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Abstract— Several recent empirical studies demonstrate that
important machine learning tasks, e.g., training deep neural
networks, exhibit low-rank structure, where the loss function
varies significantly in only a few directions of the input
space. In this paper, we leverage such low-rank structure to
reduce the high computational cost of canonical gradient-based
methods such as gradient descent (GD). Our proposed Low-Rank
Gradient Descent (LRGD) algorithm finds an ϵ-minimizer of a
p-dimensional function by first identifying r ≤ p significant
directions, and then estimating the true p-dimensional gradient
at every iteration by computing directional derivatives only
along those r directions. We establish that the “directional
oracle complexity” of LRGD for strongly convex objective
functions is O(r log(1/ϵ) + rp). Therefore, when r ≪ p, LRGD
provides significant improvement over the known complexity of
O(p log(1/ϵ)) of GD in the strongly convex setting. Furthermore,
using real and synthetic data, we empirically find that LRGD
provides significant gains over GD when the data has low-rank
structure, and in the absence of such structure, LRGD does not
degrade performance compared to GD.

I. INTRODUCTION

First order optimization methods such as Gradient Descent
(GD) and its variants have become the cornerstone of training
modern machine learning models due to their simplicity
and feasibility of implementation at scale. The optimization
problem of interest can be viewed as minθ∈Rp f(θ), with
objective function f : Rp → R which captures dependence
on data and underlying model constraints (e.g., regularization).
The computational model of interest measures the number
of gradient computations, also known as oracle complexity.
Subsequently, within the optimization meets machine learning
community, there has been a significant interest in reducing
oracle complexity of first order methods, cf. [1], [2]. Formally,
we shall measure oracle complexity as the number of
evaluations of directional derivatives of f to achieve a certain
accuracy level ϵ > 0. Under this definition, the vanilla GD
algorithm requires an oracle complexity of O(p log(1/ϵ)) to
find an ϵ-minimizer of a strongly convex objective f [3].
This complexity grows linearly with parameter dimension p
(note that each iteration of GD costs p directional derivatives
as it requires a full gradient computation), which can be
prohibitive, e.g., in deep neural networks. However, it has
recently been observed that many empirical risk minimization
problems have objective functions with low-rank structure

The author ordering is alphabetical.
R. Cosson is with Inria, Paris, France (email: cosson@inria.edu).
A. Jadbabaie, A. Reisizadeh, and D. Shah are with the Laboratory for

Information & Decision Systems, MIT, Cambridge, MA 02139, USA (emails:
{jadbabai,amirr,devavrat}@mit.edu).

A. Makur is with the Department of Computer Science and the School
of Electrical & Computer Engineering, Purdue University, West Lafayette,
IN 47907, USA (email: amakur@purdue.edu).

in their gradients [4]–[7]. In what follows, we will refer to
them as low-rank functions. They naturally appear in many
scenarios, a few of which are listed here.

Motivation 1: Low-rank Hessians. Low-rank structures
have been found in large-scale deep learning scenarios
irrespective of the architecture, training methods, and tasks
[4]–[6], [8], where the Hessians exhibit a sharp decay in
their eigenvalues. For instance, in classification tasks with k
classes, during the course of training a deep neural network
model, the gradient lives in the subspace spanned by the k
eigenvectors of the Hessian with largest eigenvalues [4].

Motivation 2: Ridge functions. Ridge functions are
generally defined as functions that only vary on a given low-
dimensional subspace of the ambient space [9]. There are
many standard examples of ridge function losses in machine
learning, e.g., least-squares regression, logistic regression,
one hidden layer neural networks, etc. [10], [11]. The natural
model for Principal Component Regression (PCR) is another
such example [12].

Given the above motivations, we will consider a real-
valued function as low-rank if its gradients live close to
a low-dimensional subspace. Such low-rank structure has
been exploited to theoretically improve the running times
of federated optimization algorithms recently in [7]. Yet,
canonical GD methods do not exploit this additional structure.
Hence, the goal of this work is to address the following
question: Can we leverage low-rank structure to design
optimization algorithms with running times that have better
dependence on the dimension?

Main contributions. To address this question, as the main
contribution of this work, we propose Low-Rank Gradient
Descent (LRGD) methods to leverage such low-rank structure
in the objective to reduce oracle complexity. Specifically,
we restrict the gradient of the function to the low-rank
subspace defined by some significant directions–the active
subspace–and perform descent iterations. More precisely,
LRGD identifies a fairly accurate proxy for such an active
subspace. Then, in each descent iteration, it approximates
the true gradient vector by computing only r (dimension of
active subspace) directional derivatives of the objective along
the active subspace. Note that each iteration of LRGD costs
only r directional derivative computations. Intuitively, this
is far less than canonical methods such as GD, which has
iteration cost growing linearly with p, as noted earlier. In
particular, for sufficiently low-rank objectives, LRGD is able
to reduce GD’s directional oracle complexity O(p log(1/ϵ))
to O(r log(1/ϵ) + rp).

