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Distributionally Robust Density Control with
Wasserstein Ambiguity Sets

Joshua Pilipovsky and Panagiotis Tsiotras

Abstract— Precise control under uncertainty requires a good
understanding and characterization of the noise affecting the
system. This paper studies the problem of steering state distri-
butions of dynamical systems subject to partially known uncer-
tainties. We model the distributional uncertainty of the noise
process in terms of Wasserstein ambiguity sets, which, based
on recent results, have been shown to be an effective means
of capturing and propagating uncertainty through stochastic
LTI systems. To this end, we propagate the distributional
uncertainty of the state through the dynamical system, and,
using an affine feedback control law, we steer the ambiguity
set of the state to a prescribed, terminal ambiguity set. We
also enforce distributionally robust CVaR constraints for the
transient motion of the state so as to reside within a prescribed
constraint space. The resulting optimization problem is formu-
lated as a semi-definite program, which can be solved efficiently
using standard off-the-shelf solvers. We illustrate the proposed
distributionally-robust framework on a path planning problem
and compare with non-robust solutions.

I. INTRODUCTION

When controlling a dynamical system affected by noise,
one needs to be able to discern the statistical properties
of the exogenous disturbances acting on the system. When
such a characterization is unknown, or is only approximately
known, care must be taken to ensure robust performance of
the system under a range of uncertainties that can potentially
affect the system. Indeed, if, for example, a control designer
naively assumes a normally distributed noise process, the
resulting control law may severely underestimate the prob-
ability of violating the constraints or it may fail to reach a
given desired terminal state [1].

To this end, we would like to systematically and tractably
solve a stochastic optimal control problem that can not
only control the dispersion of system states to a prescribed
terminal distribution, but also steer the uncertainty of this
dispersion for all disturbances sufficiently close to the true
disturbance acting on the system. The theory of covariance
control, originally introduced in the 80’s with works of Hotz
and Skelton [2], solved the problem of steering the first
two moments of the state distribution in the infinite horizon
setting. In recent years, this theory has been extended to the
finite-horizon setting [3], [4], as well as extensions involving
chance constraints [5], [6], partially observed systems [7],
and data-driven scenarios [8] under the term covariance
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steering (CS) to emphasize the finite-horizon problem for-
mulation. The baseline theory is mathematically tractable
and elegant, however, it assumes Gaussian noise entering the
system, as well as boundary Gaussian distributions for the
initial and terminal states.

Additionally, the framework assumes exact knowledge of
the noise model affecting the system, which is unrealistic
in practice. We are rarely fully aware of the disturbances
acting on the system, and at best we can characterize partial
statistical information from collected data, e.g., the first two
moments. As such, it is fruitful to consider the problem
of steering the distribution of the state under distributional
uncertainty in the noise model. A natural framework to
accomplish this goal is to the model the noise as residing in
an ambiguity set, which is characterized by a whole family
of distributions that the noise can follow. The goal, then,
is to optimize the control law and satisfy constraints under
the worst-case disturbance that nature imposes within the
allowable ambiguity set. The work in [1] has solved this
problem by characterizing the distributional noise uncertainty
as a Chebyshev ambiguity set, which is a family of distribu-
tions that have common first two moments, and by tractably
enforcing chance constraints using concentration inequalities.
This ambiguity set, however, is still quite limited in its
expressivity due to the assumption of common moments.

Recently, there has been a great promise in capturing
distributional uncertainty via Wasserstein ambiguity sets,
which are defined through the natural Wasserstein metric on
probability spaces. Indeed, [9], [10], [11] has shown that
distributionally robust optimization (DRO) over Wasserstein
ambiguity sets is tractable in cases where the nominal
distribution is either empirical or elliptical. In the con-
text of stochastic control, the work in [12] has outlined a
general framework for capturing distributional noise uncer-
tainty through empirical data collected, and have provided a
procedure to propagate Wasserstein ambiguity sets through
stochastic LTI systems, which is analytically exact under
some mild assumptions. Subsequent works have applied this
framework to design optimal open-loop controllers while
satisfying conditional value-at-risk (CVaR) constraints, as
well as in the context of model-predictive control [13].

