∗ that is an orthogonal projection matrix, which thus
corresponds to the projective policy of matrix Q∗. We
have developed a numerical method to obtain such a
Q∗. Under this pessimistic assumption, we also show
that Alice tends to share less information with Bob as
ϵ grows when the robust hypothesis is C = ϵC0, in the
sense that the minimal rank of a solution—that is, the
minimal number of active canals required—decreases.

This theorem comes with two caveats. First, it only
applies to the solutions where the objective is approxi-
mated using the pessimistic bound. Second, the notion of
information is only captured by the rank of the solution.
To circumvent these two hurdles and to do away with
approximations, throughout this article we focus on a
special case: the scalar case (n = 1).
C. Generic program under real prior

From now on, we assume that n = 1. Of course, most
matrices and vectors are now scalars in disguise. To make
this fact more legible, we denote ϵ = C ≥ 0, q = Q22 ≥ 0.
Further, we focus on the case D < 01, that is, scaling

1When D ≥ 0 it is optimal to not reveal any information, and
this is also reflected in the pessimistic program (3).

all parameters accordingly, D = −1. In this special case,
the inner program of the penalty term (2) can be exactly
evaluated:

sup
η∈[−1,1]

ϵ((q − 1)x̂− 2(Ql)2)η + ϵ2qη2

= ϵ|(q − 1)x̂− 2(Ql)2|+ ϵ2q.

In the end, the program of Alice takes the form

c+ ϵ2q + inf
τ̂≺ν

Eτ̂ [ϵ|(q − 1)x̂− 2(Ql)2| − x̂2], (4)

where τ̂ ≺ ν denotes the fact that τ̂ is a distribution of
estimates induced by some signaling policy from the prior
ν, and the subscript τ̂ on the expectation emphasizes
the dependency on τ̂ , now a variable. The case q = 1
is uninteresting in that both the pessimistic program
and the true program are solved by revealing all the
information, we thus assume q ̸= 1. Having defined

α = ϵ|q − 1| ≥ 0

t0 =
2(Ql)2
q − 1

solving (4) amounts to solving the generic program

V ∗
α = inf

τ̂≺ν
Vα(τ̂) (5)

where
Vα(τ̂) , Eτ̂ [α|x̂− t0| − x̂2].

Most of our analysis is devoted to solving this program
and establishing the properties of its solutions. Note
that here the entire distribution τ̂ matters, not only its
covariance. For this reason, we review next a technique
that was first introduced by Blackwell [31] and later
systematically employed for Bayesian persuasion when
the prior is supported on a compact interval and the
objective of Alice is ultimately linear in τ̂ , see [29].

D. Information in the sense of Blackwell
In his seminal work [31], [32], Blackwell introduced

a partial order among distributions called “sufficiency”
which, although our present context is rather different,
corresponds to that informally defined earlier. The fol-
lowing definition is a reformulation more suited to our
needs.

Definition 1. Given two real Borel probability distribu-
tions ρ, υ where υ has finite variance, we say that υ is
sufficient for ρ, if there exists a stochastic function f of
z ∼ υ such that E[z |f(z)] ∼ ρ.

This order is interesting on multiple accounts. Firstly,
it exactly captures what we set earlier: τ̂ ≺ ν if and
only if ν is sufficient for τ̂ . Secondly, when τ̂1 ≺ τ̂2, any
decision maker whose utility u is affine in x will perform
worse under τ̂1 than τ̂2:∫

max
a∈A

u(x̂, a) dτ̂1(x̂) ≤
∫

max
a∈A

u(x̂, a) dτ̂2(x̂),
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simply as a consequence of Jensen’s inequality. This also
corresponds to τ̂1 being “less informative” than τ̂2 as
defined in [31]. Thirdly, and most crucially, the order
possesses an operative characterization, at least when υ
is compactly supported, which was used in [29].

In our case, however, we cannot readily use this charac-
terization as ν is not compactly supported. Nonetheless,
it remains possible to use it as a necessary condition (in
the form of Principle 1 to come). To do so, we define—
very similarly to [29]—for any ρ real probability measure
of finite variance:

Gρ(t) ,
∫

(t− z)+ dρ(z).

This function is always convex, and by Jensen’s inequal-
ity, whenever ρ ≺ υ are two distributions,

Gδῡ (t) ≤ Gρ(t) ≤ Gυ(t), for all t ∈ R.

Because of the importance of these properties, we define

Gυ , {G : R → R, convex s.t. Gδῡ ≤ G ≤ Gυ}.

Principle 1. Consider the following program

inf
τ̂≺ν

ϕ(τ̂). (6)

If there exists a function Φ such that ϕ(τ̂) = Φ(Gτ̂ ) and
if there exists τ̂∗ ≺ ν such that

Φ(Gτ̂∗) = inf
G∈Gν

Φ(G),

then τ∗ is an optimal solution of (6).

