
Global Finite-time Stabilization for a Chain of Integrators in the
Presence of Actuator Saturation by Homogeneous Feedback

Tan Hou, Yuanlong Li and Zongli Lin

Abstract— This paper considers the problem of globally
stabilizing a chain of integrators with actuator saturation in
finite time. The proposed method is adapted from an existing
scheduled low gain approach by relaxing the range of the value
of the low gain parameter. Due to the special structure of the
considered system, the proposed feedback law not only results
in finite-time stability but also is homogeneous in the whole state
space. The homogeneity of the proposed feedback law allows its
implementation through the discretization of a compact set of
the state space and thus obviation from numerical difficulties
in the existing scheduled low gain design. A numerical example
is presented to validate our theoretical results and demonstrate
that our approach achieves faster convergence than the existing
methods.

Index Terms— Actuator saturation, low gain feedback, finite-
time stabilization, global stabilization.

I. INTRODUCTION

In this paper, we revisit the problem of globally stabilizing
a chain of integrators in the presence of actuator saturation.
The dynamics of the considered system is governed by

ẋ = Ax+Bsat (u) , (1)

where x ∈ Rn is the state, u ∈ R is the input, matrices A
and B take the following form

A =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0

 , B =


0
0
...
0
1

 ,
and sat : R → R is the standard decentralized saturation
function, i.e., sat(u) = sgn(u)min{1, |u|}. This problem
has been well studied and belongs to a much broader topic,
global stabilization of linear systems with bounded controls.
In what follows, we recollect some results concerning this
problem from the literature.
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It has been proven in [1] that, for a chain of integrators
(1) with n ≥ 3, there does exist a globally stabilizing linear
feedback in the form of u = −KTx, where K ∈ Rn.
As a result, many efforts have been devoted to finding
nonlinear feedback laws for global stabilization of (1). One
of the most elegant control strategies was established in
[2], which is referred to as the nested saturation method.
This result was extended to general ANCBC systems in [3].
Here, ANCBC stands for asymptotically null controllable
by bounded controls, which is a necessary and sufficient
condition for global stabilization of linear systems subject
to actuator saturation. The nested saturation method has also
been studied by numerous works in the past decades to
improve its convergence speed [4, 5], to incorporate with an
event-trigger mechanism [6], or even to achieve finite-time
stability [7].

Another important technique for solving the global stabi-
lization problem of (1) is the scheduled low gain method [8],
which was developed for general ANCBC systems. Utilizing
this technique, the scheduled low-and-high gain strategy was
developed [9, 10] for global practical stabilization in the
presence of uncertainties and disturbances. Even though they
yield appealing theoretical results, the scheduled low gain
method and its variations are generally hard to implement
in practical applications because they require solving an
optimization problem online to determine the value of the
state-dependent low gain parameter.

This paper aims to circumvent numerical difficulties en-
countered in global stabilization of (1) using the existing
scheduled low gain feedback approach. In particular, by
exploiting the special structure of (1), we find that solu-
tions to a parameterized Riccati equation can be completely
characterized by a solution to the same equation with a
fixed parameter. This facilitates us to interpret the associated
scheduled low gain feedback from a homogeneity perspec-
tive. Based on this observation, we further relax range of the
value of the low gain parameter from (0, 1] to (0,∞) to result
in a homogeneous feedback law that renders the closed-loop
system globally finite-time stable. Due to the homogeneity
and the continuity of the resulting feedback law, we can
implement it by discretizing a compact set of the state space,
which reduces the online optimization in the existing sched-
uled low gain method to the offline computation of a finite
number of feedback gains. A numerical example validates
our theoretical results and shows that our method achieves
faster convergence compared with the existing results.

Notation: In this paper, we use standard notions. For
symmetric matrix P ∈ Rn×n, P > 0 means that P is positive
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definite. For a matrix P > 0 and a positive scalar ρ > 0,
LV(P, ρ) := {x ∈ Rn : xTPx = ρ}. For a finite set X , |X |
denotes its cardinality. For a real number c ∈ R, ⌈c⌉ denotes
the nearest integer greater than or equal to c. For a vector
a ∈ Rn, diag(a) ∈ Rn×n denotes the diagonal matrix with
the ith diagonal entry being ai. Λn denotes the unit simplex,
i.e., Λn := {γ = [γ1 γ2 · · · γn]T :

∑n
i=1 γi = 1, γi ≥ 0, i ∈

{1, 2 · · · , n}}

II. PRELIMINARY: A NEW INTERPRETATION OF THE
SCHEDULED LOW GAIN DESIGN USING A

PARAMETERIZED RICCATI EQUATION

In this section, we revisit the scheduled low gain design
based on a parameterized Riccati equation and reveal some
properties of the associated feedback law. These properties
will help us to understand the scheduled low gain feedback
from a homogeneity perspective and facilitate our subsequent
development.