Our contributions are as follows. To the best of our knowl-
edge, this is the first work that solves the open problem [12]
of optimizing over both open-loop and feedback controllers
for distributionally-robust optimal control problems, which
is accomplished using an affine state feedback control law
using established techniques from the CS literature. Sec-
ondly, we show that it is possible to steer the distributional
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state uncertainty to a desired terminal ambiguity set, thereby
controlling the dispersion of system states under all possible
noise realizations within the Wasserstein ambiguity set.

II. NOTATION

We assume a common probability space (2, F,P) for
all random objects. Real valued-vectors are denoted by
lowercase letters, v € R™, matrices are denoted by upper-
case letters, V € R™*M  and random vectors are denoted
by boldface, x € R™. The space of probability distributions
over R? with finite gth moment is denoted by P,(R). Given
P,Q € P,(R%), we denote by PeQ their product distribution
and by P®V the N-fold product distribution P®- - - ®P with
N terms. Given a matrix A € R™>4, the pushforward of P is
given by AP and is defined by (A4P(B)) = P(A~1(B)),
for all Borel sets 5 C R™. We denote by d,, the Dirac delta
distribution concentrating unit mass at the atom z € R".
The convolution of P and §, is denoted by J, * P, and
is defined by (6, * P)(B) = P(B — z). With slight abuse
of notation, the operator || - || denotes the Euclidean norm
for vectors and the spectral norm for matrices. The Moore-
Penrose pseudoinverse of a matrix A is denoted by Af.
Lastly, for any ¢ € Z, we set [t] = {0,...,t}.

III. PROBLEM STATEMENT

Consider the discrete-time, stochastic linear dynamics sys-
tem

Tpy1 = Axy + Buy + Dwy, Vke€ [N — 1], @))

with states o, € R"™, control inputs u; € R™, and process
noise sequence {wy }re(v—1) C R that is neither identically
nor necessarily independently distributed. In this work, we
assume the system model {A, B, D} is known. The noise
process {wp}re[ny—1], on the other hand, is unknown but
belongs to an ambiguity set WV, which is defined rigorously
in the following definition.

Definition 1: The Wasserstein ambiguity set of radius &
with transportation cost ¢ centered at the nominal distribution
P is defined by

BS,(P) ={Q e P2(RY) : Wi(Q,P) <}, (2

with respect to the type-p Wasserstein metric

1
\p d d ! P
Lt [ ey nasac)
3)
where TI(IP,P’) denotes the set of all joint probability dis-

tributions of ¢ € R? and ¢ € R? with marginals P and P/,

We(P,P) & ( inf

respectively.

In what follows, we will work with the type-2 Wasserstein
distance (p = 2) and the Euclidean norm transportation
cost, i.e., ¢ = || - ||. For simplicity, we denote gl 2 IB%M

and W £ Wg'”. A customary way to construct the noise
ambiguity set is by defining the nominal distribution as P, =
LS G, where 2 2 [(@)T, . (@) )T €
RN is a noise realization sampled from the underlying true
distribution PP,,. It can be shown that by choosing a suitable

radius £(T, 3), the true distribution lies in the ball B!'l(®,,)
with probability 1 —/ [14]. In the present work, however, we
assume that the noise sequence ambiguity set ¥V is centered
on a zero-mean normal distribution I@’w = N(0,%,,) with
noise covariance matrix X, € RVN?*N7 « ( and radius
e>0.

Remark 1: 1t is possible, and in fact customary, to define
the noise ambiguity set for an individual disturbance wy
via ]E%!'“(]f]’w). Assuming the noise is i.i.d., then it can be
shown that the ambiguity set for the entire noise sequence is
BL‘\}Q(]@’%N ). However, in this work we choose to define the
ambiguity set directly in terms of the disturbance sequence
to include cases where the noise terms are not independent
of one another, thus prohibiting us from writing the joint
distribution of w as an N-fold product distribution.

We assume that the initial state xy = x; is deterministic,
which implies that all the distributional uncertainty in the
state results from the noise ambiguity set W = IB%!'”(I@)).
We define the set 7 of admissible control inputs as the set of
control sequences {uy },c[n) Where the input uy, is an affine
function of the state. Further, we define the nominal state as
the deterministic part of the state governed by the nominal
dynamics

Tpy1 = Az, + By, “4)

where 4, € R™ is the nominal control, and we define the
error state &y, = xj — T, which obeys the dynamics

Tr41 = Axy + Buy + Dwy, 5)

where uy, is the error control.

