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Abstract— We define persistency of excitation and infor-
mativity for system identification for the class of 2D state-
representable autonomous systems. We characterize informa-
tivity for system identification in terms of properties of a matrix
constructed from the restrictions of a system trajectory on
successive consecutive lines. We state a procedure to compute
arbitrary trajectories from a “sufficiently rich” one.

I. INTRODUCTION

Data-driven approaches to control of dynamical systems
are increasingly complementing traditional approaches based
on modelling or system identification [1], [2], [3]. Recently,
informativity of the data has been proposed as foundation for
a new approach to data-driven control (see [4]). A dataset is
informative with respect to a property P if it is possible to de-
termine from it whether all systems that may have generated
it possess P . For 1D systems, that is, dynamical systems with
1 independent variable (time), informativity with respect to
properties such as controllability, stabilizability, dissipativity,
etc. has been recently analyzed in [4], [5]. Informativity for
system identification is related to the notion of persistency
of excitation (see [6], [7]). In this paper, we address the
fundamental question of persistency of excitation for a class
of 2D systems, i.e. systems with 2 independent variables
(e.g. space and time).

A data-driven approach to nD systems, that is, systems
with n> 1 number of independent variables, has not yet been
investigated. In general, the extension of results from 1D
systems to the nD case is nontrivial. For example, while
“past” and “future” are intuitive concepts in the 1D case,
they are not when n > 2: a total ordering of Zn must
be postulated on the basis of physical insight, or assumed
a priori. Furthermore, unlike 1D systems, a typical nD
system does not in general admit a an input-state-output
representation (see [8]). Moreover, the “lag” associated with
a general nD system (a concept instrumental in 1D data-
driven control) can turn out to be infinite ([9]).

In this paper, we begin to develop a data-driven approach
to 2D systems. We restrict ourselves to systems with no
inputs, i.e., autonomous systems (see Th. 3 p. 133 of [8] for
the definition of autonomous 2D systems and its character-
ization). We define persistency of excitation (“informativity
for identification”) for 2D state-representable autonomous
systems. Using the results of [8] we derive a characterization
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of such property. We exploit such characterization to devise
an algorithm to generate admissible system trajectories di-
rectly from a given, “informative” one, without identifying
the system beforehand. Following [10], [11], [12] we call
such procedure data-driven simulation.

The paper is organized as follows: in Section II we sum-
marize some basic background concepts about 2D-systems.
In Section III we define informativity for identification
for 2D-systems, and we introduce two matrices that play
a crucial role in our data-driven simulation procedure. In
Section IV we characterize informativity for identification
for state-representable autonomous 2D-systems, in terms of
linear-algebraic properties of those matrices. In Section V
we state a data-driven simulation procedure, and in Section
VI we discuss some of the research being currently pursued.

Notation

We denote by N, Z, R and C respectively the set of natural,
integer, real and complex numbers, and by Z2 := Z×Z. Rn,
respectively Cn, denote the space of n-dimensional vectors
with real, respectively complex, entries. Rn×m denotes the
set of n×m matrices with real entries; and Rn×∞ the set of
real matrices with n rows and an infinite number of columns.
The transpose of a matrix M is denoted by M> and its
pseudoinverse by M†. The image of M is denoted by imM .
R[s1, s2] is the ring of polynomials with real coefficients

in the indeterminates si, i = 1, . . . , 2, and R[s1, s2, s3, s4]
is the ring of polynomials with real coefficients in the inde-
terminates si, i = 1, . . . , 4. Given a (finite or infinite) subset
S of R[s1, s2], we denote by 〈S〉 the module of R[s1, s2]
generated by the elements of S. A similar notation is used
for the module generated by a subset of R[s1, s2, s3, s4].

II. BACKGROUND RESULTS

We define (Rq)
Z2

:=
{
w : Z2 → Rq

}
, and we denote by

σi, i = 1, 2, the shifts on (Rq)
Z2

, by

σ1w(i, j) := w(i+ 1, j) , (i, j) ∈ Z2 ,

and analogously for σ2. We define σ−1i , i = 1, 2 by

σ−11 w(i, j) := w(i− 1, j) and σ−12 w(i, j) := w(i, j − 1) .