Indeed, given the remark we have made earlier,

inf
τ̂≺ν

ϕ(τ̂) ≥ inf
G∈Gν

Φ(G) = Φ(Gτ̂∗) = ϕ(τ̂∗).

In turn, one could first solve the above program in G, and
verify whether a solution corresponds to a distribution
for which ν is sufficient.

Now that the importance of Gρ has been established,
we turn to its study. Being convex, we denote by

∂Gρ(t) = [∂−Gρ(t), ∂
+Gρ(t)]

its subdifferential at t (see [43] for instance). As we
show in Lemma 1, the endpoints of this interval are re-
spectively equal to the cumulative distribution functions
excluding and including t:

F−
ρ (t) , ρ((−∞, t)), F+

ρ (t) , ρ((−∞, t]).

In other words, Gρ is a primitive of the cumulative
distribution function (itself a primitive of the probability
density function, if it exists). As such, kinks in Gρ encode
atoms of ρ, with mass equal to the change of slope,
moreover Gρ is affine on an interval [a, b] as soon as it
has no mass on its interior, i.e. when ρ((a, b)) = 0.

Lemma 1. When ρ is a real probability measure of finite
variance and z ∼ ρ, Gρ is convex, finite on R, such that
Gρ ≥ Gδρ̄ and F±

ρ = ∂±Gρ. For all t ∈ R,

E[|z − t|] = 2Gρ(t) + ρ̄− t.

Ḡ

Γg

t0

g

I(g)

Fig. 1. Graphical representation of Γg , solution of (7) under the
additional constraint that G(t0) = g.

Noting that Gδρ̄(t) = (t−ρ̄)+ and denoting the Lebesgue
measure by λ, one recovers the variance of ρ from Gρ:

Σρ = 2

∫
Gρ −Gδρ̄ dλ.

III. Application to Alice’s almost-Bayesian problem
In the remainder of this article, we assume ν is

continuous with positive density and finite variance, as
for instance N (0, 1). Since we will use Gν and Gδν̄

extensively, we define Ḡ = Gν and
¯
G = Gδν , and since

ν is fixed from now on, we drop the dependency in ν
and simply denote by G the set of convex functions
framed between

¯
G and Ḡ. By assumption, Ḡ is twice

continuously differentiable and Ḡ′′ > 0.
For the sake of exposition, we devote this section to

an informal derivation of our main results, followed by
few illustrative examples. We save the rigor of the proofs
for the appendix.

A. Main results
Following Principle 1 and relying on Lemma 1, we are

brought to define

Φ(G) , α(2G(t0) + ν̄ − t0)− 2

∫
G−

¯
G dλ

so that
Eτ̂ [α|x̂− t0| − x̂2] = Φ(Gτ̂ ).

The following provides a lower bound of program (5)

inf
G∈G

Φ(G). (7)

The form of Φ is peculiar. Informally, we seek to
minimize G(t0) while maximizing the area between G
and Ḡ. We can thus first fix the value G(t0), find the
optimal such convex curve, and later optimize over the
value G(t0). It is quite clear geometrically that the
optimal curve G, subject to the additional constraint that
G(t0) = g, is none other than the one whose epigraph is
the convex hull of the point (t0, g) and the epigraph of
Ḡ. We call Γg this curve, see Figure 1.

The function Γg is quite remarkable. It is equal to Ḡ
outside a specific interval we denote by I(g), and on I(g)
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it is equal to the maximum between the tangents to Ḡ
at either end of I(g). Moreover, the tangents meet at the
abscissa t0 with value g, and I(g2) ⊂ I(g1) if g1 ≤ g2.

The distribution of posterior means associated to Γg

is simple: it is equal to the prior ν outside I(g), and it
is a mass at t0 on I(g). Denoting by νA the measure
ν restricted to a Borel set A (that is, νA(B) = ν(A ∩
B)), and by Ac the complement of A, the distribution
corresponding to Γg is

τ̂g = νI(g)c + ν(I(g))δt0 .

This distribution points to a very simple signaling policy:
reveal x when x ∈ I(g), reveal nothing otherwise; that
is, use the signaling policy σg defined by

σg(x) ,
{
x if x ̸∈ I(g)

t0 if x ∈ I(g).

We verify later that the policy σg indeed induces the
function Γg. All that remains is to optimize Φ(Γg) with
respect to g ∈ [

¯
G(t0), Ḡ(t0)]. Using the definition of Γg,

∂

∂g
Φ(Γg) = 2α− l(g),

where l(g) is the diameter of I(g), finite when g >
¯
G(t0).

The function l is decreasing with lim
¯
G(t0) l = ∞ and

l(Ḡ(t0)) = 0. In turn, the unique solution in g is l−1(2α),
thus the unique solution of (7) is Γl−1(2α), implementable
by σl−1(2α) as stated next.