Remark 2: The nominal state as defined in this work can
no longer be associated with the mean state Ep, [xy], as
is customarily done in the CS literature [6]. In fact, the
expectation of the state cannot even be computed because
the underlying state distribution is ambiguous by definition.

The goal is to steer to a terminal ambiguity set Sy =
]BL"” (Py), where 0 > 0 is a given, desired terminal radius,
and Py = N (uy,Xy) is the desired terminal center distribu-
tion, while minimizing the distributionally-robust objective
function

N—1 N—1
— o =10, 4 ST
J=p ’;J ||| + &%EP kZ:O T, Qrxy + u, Riuy |,
(6)

where (), >~ 0 and Rj > O represent the state and input
cost weights, respectively, and 5 > 0 denotes the weight of
the nominal control. Lastly, we would also like to enforce
distributionally-robust constraints on the trajectory of the
state along the planning horizon.

Letting the state constraint space be the polyehdron X £
{z : max;ep g oij-a: + B; < 0}, the traditional way of enforc-
ing probabilistic constraints is to enforce chance constraints,
which limit the probability of violating the constraints to
be smaller than some prescribed risk ~ [15]. It is well-
known, however, that Value-at-Risk (VaR) constraints are not
convex, and are only exactly tractable when the underlying
state distribution is normal; otherwise, they are approximated
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using concentration inequalities [16]. In this work, we choose
the CVaR risk measure, which is defined as follows.

Definition 2: Given f : R™ — R and a random variable
x ~ P on R”, the CVaR of f(x) at the quantile 1 — - is

<7’ + %Ep[max{o, f(z) — T}]> .

@)
The CVaR of a random variable is by definition convex
[16], implicitly satisfies the VaR constraint, and mitigates
the effects of extreme “black swan” events by reducing the
tail probability of violating the constraints. To this end,
we enforce the distributionally-robust CVaR (DR-CVaR)
constraints

CVaRy_,(f(z)) = inf

sup CVaR]f’;Y (max ajxy + 53‘) <0, Vkel[N], (8
P €Sk J€EJ]

where Sy denotes the ambiguity set of the state at time step
k. In summary, the distributionally-robust density steering
(DR-DS) problem is defined as follows.

Problem 1: For a given initial state ¢, find an admissible
control sequence {uy }rc[n] € 7 that minimizes the DR cost
functional (6) subject to the dynamics (1), noise ambiguity
set V¥V and DR-CVaR constraints (8), such that the terminal
distributional uncertainty in the state satisfies Sy C Sy.

IV. PROBLEM REFORMULATION

We begin by first reformulating the dynamics (1) into
a more amenable form for analysis. To this end, de-
fine the augmented state, control, and disturbance vectors
x & [xf,... ., xl]T € RWFUn o & [l .. ul, |7 €
RVm w £ [w],...,w]_,]T € RN, respectively, which
obey the augmented linear system

x = Azxg + Bu + Dw, 9)

for appropriate matrices A, B, D [4]. We consider the affine
state feedback control law uy = Kp&, + vi, where vy €
R™ is the feed-forward control and K € R™*™ is the
feedback gain. Defining the augmented feed-forward control
v=[vf,...,vk_,]T € R¥™ and augmented feedback gain
matrix K € RV™*(N+1n and using the state decomposi-
tion in (4)-(5), the dynamics (9) become

z = Axg + B,

= (I - BK) 'Dw. (10

Since K is block lower-triangular and B is strictly block
lower-triangular, it follows that that the matrix [ — BK is
invertible. Furthermore, following [17], we define the new
decision variable L £ K (I — BK)~!, from which it can be
shown that I +BL = (I —BK)~!, and the original gains can
be recovered from K = L(I + BL)™! following the same
logic. As a result, the error state dynamics become

& = (I + BL)Dw. (11)

Given w € W, it follows that the distributional uncertainty
in the error state results from the linear transformation
Se = (Ln)BI(B), with L, 2 E,(I + BL)D, where

E, € R(N+hn jg a matrix that isolates the kth state
element from x. To this end, we now state a result on the
propagation of ambiguity sets via linear transformations [12].