We also define σ := σ1σ
−1
2 , the composition of σ1

and σ−12 . We associate to a polynomial matrix R ∈
Rp×q[s1, s2, s

−1
1 , s−12 ] a polynomial operator in the shifts

R(σ1, σ2, σ
−1
1 , σ−12 ) : (Rq)

Z2

→ (Rp)
Z2

,

and we define s := s1s
−1
2 .
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A 2D system Σ is a triple (Z2,Rq,B), where the behavior
B of the system is the subset of all possible Rq-valued Z2-
indexed sequences that satisfy the system equations. We use
the following representations of Σ = (Z2,Rq,B):

• Square invertible: B := ker R(σ1, σ2, σ
−1
1 , σ−12 ), with

R(s1, s2, s
−1
1 , s−12 ) = Iqs

`+1
1 + . . .+A0(s) , (1)

deg(Ai(s)) ≤ `+ 1− i or Ai(s) = 0, i = 0, . . . , `.

• State-driving variable:
B := {w | ∃ (x, v) : Z2 → Rn × Rd satisfying (2)}

σ1x = A(σ)x+B(σ)v , w = Cx+Dv , (2)

where A(s) = A0 + A1s ∈ Rn×n[s], B(s) = B0 +
B1s ∈ Rn×m[s], C ∈ Rq×n and D ∈ Rq×d.

• State: B := {w | ∃ x satisfying (3)}

σ1x = A(σ)x , w = Cx , (3)

where A(s) = A0 +A1s ∈ Rn×n[s].

Remark 1: In (2) and (3) the value of x at (i, j) ∈ Z2 is
computed from those of x, v at (i− 1, j) and (i, j − 1). �

We make use of the following characterization, a combina-
tion of Theorem 6 p. 145 and Theorem 7 p. 153 of [8].

Theorem 1: Let Σ = (Z2,Rq,B) be an autonomous
system. The following statements are equivalent:

1) Σ admits a state representation (3);
2) Σ admits a square representation (1);
3) Σ admits a state-driving variable representation (2).

If any of the statements (1)− (3) above holds, we call

`(B) := min{` ∈ N | (1) holds} , (4)

the lag of B. Given Σ = (Z2,Rq,B), we denote by N (B)
the module of its annihilators, defined by

N (B) :=
{
η ∈ R1×q [s1, s2, s−11 , s−12

]
|

η(σ1, σ2, σ
−1
1 , σ−12 )w = 0 ∀ w ∈ B

}
.

(5)

Remark 2: B and the module N (B) are categorically
dual (see [13]). This implies that the module of annihilators
uniquely identifies the behavior. �

Example 1: Consider the system with 2 state variables and
1 external variable (n = 2 and q = 1 in (3)) described by

σ1x =

[
1 1
0 1

]
σx+

[
1
2 1
0 1

3

]
x

w =
[
1 1

]
x . (6)

Eliminating the latent variable x (see section IV.C of [14]),
one obtains the kernel representation

R(s1, s2) = s21 + s1

(
−5

6
− 2s

)
+ s01

(
s2 +

5

6
s+

1

6

)
,

(7)
that satisfies the degree conditions for representations (1).
The lag of this system `(B) = 1. �

III. INFORMATIVITY AND THE DATA MATRIX

We study systems representable as (1), (2) and (3); re-
calling Remark 1, our data consist of the values of system
trajectories on a finite number of consecutive diagonal lines

Lk := {(i, j) ∈ Z2 | i+ j = k} ,

k = 0, . . . , N . We define L0:N by

L0:N := {(i, j) ∈ Z2 | 0 ≤ i+ j ≤ N} .

We denote by w|Lk
the restriction of w : Z2 → Rq to Lk,

and we denote by w|L0:N
the restriction of w to L0:N .

Remark 3: We assume that w is not affected by noise.
This assumption is often unrealistic, but it simplifies our
analysis and allows us to gain some insight into the general
problem of analyzing data in more realistic situations.