We first introduce the generalized homogeneity from [11].
Definition 1: A real function u : Rn → R is called

homogeneous of order m with respect to the dilation matrix
Dr = diag

(
[rn rn−1 · · · r1]T

)
if u(x) = rmu(Drx).

Let P (r) be the solution of the following algebraic Riccati
equation, parameterized in r,

P (r)A+ATP (r)− P (r)BBTP (r) + rP (r) = 0. (2)

The scheduled low gain feedback law is constructed as

u(x) = −kBTP (ε(x))x, (3)

where ε(x) is the state-dependent low gain parameter deter-
mined by

ε(x) = max
{
r ∈ (0, 1] : xTP (r)x

× Tr(BTP (r)B) ≤ 1
}
, (4)

and k ≥ 1 is an arbitrary constant. The following theorem
is adapted from [8], where a parameterized LQR Ricatti
equation, instead of the Riccati equation (2) is used.

Theorem 1: System (1) is globally asymptotically stabi-
lized by the scheduled low gain feedback (3).

Due to the special structure of matrices A and B, solutions
to the parameterized Riccati equation (2) can be completely
characterized by its solution for a fixed value of r. This
property has also been observed in [12] for a slightly
different dilation matrix Dr.

Property 1: The solution to (2) takes the form of P (r) =
1
rDrP (1)Dr, where P (1) is the solution of (2) with
r = 1 and Dr is a dilation matrix defined as Dr =
diag([rn rn−1 · · · r]T).

Proof: Noting that BTDr = rBT, DrA = rADr, we
verify that

P (r)A+ATP (r)− P (r)BBTP (r) + rP

=
1

r
DrP (1)DrA+

1

r
ATDrP (1)Dr +DrP (1)Dr

− 1

r2
DrP (1)DrBB

TDrP (1)Dr

= Dr(P (1)A+ATP (1)− P (1)BBTP (1) + P (1))Dr

= 0,

where the last equality follows from the definition of P (1).
This completes the proof.

The property 1 enables us to write the scheduled low gain
feedback in a more concise way.

Theorem 2: System (1) is globally asymptotically stabi-
lized by the feedback law u(x) = −kBTP (1)Dε(x)x, where
k ≥ 1 is any constant, P (1) is the solution to (2) with r = 1,
and ε(x) is defined by

ε(x) = max
{
r ∈ (0, 1] : xTDrP (1)Drx

× Tr(BTP (1)B) ≤ 1
}
. (5)

Proof: It follows from Property 1 that the feedback law
(3) can be rewritten as u = −kBTP (1)Dε(x)x, and (4) is
equivalent to (5).

Theorem 2 reveals the quasi-homogeneity of the scheduled
low gain feedback law, i.e., (3) is homogeneous with respect
to Dr in Rn excludes a compact set. To make this more
obvious, we define K = {x : ε(x) = 1}. Clearly, K is a
compact set. In fact, K is exactly the set {x : xTP (1)x ×
Tr(BTP (1)B) ≤ 1}. Moreover, for any x ∈ Rn \ K, (5) is
equivalent to

ε(x) = max
{
r ∈ (0, 1) : xTDrP (1)Drx

× Tr(BTP (1)B) = 1
}
. (6)

This leads to the following property of the scheduled low
gain feedback law.

Property 2: Let x ∈ Rn \ K, and suppose y = Dαx ∈
Rn \ K, for some α ∈ (0,∞). Then, we have u(x) = u(y),
where u(x) has been defined in Theorem 2.

Proof: Since x and y = Dαx are within the set Rn\K,
it follows from (6) that Dε(x) = Dαε(Dαx) = Dαε(y), i.e.,
ε(x) = αε(y). Therefore

u(y) = u(Dαx) = −kBTP (1)Dε(Dαx)Dαx

= −kBTP (1)Dε(x)x = u(x).