Theorem 1: Let P € P(R?), and consider the linear
transformation defined by the matrix A € R™*¢, Moreover,
let ¢ : RY — R>( be orthomonotone'. Then,

A4BE(P) C B (AyP). (12)
Moreover, if the matrix A is full row-rank, then
A4BL(P) = BEA (A4P), (13)

with AT = AT(AAT)~L,

Since f/k e R"*Nd where Nd > n, in most cases of
interest, it is safe to assume that ik is full row-rank without
loss of generality. Noting that the nominal state is simply a
delta distribution in the probability space, the distributional
uncertainty in the state at time step k& becomes

NPt , =~ .
Sk = 6 awo s 50 * BUIHH (L) 4P,), (14)

defined on the support R".

Remark 3: The interpretation of (14) is that the feedback
gain L affects both the shape of the center distribution as
well as the size of the ambiguity set, while the open-loop
term v controls the position of the center distribution in
P(R™). This is a direct generalization of the traditional CS
literature, where the open-loop controls the mean state, while
the feedback controls the covariance of the state.

In the next section, we tractably formulate the DR-CVaR
constraints (8) using the exact ambiguity set (14) and tech-
niques from DRO. For the sake of space, we defer the reader
to [18] for detailed proofs of all results.

A. DR-CVaR Constraints

To make the CVaR constraints (8) tractable, we should
use our knowledge of the ambiguity set Sy, defined in terms
of its Gaussian reference distribution ]@)k = N(0, kaEw[N/Z),
and transportation cost according to (14). The work in [9]
tractably computes the DR-CVaR of piece-wise linear func-
tions, while the work in [19] tractably computes the DR cost
of expectations of general piece-wise quadratic functions.
In both cases, however, it can be shown that the resulting
convex programs are nonlinear in the feedback gain L, which
makes them intractable from a computational standpoint.
We thus leave it as an open problem to tractably formulate
Jjoint DR-CVaR constraints for a polyhedral constraint space
with a nominal Gaussian distribution whose covariance is
parameterized by the feedback gain decision variables.

Instead, we consider an alternative where we wish to en-
force the DR-CVaR constraints for each side of the polytope
along the planning horizon, that is,

sup CVaRIf‘;W,k (afzr + By) <0, Vj € [J], Vk € [N].
Py €Sk J
(15)

In essence, at each time step, we split up the joint risk v to
individual risks «y;; of violating the DR-CVaR constraints

That is, ¢(x1 4+ x2) > c(x1) for all 21, 22 € RY satisfying x{zg =0.
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along each half space and for each time step. This now
becomes the DR-CVaR of a linear function, which we
will show is SDP representable and linear in the decision
variables (v, L). First, however, we need to define the notion
of a Gelbrich ambiguity set.

Definition 3: The Gelbrich ambiguity set of radius € cen-
tered at a mean-covariance pair (i, Y) is given by

G (1, %) = {Q € P(RY) : (Eg[€], Covql€]) € Us (. 2)},
(16)
where U.(u,Y) is an uncertainty set in the space of mean
vectors and covariance matrices, defined as

U(,8) = {(11, D) € R? x ST : G((, D), (1, 2)) < e},
(17
where

G((p1, 1), (n2,%2)) 2 || — pll*+

tr [i+z -9 (iézi%)

1

2

}, (18)

is the Gelbrich distance between two mean-covariance pairs.

Theorem 2 ([9]): If the nominal distribution P has mean
o€ R? and covariance matrix 3 > 0, then we have
BU(P) € G.(1, %)

Since the Gelbrich ambiguity set constitutes an outer
approximation of the associated Wasserstein ambiguity set
(under the 2-norm transportation cost), satisfaction of Gel-
brich DR-CVaR constraints implies satisfaction of Wasser-
stein DR-CVaR constraints. Using this idea, the next result
provides a reformulation of the constraints (15).

Theorem 3: The individual DR-CVaR constraints (15) are
satisfied if the following convex constraints are satisfied.

Bj + af fu(v) + Tjrn/ o] B (L)ay + Ex(L)[ley]| <0,
Vi e [J], Vk € [N].

(19)
where i, £ T1,(v) = Ei(Azg + Bv) is the propagated
mean of the nominal distribution, f]k S IN/kwa/Z is the
propagated covariance of the nominal distribution, &, £

e(1+ ffk)l/zofnax(ik), and
A P (oT(z—p) 1—vy
7= sup CVaR;_ () =4/—, (20)
PeC(1,5) 7\ Vatsa v

is the standard CVaR risk coefficient, where C(u, ¥) denotes
the Chebyshev ambiguity set of all distributions in S with
same mean u and covariance X..