Related work. Low-rank structures have been exploited
extensively in various disciplines. For example, in machine
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learning, matrix estimation methods typically rely on low-rank
assumptions [13]. In classical statistics, projection pursuit
methods rely on low-rank approximations of functions [9],
[14]. In a similar vein, in scientific computing, approximation
methods have been developed to identify influential input
directions of a function for uncertainty quantification [15].

In contrast to these settings, we seek to exploit low-rank
structure in optimization algorithms. Recently, the authors
of [16] developed a local polynomial interpolation based GD
algorithm for empirical risk minimization that learns gradients
at every iteration using smoothness of loss functions in data.
The work in [7] extended these developments to a federated
learning context (cf. [17], [18] and the references therein),
where low-rank matrix estimation ideas were used to exploit
such smoothness of loss functions.

Our work falls within the broader effort of speeding up
first order optimization algorithms, which has been widely
studied in the literature. In this literature, the running time
is measured using first order oracle complexity (i.e., the
number of full gradient evaluations until convergence) [3].
The first order oracle complexity of GD for, e.g., strongly
convex functions, is analyzed in the standard text [3]. Similar
analyses for stochastic versions of GD that are popular in
large-scale empirical risk minimization problems, such as
(mini-batch) stochastic GD [19], [20]. There are several
standard approaches to theoretically or practically improving
the running times of these basic algorithms, e.g., acceleration
[3], variance reduction [21]–[23], and adaptive learning rates
[24], [25]. More related to our problem, random coordinate
descent-type methods, such as stochastic subspace descent
[26], have also been studied. In addition, various other results
pertaining to GD with inexact oracles (see [27] and the
references therein), fundamental lower bounds on oracle
complexity [28], etc. have been established in the literature.

II. FORMAL SETUP AND LOW-RANK STRUCTURE

A. Preliminaries

We consider a real-valued differentiable function f : Θ→
R, where Θ = Rp for some positive integer p. We assume
that f is L-smooth and µ-strodgly convex.

Assumption 1 (L-smoothness). The function f is L-smooth
for a given parameter L > 0 if for any θ, θ′ ∈ Θ, f(θ′) ≤
f(θ) + ⟨∇f(θ), θ′ − θ⟩+ L

2 ∥θ
′ − θ∥2.

Assumption 2 (Strong convexity). The function f is µ-
strongly convex for a given parameter µ > 0 if for any
θ, θ′ ∈ Θ, f(θ′) ≥ f(θ) + ⟨∇f(θ), θ′ − θ⟩+ µ

2 ∥θ
′ − θ∥2.

The goal we pursue in this setting is to find an ϵ-minimizer
for f , which is defined as θ ∈ Θ satisfying

f(θ)− f∗ ≤ ϵ, (1)

where ϵ > 0 is a predefined approximation accuracy and f∗ =
infθ∈Θ f(θ) ∈ R. In this paper, we focus on the computational
complexity of gradient descent methods, which we concretely
measure using the following computational model.

Computational model. To characterize the running time
of a GD-type algorithm for solving (1), we employ a variant
of the well-established notion of oracle complexity [3]. In
particular, we tailor this notion to count the number of oracle
calls to directional derivatives of the objective, where the
directional derivative of f along a unit-norm vector u ∈ Rp

is a scalar defined as

∂uf(θ) := lim
t→0

f(θ + tu)− f(θ)

t
= ⟨∇f(θ), u⟩.

This computation model—which slightly differs from most
of the literature on first order methods that typically assumes
the existence of a full-gradient oracle ∇f(θ)—will allow us
to illustrate the utility of a low-rank optimization method.

Definition 1 (Oracle complexity). Given an algorithm ALG,
for a predefined accuracy ϵ > 0 and function class F ,
we denote by CALG the maximum number of oracle calls
to directional derivatives required by ALG to reach an ϵ-
approximate solution as in (1) for any function in F .

Note that computing a full-length gradient vector of
dimension p requires p calls to the directional gradient oracle.
As a consequence, for the class of smooth and strongly convex
functions, the oracle complexity of vanilla GD to find an ϵ-
minimizer of f is CGD = O(p log(1/ϵ)) [3].