Theorem 1. An optimal policy to (5) is to send y = x
when x ̸∈ I(l−1(2α)), nothing otherwise. I(l−1(2α)) is
the only open interval J of length 2α such that the
estimate of x conditioned on the event x ∈ J is t0.

This policy is remarkably simple and constitute a
subtle compromise between full- and no-information
disclosure, corresponding to α = 0 and α = ∞ respec-
tively. When the prior distribution is symmetric about
t0, the interval J described above in none other that
(t0 − α, t0 + α), this allows us to state the following.

Corollary 1. When the prior restricted to (t0−α, t0+α)
is symmetric about t0, an optimal policy to (5) is to send
y = x when |x− t0| ≥ α, nothing otherwise.

The strongest conclusion we draw from Theorem 1 is
that, given the fact that Γl−1(2α2) < Γl−1(2α1) when α2 >
α1, Alice shares less information in the sense of Blackwell
with Bob as he departs further from Bayesianity, which
only harms him. This cements the same conclusion we
had previously drawn in [38], albeit in the special case
of a scalar prior. Formally put, we have the following.
Corollary 2. If τ̂1, τ̂2 are solution of (5) at respectively
α1 < α2, then τ̂2 ≺ τ̂1.
B. Illustrative examples

As a first example, let us outline a numerical method
to compute an optimal signaling policy. Define

Ts(t0) , Ḡ(s) + Ḡ′(s)(t0 − s),

Ḡ

¯
G
Γ¯
G(t0)

t0

¯
G(t0)

2t0 − 1−1 1

Fig. 2. Solution for ν = U([−1, 1]) when 0 ≤ t0 < 1− α.

so that I(l−1(2α)) = (s∗ − α, s∗ + α) where s∗ is the
unique root in s of

Ts+α(t0)− Ts−α(t0) = E[(t0 − x)1(s−α,s+α)(x)].

The latter only increases in s and so s∗ can be efficiently
computed. For instance, considering the standard Gaus-
sian distribution ν = N (0, 1) with α = 1 and t0 = 1, we
find

I(l−1(2α)) ≈ (0.364, 2.364),

whereas for α = 1.1, we find

I(l−1(2α)) ≈ (0.343, 2.543)

which is in agreement with Corollary 2.
Although our assumption requires that ν be con-

tinuous with positive density over R, our results can
be carefully extended to the cases where the density
is piecewise continuous and not necessarily positive.
More specifically, the unique optimal solution to (7)
remains Γg for a certain g, which is still induced by
σg, and g 7→ Φ(Γg) is still convex though not necessarily
continuously differentiable or even strictly convex.

As a second example, consider the uniform distribution
over [−1, 1]. If t0 ̸∈ (−1, 1), [

¯
G(t0), Ḡ(t0)] = {Ḡ(t0)},

thus it is optimal for Alice to fully reveal x. Assume now
that t0 ∈ [0, 1] without loss of generality. If t0+α ≤ 1, ν
restricted to (t0−α, t0+α) is symmetric about t0, hence
it is optimal for Alice to reveal x if |x − t0| ≥ α, in a
manner analogous to Corollary 1. If on the other hand
t0 + α > 1, l(g) < 2α for all g >

¯
G(t0), and therefore it

is optimal to reveal x if x ≤ 2t0−1, following the policy
σ¯
G(t0) (see Figure 2).

IV. Conclusion
Focusing on the scalar case (and further assuming the

prior is continuous with positive density), we have been
able to solve the problem of almost-Bayesian quadratic
persuasion. An optimal policy consists in confounding
all values x of a given interval and signaling truthfully
the others, the interval increasing as Bob departs further
from Bayes’ rule. This agrees with the intuition as Alice
tries to minimize the absolute deviation of x̂ from t0
while maximizing its variance, whereas the weight on
the former increases as Bob is less Bayesian.
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Additionally, the interval of values Alice does not
disclose takes a simple form. When α is the relative
coefficient in front of the deviation of x̂ from t0, this
specific interval is the unique interval of length 2α for
which the conditional expectation yields t0. Even when
no closed-form expression is available, it is possible to
compute this interval numerically.

Beyond confirming that linear policies are not optimal,
this study shows that under appropriate assumptions the
information Alice is willing to share with Bob decreases
with his lack of Bayesianity. This reinforces the similar
observation made in [38], although this time, thanks to
Blackwell’s hierarchy of information, this is absolute: Bob
is worse off being less Bayesian in the eyes of Alice, no
matter his objective.
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Appendix
To establish the claims made previously, we first show

that Γg is the unique solution of the constrained program

inf
G∈G

α(2G(t0) + ν̄ − t0)− 2

∫
G−

¯
G dλ

s.t. G(t0) = g.