�
Given ŵ ∈ B, we define the data set D0:N (ŵ) by

D0:N (ŵ) := {ŵ(i, j) | (i, j) ∈ L0:N} = ŵ|L0:N
. (8)

We denote by N (D0:N (ŵ)) ⊂ R1×q [s1, s2, s−11 , s−12

]
the

set of all annihilators of D0:N (ŵ):

N (D0:N (ŵ)) :=
{
η ∈ R1×q [s1, s2, s−11 , s−12

]
|

η(σ1, σ2, σ
−1
1 , σ−12 )ŵ|L0:N

= 0
}
,
(9)

and by 〈N (D0:N (ŵ))〉 the module generated by the elements
of N (D0:N (ŵ)).

Definition 1: The data D0:N (ŵ) are informative for iden-
tification if 〈N (D0:N (ŵ))〉 = N (B).
Given the duality between behavior and the module of its an-
nihilators (Remark 2), data are informative for identification
iff they uniquely identify the system producing them.

With reference to Definition 1, note that the inclusion
〈N (D0:N (ŵ))〉 ⊇ N (B) always holds: any annihilator of
all trajectories of B annihilates every particular ŵ ∈ B. The
data D0:N (ŵ) are informative if also the converse inclusion
holds, i.e. if the set of all difference equations satisfied by
all system trajectories coincides with the set of all difference
equations satisfied by the particular (sufficiently informative)
trajectory ŵ.

We introduce a matrix that plays a crucial role in charac-
terizing this property. Let m be a nonnegative integer; define
from ŵ|Lk

the Hankel matrix of depth m+ 1 by

Hm(ŵ|Lk
) :=


. . . ŵk−1,1 ŵk,0 . . .
. . . ŵk,0 ŵk+1,−1 . . .
. . . ŵk+1,−1 ŵk+2,−2 . . .
...

...
...

...
. . . ŵk+m−1,−m+1 ŵk+m,−m . . .

 .

(10)
Hm(ŵ|Lk

) has (m + 1)q rows and an infinite number of
columns. From (8) we define the data matrix:

DN (ŵ) :=


HN+1(ŵ|L0

)
HN (ŵ|L1

)
...

H0(ŵ|LN
)

 . (11)
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Note that DN (ŵ) has
∑N

i=0(i + 1)q = (N+2)(N+3)
2 q rows,

and an infinite number of columns.

IV. A FUNDAMENTAL RESULT

Assume that N (the number of consecutive lines in Z2 on
which the data are defined) is larger than or equal to `(B)
(the lag of B, see (4)). Consider a representation (1) with
` = `(B); it is straightforward to check that

sksj1R(s, s1) = sksj1
(
Iqs

`+1
1 +A`(s)s

`
1 + . . .+A0(s)

)
also annihilates B for every k ∈ N and for j = 0, . . . , N−`.
Now write the coefficient Ai(s) of si1 in (1) as

Ai(s) = Ai,0 +Ai,1s+ . . .+Ai,`+1−is
`+1−i , (12)

i = 0, . . . , `, and define A`+1 := Iq . Associate to (12) the
q × (N + 1− i)q matrix

Ãi :=
[
Ai,0 . . . Ai,`+1−i 0q×q . . . 0q×q

]
, (13)

i = 0, . . . , `, and define

Ã :=
[
Ã0 . . . ÃN

]
, (14)

where we set Aj(s) = 0, Ãj = 0 if j > `. The association
A ↔ Ã defines a bijective map between elements of
Rq×q[s, s1] whose highest power of s is N , and elements
of Rq×(N+1)(N+2)q .

Moreover, define the shift σ̃1 on the i-th matrix (13), i =
0, . . . , ` by

σ̃1Ãi :=
[
0 Ai,0 . . . Ai,`+1−i 0q×q . . .

]
∈ Rq×(N+1−i)q ,

and define its iterate σ̃j
1 in the natural way, j = 0, . . . , N−`.

The following result is a straightforward consequence of
these definitions.

Theorem 2: Assume that B admits a representation (1),
and that N ≥ `(B). Define the matrices Hm(ŵ|Lk

) and D
by (10) and (11). The following statements are equivalent:

1) ŵ is informative for system identification;
2) N (B) equals the module generated by left kerDN (ŵ);
3) The equality

rank(DN (ŵ)) =
(N + 2)(N + 3)

2
q

− (N − `(B) + 1)(N − `(B) + 2)

2
q

holds.