With these in hand, the scheduled low gain feedback
law can be interpreted as a piecewise continuous feedback
defined by

u(x)=

{
− kBP (1)x, x ∈ K,
− kBP (1)Dε(x)x =−kBP (1)x̄, x∈Rn\K,

(7)

where x̄ := Dε(x)x ∈ LV(P (1), 1/Tr(B
TP (1)B)). In other

words, the scheduled low gain feedback law u(x) is linear
in K and is homogeneous in Rn \ K with respect to Dr.

In the next section, we will show that the quasi-
homogeneity of (5) becomes homogeneity if we relax the
range of the value of the low gain parameter r in (5) from
(0, 1] to (0,+∞). This will also render the closed-loop
system finite-time stable.
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III. GLOBAL FINITE-TIME STABILIZATION BY
HOMOGENEOUS FEEDBACK

To obtain a homogeneous feedback law, we relax the range
of the value of the parameter r in (5) from (0, 1] to (0,∞).
The resulting feedback law is given as

ũ(x) =

{
0, x = 0,

− kBTP (1)Dε̃(x)x, x ̸= 0,
(8)

where k ≥ 1 is any constant and ε̃(x) is defined by

ε̃(x) = max{r ∈ (0,∞) : xTDrP (1)Drx

× Tr(BTP (1)B) ≤ 1}. (9)

For completeness, we let ε̃(0) = +∞ and ũ(0) = 0.
Property 3: The scheduled feedback (8) is homogeneous

of degree 0 with respect to the dilation matrix Dr in Rn\{0},
i.e., ũ(x) = ũ(Drx) for any x ∈ Rn \ {0} and r ∈ (0,∞).

Proof: It is clear that, for a given x ∈ Rn \ {0}, Eq.
(9) is equivalently to

ε̃(x) = max{r ∈ (0,∞) : xTDrP (1)Drx

× Tr(BTP (1)B) = 1}. (10)

Hence, following the same steps as those in the proof of
Property 2, we deduce that, for any x ∈ Rn \ {0} and any
r ∈ (0,∞), u(x) = u(Drx).

The difference between (5) and (9) is that we allow the
parameter r to tend to +∞ as x approaches the origin.
Nevertheless, in view of the fact that

|ũ(x)| ≤ k|BTP (1)
1
2 ||P (1) 1

2Dε̃(x)x|
≤ k|BTP (1)B| × |xTDε̃(x)P (1)Dε̃(x)x| ≤ k,

the homogeneous feedback (8) is globally bounded. Next,
we will show that this homogeneous feedback law results in
global finite-time stabilization. To this end, we first recall the
definition of finite-time stability from [13] and then establish
some technical lemmas for the proof.

Definition 2: System (1) is said to be globally finite-time
stable at the origin if it is globally asymptotically stable and
there exists a locally bounded function T : Rn → [0,∞),
such that x(t, x0) = 0 for any t ≥ T (x0), where x(t, x0) is
the trajectory of (1) originating from x0. In particular, the
function T is called the settling-time function.

Next, we adapt a useful lemma from [14] concerning the
monotonicity of the solution to (2) with respect to r.

Lemma 1: For any r ∈ (0,∞), the solution P (r) to (2)
satisfies dP (r)

dr > 0.
Lemma 1 enables us to derive the following property.
Lemma 2: The matrix Dr(P (1)Ψ+ΨP (1))Dr is positive

definite for any r ∈ (0,∞), where Ψ = diag([n n−1 · · · 1]T)
Proof: It follows from Lemma 1 and Property 1 that

d

dr
P (r) =

1

r

((
d

dr
Dr

)
P (1)Dr +DrP (1)

(
d

dr
Dr

))
− 1

r2
DrP (1)Dr > 0.

Since r ∈ (0,∞), we have(
d

dr
Dr

)
P (1)Dr +DrP (1)

(
d

dr
Dr

)
> 0. (11)

Noting that

dDr

dr
=


nrn−1 0 · · · 0

0 (n− 1)rn−2 · · · 0
...

...
. . .

...
0 0 · · · 1

= 1

r
ΨDr =

1

r
DrΨ,

we observe from (11) that Dr (P (1)Ψ + ΨP (1))Dr > 0.
This completes the proof.