(8)

Lemma 2. Γg is the unique solution of (8).

Proof. The first term is equal to α(2g+ ν̄− t0), hence is
constant and can leave the minimization. This program
then amounts to maximizing the area between G and

¯
G

where G ∈ G takes value g at t0. To fix things, call E the
epigraph of Ḡ and Eg the convex hull of {(t0, g)}∪E . By
definition, Γg is a valid argument of (8). Moreover, if G
is a different valid argument, its epigraph must contain
both E and (t0, g), so that G ≤ Γg and G ̸= Γg (which are
both continuous) and in particular Φ(Γg) < Φ(G).

Next, we establish a closed-form expression for Γg. To
do so, we denote by Ts the tangent to Ḡ at s ∈ [−∞,∞]
(where T−∞(t) = 0 and T∞(t) = t − ν̄), and by h the
function which to s associates the value Ts(t0), i.e.,

h : s ∈ [−∞,∞] 7−→ Ts(t0) = Ḡ(s)+Ḡ′(s)(t0−s) ∈ [
¯
g, ḡ],

where for lighter expressions, we have defined

¯
G(t0) =

¯
g, Ḡ(t0) = ḡ.

The function h is increasing and decreasing on [−∞, t0]
and [t0,∞] respectively, so we may invert it and define

ξA , h
∣∣−1

[−∞,t0]
, ξB , h

∣∣−1

[t0,∞]

monotonic functions, continuously differentiable on the
interior of their domain, (

¯
g, ḡ). With this notation,

I(g) = (ξA(g), ξB(g)).

Lemma 3. For all g ∈ [
¯
g, ḡ] and t ∈ R,

Γg(t) =


Ḡ(t) if t ≤ ξA(g)

TξA(g)(t) if ξA(g) < t ≤ t0

TξB(g)(t) if t0 < t < ξB(g)

Ḡ(t) if ξB(g) ≤ t.

Proof. Denote by G the function introduced in the
statement. By definition, it belongs to G and G(t0) = g,
thus G ≤ Γg. Conversely, take a point D = (t, z) in the
epigraph of G. If D ∈ E or D = (t0, g), by definition
D ∈ Eg. Assume otherwise, then t ∈ I(g). If t ≤ t0, the
line that connects D,Cg crosses the graph of Ḡ at some
point E such that E,D, (t0, g) are aligned in this order.

Ḡ

Γg

Cg

t0

g

ξB(g)ξA(g)

TξA(g)

TξB(g)

I(g)

Fig. 3. Graphical representation of the notation introduced.

Then D ∈ [(t0, g), E] and similarly if t ≥ t0, in all cases
D belongs to the adherence of Eg, and thus G ≥ Γg.

Using this expression, we can now verify that Γg

corresponds to the announced distribution of posterior
means, τg, and that this latter is induced by policy σg.

Lemma 4. Γg = Gτg and τg is induced by the policy σg.

Proof. From the form of σg, we can already deduce that
the induced distribution of posterior means has the form

τ̂ = νI(g)c + ν(I(g))δs0

where s0 ∈ I(g) is the conditional expectation of x given
that x ∈ I(g). In turn Gτ = Ḡ on I(g)c and Gτ is tangent
to Ḡ at ξA(g) and ξB(g). Continuity of Gτ allows us to
conclude that s0 = t0, and so Gτ = Γg.

The following lemma, whose proof is a simple calcu-
lation, omitted for the sake of brevity, is the last piece
of the puzzle in establishing Theorem 1.

Lemma 5. The function g ∈ [
¯
g, ḡ] 7→ Φ(Γg) is continuous,

continuously differentiable on (
¯
g, ḡ], strictly concave and

∂

∂g
Φ(Γg) = 2α− l(g).

Proof of Theorem 1. Combining Lemmas 2 and 5,
Γl−1(2α) is the unique solution of (7). Lemma 4 asserts
this solution corresponds to the distribution of mean pos-
teriors τ l

−1(2α), product of the signaling policy σl−1(2α).
Principle 1 implies that σl−1(2α) is an optimal policy. The
interval I(l−1(2α)) has length 2α by definition and the
associated conditional expectation is t0. This uniquely
characterizes I(l−1(2α)) since s 7→ E[x |x ∈ [s, s + 2α]]
is strictly increasing.

We should emphasize that, although there are multiple
optimal signaling policies, the optimal distribution of
posteriors means is unique. This is because Γl−1(2α) is
the unique solution of (7).

Proof of Corollary 2. Let τ̂1, τ̂2 be solution of (5) at
respectively α1 < α2. Considering τ̂1 as the prior, τ̂2
is the distribution of posterior means induced by the
signaling policy σ2, therefore τ̂2 ≺ τ̂1.
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