Define d := rank(DN (ŵ)); assume that any of the statements
(1)− (3) holds. Let V ∈ R

(N+2)(N+3)
2 q×d be a basis matrix

for imDN (ŵ). For every w ∈ B and k ∈ N there exists

Lk(w) ∈ Rd such that the k-th column of D(w) equals

wk,−k
...

wk+N+1,−k−N−1
wk+1,−k

...
wk+N+1,−k−N

...
wk+N+1,−k


= V Lk(w) . (15)

Proof: The equivalence (1) ⇐⇒ (2) follows from the
definition of informativity.

To prove (2) =⇒ (3), recall that N ≥ `(B), and write
N = `(B) + r, with r ≥ 0. Choose a basis for N (B)
consisting of the rows of a square-invertible representation
(1). Associate to the elements of such basis the corresponding
block-matrix Ã and its shifts σkÃ, k = 1, . . . , N − `(B).
Observe that since the coefficient of s`(B)+1+k

1 in sk1R(s, s1)
is the identity matrix, the shifts σkÃ, k = 0, . . . , N − `(B)
are linearly independent.

To prove the claim, assume first that r = 0; then

D`(B)(ŵ) =

H`(B)+1(ŵ|L0
)

...
H0(ŵ|LN

)

. The left-annihilators of

D`(B)(ŵ) are generated by the q constant vectors associated
with the rows of Iqs`+1

1 + A`(s)s
`
1 + . . . + A0(s) through

(12), (13) and (14); it follows that rank(D`(B)(ŵ)) =
(N+2)(N+3)

2 q − q.

When r = 1, D`(B)+1(ŵ) =


H`(B)+2(ŵ|L0

)
H`(B)+1(ŵ|L0

)
...

H1(ŵ|LN
)

H0(ŵ|LN
)

. Now

D`(B)(ŵ) is a submatrix of D`(B)+1(ŵ); it follows that
q left-annihilators of D`(B)+1(ŵ) are generated by the
q vectors corresponding to Iqs

`+1
1 + A`(s)s

`
1 + . . . +

A0(s). Moreover,


H`(B)+2(ŵ|L0

)
H`(B)+1(ŵ|L0

)
...

H1(ŵ|LN
)

 is also a submatrix

of D`(B)+1(ŵ); this generates another 2q left-annihilators
of D`(B)+1(ŵ) (since H1(ŵ|LN

) has 2 block rows). It
follows that rank(D`(B)+1(ŵ)) = (N+2)(N+3)

2 q − (q + 2q).
Applying the same argument for r > 1 we conclude that
rank(DN (ŵ)) = (N+2)(N+3)

2 q −
∑N−`(B)+1

i=1 iq; statement
3 of the Theorem is proved.

To prove the implication (3) =⇒ (2), let (1) be a
square-invertible representation of B; its rows generate the
module N (B). Associate to the rows of the polynomial
matrix R(s1, s) constant vectors through (12), (13) and
(14). Such constant vectors left-annihilate the data matrix of
every trajectory in B, and consequently also DN (ŵ). Such
left-annihilators and their shifts are linearly independent
of each other, since their highest coefficient is Iq . It is
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a matter of straightforward verification to check that for
a fixed N ≥ `(B) there are exactly

∑N−`(B)+1
i=1 iq such

independent left annihilators. Now use statement 3 of the
Theorem to conclude that since their dimensions are equal,
the space of left-annihilators of DN (ŵ) coincides with the
space generated by the vectors associated to the rows of
R. Since the rows of such square-invertible representation
generate N (B), statement 2 of the Theorem is proved.

We prove the last part of the claim. Let w ∈ B
be an arbitrary trajectory. Construct from its values on
L|0:N the matrix DN (w) analogously to (11). Since the
module generated by the polynomial vectors associated
with elements of left kerD(ŵ) equals N (B), conclude that
left kerDN (w) ⊇ left kerDN (ŵ), and consequently that
imDN (w) ⊆ imD(ŵ). Since DN (ŵ) has rank d (see
statement 3 of the Theorem) one can compute a basis
matrix V with the given dimensions. The last claim follows
straightforwardly from the fact that V is a basis matrix for
imDN (w).