Now, we are ready to establish that, under the homoge-
neous feedback law (8), the closed-loop system is globally
finite-time stable.

Theorem 3: System (1) under the homogeneous feedback
law (8) is globally finite-time stable at the origin, and, for
any initial state x0 ∈ Rn, the settling time is upper bounded
by 1/(κε̃(x0)), where κ is constant independent of x0.

Proof: Choose the Lyapunov function as

V (x) = xTP (ε̃(x))x =
1

ε̃(x)
xTDε̃(x)P (1)Dε̃(x)x. (12)

Then, it follows from (10) that V (x) = 1
Tr(BTP (1)B)ε̃(x) .

Obviously, V (x) > 0 if x ∈ Rn \ {0}, V (x) → ∞ as
|x| → ∞, and, by our definition of ε̃(0), V (0) = 0.

Furthermore, we have

V̇ (x) = − 1

Tr(BTP (1)B)

˙̃ε(x)

ε̃2(x)
. (13)

Note that (10) implies that

xTDε̃(x)P (1)Dε̃(x)x× Tr(BTP (1)B) = 1, x ∈ Rn \ {0}.

Taking differentiation of both sides of the above equation,
we obtain, for any x ∈ Rn \ {0},

2xTDε̃(x)P (1)
dDε̃(x)

dε̃(x)
x ˙̃ε(x)

=− 2xTDε̃(x)P (1)Dε̃(x)(Ax+Bsat(−kBTP (1)Dε̃(x)x))

=− ε̃(x)xTDε̃(x)(P (1)A+ATP (1))Dε̃(x)x

+ 2ε̃(x)xTDε̃(x)P (1)Bsat(kBTP (1)Dε̃(x)x)

= ε̃(x)xTDε̃(x)(P (1) + P (1)BBTP (1))Dε̃(x)x

+ 2ε̃(x)xTDε̃(x)P (1)B(sat(kBTP (1)Dε̃(x)x)

−BTP (1)Dε̃(x)x)

≥ ε̃(x)xTDε̃(x)(P (1) + P (1)BBTP (1))Dε̃(x)x. (14)

By the definition of ε̃(x), we have

2xTDε̃(x)P (1)
dDε̃(x)

dε̃(x)
x ˙̃ε(x)

=
˙̃ε(x)

ε̃(x)
xTDε̃(x)(P (1)Ψ + ΨP (1))Dε̃(x)x

> 0, x ∈ Rn \ {0}, (15)
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where the last inequality follows from Lemma 2 and the fact
that ε̃(x) > 0 for any x ∈ Rn \{0}. Consequently, from (14)
and (15), we obtain

˙̃ε(x) ≥
ε̃2(x)xTDε̃(x)(P (1) + P (1)BBTP (1))Dε̃(x)x

xTDε̃(x)(P (1)Ψ + ΨP (1))Dε̃(x)x
.

(16)

Substitution of (16) into (13) yields

V̇ (x) ≤ −
xTDε̃(x)(P (1) + P (1)BBTP (1))Dε̃(x)x

xTDε̃(x)(P (1)Ψ + ΨP (1))Dε̃(x)x

× 1

Tr(BTP (1)B)
,

< 0, x ∈ Rn \ {0}. (17)

Clearly, V (x) always decreases along nontrivial trajectories
of the closed-loop system. Next, we will show that V̇ (x) is
upper bounded by a negative number, which implies that the
closed-loop system reaches the origin in finite time. Note
that xTDε̃(x)P (1)Dε̃(x)x×Tr(BTP (1)B) = 1, i.e., for any
x ∈ Rn \ {0}, Dε̃(x)x ∈ LV (P (1), 1/Tr(B

TP (1)B)). In
view of this observation, we define

g(z) =
zT(P (1) + P (1)BBTP (1))z

zT(P (1)Ψ + ΨP (1))z
,

where z ∈ LV (P (1), 1/Tr(B
TP (1)B)). Since the level

set LV (P (1), 1/Tr(B
TP (1)B)) is compact and g(z) is a

continuous function of z, g(z) attains its maximum and
minimum at some points in LV (P (1), 1/Tr(B

TP (1)B)).
Let γ = minz∈LV (P (1),1/Tr(BTP (1)B)) g(z). Note that γ > 0
is a constant independent of z. Then, it follows from (17)
that