In this paper, we improve the (directional) oracle com-
plexity of gradient-based algorithms like GD by proposing a
computationally efficient algorithm called Low-Rank Gradient
Descent (LRGD). The main idea of LRGD is to leverage
the potential low-rank structure of the objective in order
to reduce the oracle complexity during iterations. To do so,
LRGD first identifies a low-rank subspace H , known as the
active subspace, that (approximately) contains the gradients
of the objective f . Let {u1, · · · , ur} denote an orthonormal
basis for H . In each iteration with current model param-
eter θ, LRGD computes r directional derivatives of f , i.e.,
∂fu1

(θ), · · · , ∂fur
(θ), and uses ∇̂f(θ) =

∑
i∈[r] ∂ui

f(θ)ui

as an approximation to the true full-gradient ∇f(θ) and
updates the model parameter as θ ← θ − α∇̂f(θ) with an
appropriate stepsize α.

B. Approximately low-rank functions

Intuitively, a low-rank function maintains its gradient
vectors in a low-dimensional subspace. This is inspired by the
motivating examples described in Section I. For instance, any
ridge function on Rp satisfies the condition that its gradient
vectors exactly live in a subspace of dimension r ≤ p. Our
notion, however, is broader and includes ridge functions
as a special case and allows low-dimensional subspaces to
approximately satisfy the aforementioned condition.

Definition 2 (Approximate rank of function). The function f
is (η, ϵ)-approximately rank-r, if there exist η ∈ [0, 1), ϵ ≥ 0,
and a subspace H ⊆ Rp of dimension r ≤ p, such that for
any θ ∈ Θ,

∥∇f(θ)−ΠH(∇f(θ))∥ ≤ η∥∇f(θ)∥+ ϵ, (2)

where ΠH denotes the orthogonal projection operator onto H .
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Note that this definition has two error terms represented
by two constants η (multiplicative) and ϵ (additive). Both of
these constants are required for the generality of the definition
of approximate low-rankness. In particular, the role of the
additive term is emphasized in the following Proposition 1.

Proposition 1 (Non-singular Hessian and approximate
low-rankness). If f attains its minimum at θ∗ ∈ Θ where
∇2f(θ∗) is invertible and f is approximately low-rank with
parameters (η, ϵ) where η < 1, then necessarily ϵ > 0.

The proof in Section V-B is a direct application of the
inverse function theorem to ∇f at θ∗. This result shows
that in most settings, the approximate rank requires an affine
approximation error (i.e., ϵ > 0 is necessary).

Exactly low-rank functions. As noted earlier, the notion
of approximately low-rank functions in Definition 2 subsumes
the well-known class of ridge functions, which have η =
ϵ = 0. We refer to functions that satisfy condition (2) with
η = ϵ = 0 as exactly low-rank functions. It is worth noting
that such functions have already been widely studied in the
literature under different equivalent guises. However, the class
of such functions is fairly restricted. Next, we define the rank
of a function for this particular case of exactly low-rank
functions.

Definition 3 (Rank of function). The function f has rank r
if the minimal subspace H ⊆ Rp satisfying ∇f(θ) ∈ H for
all θ ∈ Θ has dimension r.

III. ALGORITHMS AND THEORETICAL GUARANTEES

A. LRGD algorithm

The proposed algorithm, LRGD, is an iterative gradient-
based method. It starts by identifying a subspace H of rank
r ≤ p that is a good candidate to match our definition of
approximately low-rank function for the objective f , i.e., Defi-
nition 2. More precisely, we pick r random models θ1, · · · , θr
and construct the matrix G = [g1/∥g1∥, · · · , gr/∥gr∥], where
we let gj := ∇f(θj) for j ∈ [r]. Then, assuming that G is
full-rank, the active subspace H will be the space induced by
the r dominant left singular vectors of G. In other words, if
we denote G = UΣV ⊤ as the singular value decomposition
(SVD) of G, we pick H = span(U) = span(u1, · · · , ur).
Having set the active subspace H , LRGD updates the model
parameters θt in each iteration t by θt+1 = θt − α∇̂f(θt)
for an appropriate stepsize α. Note that ∇̂f(θt) here denotes
the projection of the true gradient ∇f(θt) onto the active
subspace H , which LRGD uses as a low-rank proxy to∇f(θt).
Computing each approximate gradient ∇̂f requires only r
(and not p) calls to the directional gradient oracle as we have
∇̂f(θt) =

∑r
j=1 ∂ujf(θt)uj (see Algorithm 1).

B. Oracle complexity analysis for strongly convex setting

Next, we characterize the oracle complexity of the LRGD
method for strongly convex objectives starting with the more
general case of approximately low-rank functions.