The constraints in (19) are convex, but nonlinear in the
decision variable L. However, using Schur complement we
can further reformulate these constraints as tractable second-
order cone constraints (SOCC) and linear matrix inequalities
(LMIs).

Corollary 1: The convex constraints (19) are equivalent

to the following tractable constraints.

Bj + ] fux(v) + 7k |52 *DT (I + BL)TEJ o

+5Pk||aj||m§ 0, VjVk, (la)
1 Ey(I + BL)D
DT(I + BL)TE] ol } =0 Vk, (21b)

with respect to the decision variables {v, L, py }.
Along the same lines, in the next section, we reformulate the
DR objective function (6) as a tractable convex program.

B. DR Objective Reformulation

Substituting the error dynamics (5) and feedback control
u = K& = LDw into the cost (6) yields

N-1
J =8 ; el + maxEp (&7(Q + KTRK)&)
N-1
=4 Z |Erv]| + max Ep(wTE(L)w), (22)
pard pen! ! (B)
where Q@ £ blkdiag(Qo,...,Qn_1,0) = O0,R =

blkdiag(Ry, ..., Ry—1) > 0 are the augmented cost ma-
trices, and = = DT ((I + BL)Q(I + BL) + LTRL) D = 0.
Thus, we aim to find the worst-case expected value of a
quadratic form over the Wasserstein ambiguity set centered
around the nominal distribution P = A (0,%,). To this
end, it can be shown [9] that this worst-case expectation is
equivalent to the worst-case expectation with respect to the
associated Gelbrich ambiguity set, provided that the nominal
distribution is elliptical. The following result provides a
reformulation of the DR cost.

Theorem 4: The DR quadratic cost in the objective func-
tion (22) is equivalent to the convex program

min

A=3(L) Ae? = tr[Su] + Atr[E, (M — (L)) 7). (23)

Similar to the DR-CVaR constraints (19), the reformulated
DR cost (23) is convex but nonlinear in the decision variables
v and L. Using Schur complements, we can reformulate (23)
as the following SDP.

Corollary 2: The convex program (23) is equivalent to the
semi-definite program

min AE? — tr[2,]) + tr[T, (24a)
r,0>0
1/2
s.t. F1/2 X =0, (24b)
Yy o
M —DTM(LYD—¥ DTLT
. -
[ D R‘l} =0, (24c)

where M 2 Q + M(L) + MT(L), M £ QBL, and R £
BTOB +R.

Lastly, in the next section, we reformulate the terminal
constraints that require the terminal distributional uncertainty
of the state to lie within a desired target ambiguity set Sy.
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C. Terminal Constraints

Using (14), the terminal propagated ambiguity set of the
state is given by

Sy = BIITN (By), By = N@n(v), EnSull). (25)

To ensure the inclusion Sy C ]B%!H (Py), we first note that it
can be shown [12] that
= N 2 T ~ ~
B‘QMOLT (P) g ]Bgmiu(L)H'H (]P)) — ]BHHZ ~ (]P’) (26)
Thus, since both P ~ and P + are normally distributed, it is
sufficient to enforce the constraints

(Ln) <6. @27)

max

an() =pp Bay(L) X Tp, eop

Remark 4: The first two constraints in (27) are equivalent
to those in the traditional CS literature [5]. Indeed, the main
goal of covariance control is to steer the covariance (and
mean) of the state distribution to some desired terminal
covariance, where the relaxation X, = X is often in-
troduced to make the terminal constraints tractable. In this
context, however, the first two constraints align the center
distributions of the terminal state, while the extra constraint
in (27) can be interpreted as a way to robustify against
distributionally uncertainty in the terminal state, providing an
extra layer of safety guarantee against unknown disturbances.
To this end, the terminal mean constraint in (27) is simply
a linear constraint in v, given by

EN(AIO + B’U) —Hf = 0. (28)

Second, the terminal covariance constraint in (27) can be
written as the following LMI

P Ex(I + BL)DSY?

= 0. (29
lzL/ZDT(HBL)TE}V I ]— 29

Lastly, noting that 0,5 (L) = || L|| and using the Schur com-
plement, the terminal distributional uncertainty constraint can
be written as the LMI

I Ex(I + BL)D
[DT(I +BL)TEY, (5/e)I

In summary, combining all ingredients of Sections IV.A-
IV.C, the DR-DS problem can be solved as the SDP

} > 0. (30)

N-—1
min B (1Bl + AE - ) + tifl]
P, A>0 k=0
T, ¥>0
s.t. (21), (24b), (24¢), (28), (29), (30).