V̇ (x) ≤ − γ

Tr(BTP (1)B)
:= −κ, x ∈ Rn \ {0}. (18)

In other words, for any initial state x0 ∈ Rn \ {0}, the
Lyapunov function V (x) decreases to zero, and thus the
closed-loop system reaches the origin in a finite time no
bigger than 1/(κε̃(x0)). Moreover, by our definition of ε̃(0),
we have ũ(0) = 0. Hence, the closed-loop system will
remain at the origin afterward. On the other hand, if x0 = 0,
then the corresponding settling time is 1/(κε̃(x0)) = 0. This
completes the proof.

Remark 1: The results obtained in this paper can be easily
extended to more general Riccati equations in the form

P (r)A+ATP (r)− P (r)BBTP (r) +Q(r) = 0, (19)

where Q(r) = DrQDr with Q > 0 and dQ(r)
dr > 0. Particu-

larly, Q can be chosen as any diagonal matrices with positive
entries. Note that, in essence, Eq. (2) is a parameterized
Lyapunov (linear) equation in P−1(r), for which an analytic
solution may be obtained through algebraic manipulation.
On the other hand, Eq. (19) is a parameterized Riccati
(nonlinear) equation, which is harder to solve analytically
compared with (2).

IV. PRACTICAL IMPLEMENTATION

The homogeneous design method is advantageous over the
existing scheduled low gain feedback in practical implemen-
tation. To demonstrate this, we first introduce the dilated
norm from [15].

Definition 3: The dilated norm N : Rn → [0,∞) with
respect to the dilation matrix Dr is defined as

N (x) :=

(
n∑

i=1

x
d

n+1−i

i

) 1
d

(20)

where d is chosen as d = 2n!.
By the definition of the dilated norm (20), we have

N (0) = 0, N (x) > 0 if x ̸= 0, and N (Da
rx) = rN(x).

With the dilated norm defined in (20), we can construct a
projection P(x) from Rn \ {0} onto the dilated unit sphere
N−1(1). Particularly, P(x) is given by

P(x) = D1/N (x)x. (21)

Then, it follows immediately from the definition of P(x) and
N (x) that P(Drx) = P(x), r ∈ (0,∞). With these in hand,
the homogeneous feedback law given in Theorem 3 can be
written in a more computationally friendly way for practical
implementation.

Theorem 4: The homogeneous feedback law ũ(x), as
given in (22), can be rewritten as

ũ(x) = −kBTP (1)Dε̃(P(x))P(x), (22)

under which system (1) is globally finite-time stable at the
origin.

Proof: The proof follows from the definition of the map
P(x) and Theorem 3.

When the dimension of system (1) is low, we may be
able to construct an analytic expression of ε̃(x). If this is
not the case, the homogeneous feedback in the form (22)
is helpful for practical implementation because the feedback
law (22) can be executed in two steps: first project x onto the
dilated unit sphere N−1(1), then calculate the corresponding
ε̃(P(x)). Since N−1(1) is a compact set, we could discretize
it into sufficiently dense grid points xd, compute the corre-
sponding ε̃(xd) for each point offline, and store it in memory.
When executing the homogeneous feedback law (22) in real-
time, we will project x onto N−1(1), select the grid point
xd nearest to P(x), and use the corresponding ε̃(xd) for
ε̃(P(x)). In particular, this practical homogeneous feedback
can be written as

ũX (x) = −kBTP (1)Dε̃(xd)P(x), (23)

where k ≥ 1, xd is selected through

xd ∈ S(x) :=
{
xd ∈ X : argmin

xd∈X
|xd − P(x)|

}
, (24)

and X is the set of points distributed on N−1(1). By
implementing the homogeneous feedback law in this way, we
can circumvent numerical problems, for example, solving the
optimization problem (9) online, as in the existing scheduled
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low gain design. It is also noteworthy to mention that,
under the practical homogeneous feedback law (23), the
closed-loop system is a dynamic system with a discontinuous
right-hand side. In this paper, the solution of the closed-
loop system is understood in the sense of Filippov [16].
Particularly, in view of (24), the closed-loop system takes
the following form

ẋ = Ax−
∑

i∈|S(x)|

αi(x)Bsat(kBTP (1)Dε̃(xi)P(x)), (25)

where xi ∈ S(x) and α(x) ∈ Λ|S(x)|.
In what follows, we will show that if we discretize

N−1(1) densely enough, the practical feedback law (23)
will retain the finite-time stability property. Let dX =
maxz∈N−1(1),x̃∈X |x̃− z|. Clearly, dX could be viewed as a
measure of the density of X on N−1(1).