Example 2: We verify the statements of Theorem 2 on a
numerical example. We use the state representation (6) of the
system in Example 1 to compute data starting from a random
sequence of two-dimensional state vectors on the line L0.

The Hankel matrices (10) and the data matrix DN (ŵ)
defined by (11) have an infinite number of columns; however,
finite submatrices can be computed from them using a finite
number of data samples. For the purposes of this example,
we use 40 samples for every line Lk.

For N = 1, D1(ŵ) has 6 rows. Its singular values are
6.6577 · 10, 7.2037, 3.3494, 8.0790 · 10−1, 3.5552 · 10−1,
and 3.0859 · 10−15. It follows that the numerical rank of
the data matrix is 5; the given trajectory is informative for
identification (see statement 3 of Theorem 2). The singular
value decomposition of D1(ŵ) yields a single left annihilator
that is proportional to[

1
6

5
6 1 − 5

6 −2 1
]
, (16)

the left annihilator corresponding to the coefficients of (7).
Thus the module generated by the left annihilators of D1(ŵ)
equals the module of annihilators of B, confirming statement
2 in Theorem 2.

If we choose N = 2, the matrix D2(ŵ) has 10 rows. Its
last 3 singular values are 2.8010 · 10−15, 1.4840 · 10−15 and
6.8624 · 10−16, respectively. The seventh singular value is
5.5213 ·10−1, indicating that the numerical rank of D2(ŵ) in
this case equals 7. It can be verified that the left annihilators
of D2(ŵ) are generated by the rows of the matrix0 0 0 0 1

6
5
6 1 − 5

6 −2 1
0 1

6
5
6 1 0 − 5

6 −2 0 1 0
1
6

5
6 1 0 − 5

6 −2 0 1 0 0

 .

The trajectory is informative for system identification and
statement 2 in Theorem 2 is confirmed also for N = 2.

If we choose N = 3, D3(ŵ) has 15 rows. Its last 6
singular values are below machine precision and the ninth
is 4.7304 · 10−1, indicating a numerical rank equal to 9.

The subspace of left annihilators of D3(ŵ) is generated by 6
shifts of the annihilator (16). Statements 2 and 3 of Theorem
2 are verified also in this case. �

Remark 4: The last claim of theorem 2 is analogous to
the 1D discrete-time result in [6] known as the fundamental
lemma, and to the analogous continuous-time results in
[15], [12]. Namely, a matrix computed from sufficiently
informative data can be used to compute all trajectories of
the system (or restrictions thereof). �

V. A DATA-DRIVEN SIMULATION PROCEDURE

We use the last part of Theorem 2 to set up a data-
driven recursive scheme to compute trajectories of B from
an informative one. For a given w : Z2 → Rq , we define the
(N+2)(N+3)

2 q-dimensional vectors fk(w) and uk(w) by

fk(w) :=



wk−1,−k+1

...
wk+N,−k−N
wk,−k+1

...
wk+N,−k−N+1

...
wk+N,−k


and

uk(w) :=



0
...

wk+N+1,−k−N−1
0
...

wk+N+1,−k−N
...

wk+N+1,−k+1


. (17)

In the following we call fk(w) the unfolding at k of the 2D-
sequence w over L0:N . We adopt such term since to construct
fk we “unfold” the values of w on an equilateral triangle of
Z2 with apex at (k +N,−k) and side length N + 1.

Remark 5: The unfolding fk(w) defined by the first equa-
tion in (17) is a column of the data matrix DN (w) computed
from samples of w. Indeed its first N + 2 block-entries
constitute the column of HN+1(w|L0

) that starts with the
value wk−1,−k+1 (see (10)); the next N + 1 block-entries
are the samples of w on the line L1 starting from wk,−k+1;
and so forth until wk+N,−k on LN . �

Remark 6: The concept of “unfolding” is analogous to the
principle underlying the state construction procedure in the
proof of implication 3) =⇒ 1) in Th. 6 on p. 145 of [8]. �

We define the q-block shift matrix Jm by J0 = 0q×q and

Jm :=


0 Iq 0 . . . 0
0 0 Iq . . . 0
...

...
...

. . .
...

0 0 . . . 0 Iq
0 0 . . . 0 0

 ∈ R(m+1)q×(m+1)q ,
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for m ≥ 1; and the shift matrix J by

J := block diag(Jk)k=N+1,...,0 .