V. NUMERICAL EXAMPLES
A. Double Integrator Path Planning

As a first example to showcase the proposed DR-DS
framework, consider a 2D double integrator integrator with
dynamics

a-[ aTE] g [

D=5x10"3]
02 1o ATIJ ’ . 4’

with initial state g = [-1,2,0.1,—0.1]7, and i.i.d. nominal
disturbances drawn from P, = A/ (0, 1). The nominal target
state distribution is P; = A/(0, (0.1/3)2I,), and the desired
target ambiguity set has radius 6 = 0.05. Lastly, the planning
horizon has N = 20 time steps, AT = 0.3, and we enforce
probabilistic constraints with respect to the polytope defined
by Q1 [8:N] = [—].7070,0]1-7 Q2 [8:N] = [17070,0]T, and
by,[8:n] = b2,8:n] = —0.2, which probabilistically enforces
|z| < 0.2 in the terminal stage of planning, with probability
vjk = 0.05 along each individual constraint. We compare the
performance of the DR-DS control to that of the baseline CS
solution with chance constraints [5]. The convex programs
were all solved using the YALMIP optimization suite [20]
with the MOSEK solver [21].

Firstly, we compare the optimal solutions subject to the
nominal disturbances in Figure 1. Clearly, in the nominal

-1 -0.5 0 -1 -0.5 0

Fig. 1: Optimal trajectories for (left) DR-DS solution with
€ = 15, and (right) baseline CS solution, subject to nominal
disturbance P,,.

case, when the disturbance is well-understood, both solutions
are able to successfully steer to the desired terminal distri-
bution and satisfy the constraints, since by construction, this
is what CS is designed to do. Additionally, the empirical
risk for the DR-CVaR constraints and (conservative) chance-
constraints are both zero for 1,000 Monte-Carlo samples.
Interestingly, however, note that the DR-DS solution steers
to a smaller terminal covariance compared to that of CS.
For reference, the red covariance ellipse in the left plot
in Figure 1 is the maximal normal distribution in the tar-
get terminal ambiguity set with respect to the underlying
structure of zero-mean Gaussian’s, which is computed from
W(Zy, n)%E £) =9, or equivalently, by using the Wasserstein
distance between two normal distributions, as

0
np=14 ——.
w/tI‘(Zf)

Thus, the DR-DS framework will steer the stateAdistribution
to oy < 77?2]? for any disturbance P,, € Bl (Py,).

€1V
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To illustrate this, Figure 2 shows the performance of the
two methods when the noise distribution is now given by
P, = N(0,72 1), where, as in (31), 7, = 1 4+ &//tr(Zy)
is the maximal covariance in the ambiguity set B!'H(Hﬁ)w).
When the true noise affecting the system is mis-characterized

Fig. 2: Optimal trajectories for (left) DR-DS solution with
€ = 15, and (right) baseline CS solution, subject to maximal
disturbance P, in disturbance ambiguity set Bl (Py).

and not equivalent to the noise the system was designed to
handle, the baseline CS is unable to steer to the terminal
covariance nor satisfy the chance-constraints with the desired
level of risk. The DR-DS solution, on the other hand, is
agnostic to the noise distribution by design (within limits, of
course), and is able to steer the state distribution to the ter-
minal ambiguity set and still satisfies the CVaR constraints.
Indeed, the empirical risk of constraint violation is 0.1% and
5.5%, respectively, for DR-DS and baseline CS.

VI. CONCLUSION

In this work, we have developed a distributionally-robust
density control method for steering the distributional un-
certainty of the state of a linear dynamical system subject
to imperfect knowledge of the disturbances affecting the
system. Through characterizing the distributional uncertainty
in the noise distribution via Wasserstein ambiguity sets, we
are able to propagate the ambiguity set of the state through
the LTI dynamics, and tractably formulate the DR objective
function, DR-CVaR constraints, and terminal ambiguity set
constraints as an SDP, which can be solved in polynomial
time. We showcased the proposed methodology on a double
integrator steering problem, illustrating safe planning under
mis-characterized i.i.d. disturbances. Future work will aim to
investigate tractable formulations of the DR-DS problem in
data-driven settings, where the reference noise distribution is
constructed from empirical samples.
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