Theorem 5: For any given η satisfying 0 < η < κ, where
κ has been defined in (18), and for any k ≥ 1, there exists a
positive number ϱ, such that system (1) is globally finite-time
stabilized by (23), with a settling time T (x0) ≤ 1/(ηε̃(x0)),
provided that dX < ϱ.

Proof: The argument of the proof follows from the
continuity of the homogeneous feedback law and that of
the derivative of the Lyapunov function. Adopting the same
Lyapunov function V (x) as defined in (12) and continuing
from (14), (15), (25), we obtain

ν(x)V̇ (x)≤ −υ(x) + 2
∑

i∈|S(x)|
αi(x)

(
xTDε̃(x)P (1)B

× sat(kBTP (1)Dε̃(xi)P(x))
)
, (26)

where xi ∈ S(x), and, for notational simplicity, we define

ν(x) = Tr(BTP (1)B)× xTDε̃(x)(P (1)Ψ+ΨP (1))Dε̃(x)x,

υ(x) = xTDε̃(x)(P (1)− P (1)BBTP (1))Dε̃(x)x.

Notice that ε̃(x) = ε̃(P(x))/N (x). Then, by (21), we obtain

sat(kBTP (1)Dε̃(xi)P(x))

= sat(kBTP (1)Dε̃(xi)/ε̃(P(x))Dε̃(x)x).

It then follows from (26) that

V̇ (x) ≤ −
υ(x)−

∑
i∈|S(x)| αi(x)ψ(x, xi)

ν(x)
,

where

ψ(x, xi) =2xTDε̃(x)P (1)B

× sat(kBTP (1)Dε̃(xi)/ε̃(P(x))Dε̃(x)x).

Since αi(x) ≥ 0, i ∈ {1, 2, · · · , n}, and
∑|S(x)|

i=1 αi(x) = 1,
to guarantee global finite-time stability of (25) with settling
time T (x0) ≤ 1/(ε̃(x0)η), it is sufficient to have

ψ(x, xi) ≥ ην(x)− υ(x),∀xi ∈ S(x), x ∈ Rn. (27)

Next, to get an estimate of dX , we define a new function
g : [0,∞)× LV(P (1), 1/Tr(B

TP (1)B)) → R as

g(ϵ, z) = ψ̄(ϵ, z)− ην̄(z) + ῡ(z), (28)

where ψ̄(ϵ, z) = 2zTP (1)Bsat(kBTP (1)Dϵz), ν̄(x) =
Tr(BTP (1)B) × zT(P (1)Ψ + ΨP (1))z and υ(x) =
zT(P (1) − P (1)BBTP (1))z. Since 0 < η < κ, we have
g(1, z) > 0 for any z ∈ LV(P (1), 1/Tr(B

TP (1)B)). Let
ϵ̄(z) := {supϵ>1 ϵ : g(ϵ, z) ≥ 0}, ϵ(z) := {min0≤ϵ<1 ϵ :
g(ϵ, z) ≥ 0}, E(z) := min{ϵ̄(z) − 1, 1 − ϵ(z)}. Because
g(1, z) > 0 and g(ϵ, z) is continuous in ϵ, E(z) is well
defined and bounded for any given z. Moreover, E(z) is a
continuous function of z by noting that both ϵ̄(z) and ϵ(z)
are continuous in z. Since LV (P (1), 1/Tr(B

TP (1)B)) is
compact, we let L1 = minz∈LV (P (1),1/Tr(BTP (1)B)) E(z).
Taking into consideration of the relation between (27) and
(28), the following condition guarantees (27) holds∣∣∣∣ ε̃(xi)

ε̃(P(x))
− 1

∣∣∣∣ ≤ L1,∀xi ∈ S(x),∀x ∈ Rn. (29)

On the other hand, on account of (10), ε̃(x) is a continuous
differentiable function of x ∈ Rn \ {0} according to the
implicit function theorem. Moreover, we have