It is a matter of straightforward verification to check that for
every w : Z2 → Rq the equation fk+1(w) = Jfk(w)+uk(w)
holds. Let V and Lk be defined as in Theorem 2. If w ∈ B,
then there exists a sequence of vectors {Lk(w)} such that
fk(w) = V Lk(w) for every k ∈ N; consequently

V Lk+1(w) = fk+1(w) = Jfk(w) + uk(w)

= JV Lk(w) + uk(w).

Recall that V has full column rank, and denote by V † a left
inverse of V . Multiplying both sides of the last equation by
V † we obtain

Lk+1(w) = V †JV Lk(w) + V †uk(w) . (18)

We call w ∈ (Rq)
Z2

an admissible trajectory on L0:N

if w satisfies the dynamical laws of the system on L0:N .
We use (18) to generate values of admissible trajectories
on L0:N as follows. Let v be an initial unfolding at k;
there exists a unique Lk(w) ∈ Rd such that v = V Lk(w),
since the columns of V are linearly independent from each
other. Choose arbitrary values for the nonzero entries of uk
defined in (17), and compute Lk+1(w) from (18). The new
values of an admissible trajectory can now be read in the
last q components of every (m + 1)q-dimensional block of
V Lk+1(w), m = N + 1, . . . , 0. The process can be repeated
and the values of an admissible trajectory on L0:N can be
iteratively computed.

We state a procedure formalizing these conceptual steps.
We assume that an informative ŵ has been measured; that
`(B) is known; that N ≥ `(B) is fixed; and that D(ŵ)
defined by (10) and (11) has been computed from ŵL0:N

. As
in Theorem 2 we denote by d the dimension of imDN (ŵ).

Algorithm
Data-driven simulation of a 2D autonomous system B
representable by (1).

Input: v = fk(w), an unfolding (17) at k of some
w ∈ (Rq)

Z2

; the data matrix imD(ŵ) of some
informative trajectory ŵ ∈ B;

Output: An admissible trajectory wL0:N

Step 1: Compute a basis matrix V ∈ R
(N+2)(N+3)

2 q×d

for imDN (ŵ)

Step 2: Compute a pseudoinverse V † of V

Step 3: Solve for Lk the equation v = V Lk

Step 4: Choose values pk+N+1,−k−N+i ∈ Rq ,

i = −1, 0, 1, such that

Jfk(w) +



0
...

pk+N+1,−k−N−1
0
...

pk+N+1,−k−N
...

pk+N+1,−k−N+1


︸ ︷︷ ︸

uk:=

∈ imV .

Step 4: Compute Lk+1 by Lk+1 = V †JV Lk + V †uk.
Step 5: Define wk+N+1,−k−N+i+1, i = 0, 1, . . . , N , to

be the last q components of every
(m+ 1)q-dimensional block of V Lk+1,
m = N + 1, . . . , 0

Step 6: Set k = k + 1;
Step 7: Set v = fk(w).
Step 8: Go to Step 3.

Remark 7: In the Algorithm it is not stipulated that the
initial unfolding is legitimate, i.e. that there exists w ∈ B
and k ∈ Z such that fk(w) = v. Consequently, there may not
exist a “past” of some system trajectory that is compatible
with the given “initial conditions” v. Similarly, the update in
Step 4 of the Algorithm uses arbitrary values pi,j satisfying
the condition Jfk(w) + uk ∈ imV .

It follows that the output of the algorithm is a trajectory
that satisfies the dynamical laws of the system only on the
lines Lk 0 ≤ k ≤ N , but may not be the restriction of a
bona fide system trajectory to L0:N .

How to construct legitimate unfoldings and “input” vectors
uk are open questions for further research. The first issue
is analogous to that studied in [16], namely characterizing
“feasible initial conditions” for Fornasini-Marchesini models
(see Definition 3.1 therein). �

Example 3: We use the same system and data of Exam-
ples 1 and 2, and we choose N = 1 = `(B). For simplicity
of exposition we compute the basis matrix V for imD(ŵ)
from the left-annihilator (16) of D(ŵ):

V =


−6 12 5 −6 −5
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 .

A pseudoinverse of V is

V † =


− 2

89 − 10
89 − 12

89
10
89

24
89

77
89

4
89

20
89

24
89 − 20

89
41
89

24
89

5
267

25
267

10
89

242
267 − 20

89
10
89

− 2
89 − 10

89
77
89

10
89

24
89 − 12

89
− 5

267
242
267 − 10

89
25
267

20
89 − 10

89

 .

To generate a legitimate unfolding, we simulate the data-
generating system (6) with a random boundary condition,
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different from that used in Example 2, generating a new
system trajectory w. We choose the fifth column of the data
matrix of the trajectory w as initial unfolding v (see Remark
5).

Choosing as u0 in Step 4 the vector

u>0 =
[
0 0 0 0 −1.2473 0

]
yields

f1(w)> =
[
4.8380 5.1636 0 9.1246 −1.2473 0

]
;

choosing

u>1 =
[
0 0 0 0 0.9500 0

]
yields

f2(w)> =
[
5.1636 0 0 −1.2473 0.9500 0

]
.

Finally, choosing

u>2 =
[
0 0 0 0 −0.3958 0

]
,

yields

v>3 =
[
0 0 0 0.9500 −0.3958 0

]
.

These computations result in the matrix

D1(w) =


7.1186 4.8380 5.1636 0
4.8380 5.1636 0 0
5.1636 0 0 0
10.0037 9.1246 −1.2473 0.9500
9.1246 −1.2473 0.9500 −0.3958
16.2039 0 0 0

 .

D1(w) has the block-Hankel structure expected from a data
matrix. Moreover, it can be verified that the vector defined
in (16) is a left annihilator of this matrix.

VI. CONCLUDING REMARKS

We studied the class of discrete autonomous 2D systems
that admit a state representation where the state at every point
(i, j) ∈ Z2 is computed from its values at two neighbouring
points (i − 1, j) and (i, j − 1) on the “previous” diagonal
line in Z2. Such systems admit a kernel representation
with a square polynomial matrix (see equation (1) and the
paper [8]). We defined the property of informativity for
identification for such systems (Definition 1). We introduced
the concept of data matrix (see formulas (10) and (11)),
and we stated necessary and sufficient conditions for a given
trajectory to be informative in terms of properties of the
rank of such matrix (see Theorem 2). Finally, using the
“unfolding” technique (see formula (17)), we showed how
every trajectory in the system can be computed from a given
informative one without explicitly identifying a model (see
the Algorithm in Section V).

Given their limitations, the results presented in this paper
can only be considered to be preliminary to a thorough
investigation of data-driven simulation of 2D-systems. We
restricted our analysis to the class of autonomous 2D systems
that admit a special representation (1), (2) and (3). It is well

known that even among the class of autonomous 2D systems
there are many that do not admit such a representation.
Our current research aims at extending the results presented
here to more general classes of nD systems; we expect the
representation results from [9], [17] to be useful in such
effort. Moreover, pressing research questions are how to
generalize our results to the case of noisy data (see Remark
3); and the characterization of “feasible initial conditions”
and legitimate updates (see Remark 7).
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lemma” for continuous-time systems, with applications to data-driven
simulation,” Systems & Control Letters, in press, 2023.

[13] U. Oberst, “Multidimensional constant linear systems,” Acta Appli-
candae Mathematica, vol. 20, no. 1, pp. 1–175, 1990.

[14] P. Rocha and J. Willems, “Controllability of 2-D systems,” IEEE
Transactions on Automatic Control, vol. 36, no. 4, pp. 413–423, 1991.

[15] V. G. Lopez and M. A. Müller, “On a continuous-time version of
Willems’ lemma,” in 2022 IEEE 61st Conference on Decision and
Control (CDC), 2022, pp. 2759–2764.

[16] R. Pereira and P. Rocha, “Feasible initial conditions for 2D discrete
state-space systems,” IFAC-PapersOnLine, vol. 55, no. 30, pp. 127–
131, 2022.

[17] M. Mukherjee and D. Pal, “On minimality of initial data required to
uniquely characterize every trajectory in a discrete n-D system,” SIAM
Journal on Control and Optimization, vol. 59, no. 2, pp. 1520–1554,
2021.

589