∂ε̃(x)

∂x
= −

2ε̃(x)xTDε̃(x)P (1)Dε̃(x)

xTDε̃(x)(P (1)Ψ + ΨP (1))Dε̃(x)x
,

Hence, for any z1, z2 ∈ N−1(1), we deduce |ε̃(z1) −
ε̃(z2)| ≤ L2|z1 − z2|, where L2 = maxx∈N−1(1)

∣∣∣∂ε̃(x)∂x

∣∣∣.
This further implies∣∣∣∣ ε̃(xi)

ε̃(P(x))
− 1

∣∣∣∣ ≤ L2

ς
|xi−P(x)| ≤ L2

ς
dX ,

∀xi ∈ S(x),∀x ∈ Rn, (30)

where ς = minx∈N−1(1) ε̃(x). Therefore, in view of (29) and
(30), to guarantee the finite-time stability of (25), it suffices
to have dX ≤ L1ς/L2 := ϱ.

In light of Theorem 5, we get an upper bound of |X |
as ⌈

√
n/ϱ⌉n after some tedious computation. However, this

estimate is highly conservative. A more accurate estimate
may be found through detailed analysis of V̇ and N−1(1),
which is beyond the scope of this paper. Developing an
algorithm to generate X with dX ≤ ϱ is also an important
issue. One possible way is to first generate a certain number
of equally distributed points on Bn−1, project these points
onto the dilated sphere N−1(1), and then examine whether
dX < ϱ. If not, we increase the number of points on Bn−1

and repeat this procedure until dX < ϱ. The problem of
generating equidistributed points on Bn−1 has been well
studied[17].

Remark 2: Since ũ(x) = −ũ(−x), we can restrict our-
selves on the upper-half of N−1(1) in practical implemen-
tation, which further reduces the size of X .

Remark 3: The authors are aware that the homogeneous
feedback established in this paper is similar to the implicit
Lyapunov design method proposed in [13]. However, our
method is different in two aspects. First, we establish the
connections between the implicit Lyapunov function and the
solution to a parameterized Ricatti equation (see Remark 1).
Second, thanks to the homogeneity and the continuity of the
feedback, we propose a practical implementation approach
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Fig. 1. Trajectories of |x| originating from x0 under (22), (23) and control
strategies proposed in [5] and [18]

that retains finite-time stability through a sufficiently dense
partition of the dilated unit sphere, whereas [13] settles with
asymptotic stability by adopting a sample-and-hold strategy
for practical implementation.

V. NUMERICAL EXAMPLES

Example 1: Consider (1) with n = 3 and let the initial
condition be x0 = [3 − 3 3]. For both the homogeneous
feedback law (22) and the practical homogeneous feedback
law (23), we set k = 1 and P (1) as the solution to (2) with
r = 1. In this case, we find κ = 0.14 and ε̃(x0) = 0.12.
Hence, Theorem 3 gives an estimate of settling time as
T (x0) = 59.52s for the homogeneous feedback law (22).
Simulation results in Fig. 1 show that the trajectory reaches
the origin at 18.62s under (22). For the practical homoge-
neous feedback (23), we set |X | = 1200. These points are
generated by projecting 1200 points equidistributed on the
dilated unit sphere onto N−1(1). The norm of trajectory
originating from x0 under (23) is also plotted in Fig. 1. It
reaches zero at 20.36s. The corresponding saturated inputs
associated with (22) and (23) are plotted in Fig. 2. For
comparison, we also depict the results obtained in [5] and
[18] in Fig. 1, from where it can be seen that our control
laws achieve faster convergence.

VI. CONCLUSIONS

In this paper, we considered the problem of globally
stabilizing a chain of integrators subject to actuator saturation
in finite time. Based on an existing scheduled low gain
approach, we proposed a homogeneous feedback law by
relaxing the low gain parameter from taking values in (0, 1]
to (0,∞). The homogeneity of the proposed feedback en-
ables us to practically implement the feedback by discretizing
a compact set in the state space and computing a finite
number of optimization problems. This reduces the online
optimization in the existing scheduled low gain method into
offline computation and thus circumvents numerical issues in
the existing scheduled low gain method. A numerical result
validated the effectiveness of our proposed approach.
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Fig. 2. Trajectories of sat(u) associated with (22) and (23)
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