Theorem 1 (Oracle complexity in approximately low-rank
and strongly convex case). Let the objective function f be

Algorithm 1: Low-Rank Gradient Descent (LRGD)

1 Require: rank r ≤ p, stepsize α
2 pick r points θ1, · · · , θr and evaluate gradients

gj = ∇f(θj) for j ∈ [r]
3 set G = [g1/∥g1∥, · · · , gr/∥gr∥]
4 compute SVD for G: G = UΣV ⊤ with

U = [u1, · · · , ur] (Gram-Schmidt or QR is also possible)
5 set H = span(u1, · · · , ur)
6 initialize θ0
7 for t = 0, 1, 2, · · · do
8 compute gradient approximation

∇̂f(θt) = ΠH(∇f(θt)) =
∑r

j=1 ∂uj
f(θt)uj

9 update θt+1 = θt − α∇̂f(θt)
10 end

L-smooth and µ-strongly convex with condition number κ :=
L/µ, i.e., Assumptions 1 and 2 hold. We also assume that f
is (η,

√
µϵ/5)-approximately rank-r according to Definition

2, and the following condition holds:

η

(
1 +

2r

σr

)
+

2r

σrϵ′

√
µϵ

5
≤ 1√

10
,

where σr is the smallest singular value of the matrix G =
[g1/∥g1∥, · · · , gr/∥gr∥] with gj := ∇f(θj) and ∥gj∥ > ϵ′

for all j ∈ [r]. Then, for stepsize α = 1
8L , the proposed

LRGD method in Algorithm 1 reaches an ϵ-minimizer of f
with oracle complexity

CLRGD = 16κr log(2∆0/ϵ) + pr,

where ∆0 = f(θ0)− f∗ is the initial suboptimality.

We defer the proof to Section V-A. Theorem 1 shows
that in the strongly convex setting, for approximately low-
rank functions with sufficiently small parameters, LRGD is
able to reduce the oracle complexity of GD, which is CGD =
O(κp log(1/ϵ)), to CLRGD = O(κr log(1/ϵ)+pr). This gain is
particularly significant as the term depending on the accuracy
ϵ does not scale with the dimension p, and rather scales with
the rank r which can be much smaller than p.

In general, strongly convex functions cannot be exactly
low-rank. However, an exactly low-rank function may be
strongly convex when restricted to its active subspace. The
next result characterizes the oracle complexity for LRGD in
such scenarios.

Proposition 2 (Oracle complexity in exactly low-rank and
strongly convex case). Let the objective function f be L-
smooth (Assumption 1) and exactly rank-r according to
Definition 3, where ∇f(θ) ∈ H , ∀θ. Moreover, assume
that f restricted to H is µ-strongly convex (Assumption 1)
with condition number κ := L/µ. Then, the proposed LRGD
method in Algorithm 1 with stepsize α = 1/L reaches an
ϵ-minimizer of f with oracle complexity

CLRGD = κr log(∆0/ϵ) + pr,

where ∆0 = f(θ0)− f∗ is the initial suboptimality.
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Algorithm 2: Iterated Low-Rank Gradient Descent

1 Require: r ≥ 0, ϵ > 0, α ∈
(
0, 1

L

]
, µ > 0, θ0 ∈ Rp

2 initialize θ ← θ0
3 while ∥∇f(θ)∥ >

√
2µϵ do

4 θ1, ..., θr = GD(θ, r) (r iterations of GD)
5 u1, ..., ur = Gram-Schmidt(∇f(θ1), ...,∇f(θr))
6 ∇̂f(θ)←

∑r
k=1 ∂uk

f(θ)uk

7 while ∥∇̂f(θ)∥ ≥
√
2µϵ do

8 θ ← θ − α∇̂f(θ)
9 ∇̂f(θ)←

∑r
k=1 ∂uk

f(θ)uk

10 end
11 end
12 return θ

C. Variant of LRGD

Algorithm 1 (LRGD) can be extended to broader settings,
especially in order to make it less sensitive to low-rank
assumptions on the function f , since such assumptions are
often unknown a priori before the optimization task is defined.

In particular, Algorithm 2 provides a variant of LRGD
where the active subspace is updated as soon as the low-rank
descent converges. Note that this guarantees the termination
of the optimization algorithm on any function, not just on
functions satisfying the assumptions of the theoretical results.
This algorithm is particularly adapted to situations where
the function is locally approximately rank r as the active
subspace is updated through a local sampling (that is also
used to accelerate the descent with r iterations of GD). This
algorithm still takes the parameter r as an input. It is used
for the empirical experiments in Section IV.

IV. NUMERICAL SIMULATIONS

In this section, we demonstrate the utility of the LRGD
method—specifically the iterated variant described in Algo-
rithm 2—through numerical simulations.

In the following experiments, the goal is to minimize the
empirical risk f(θ) =

∑
i∈[n] ℓ(xi, yi; θ) for loss function

ℓ over n data samples {(xi, yi) : i = 1, . . . , n}. Here,
X = [x⊤

1 ; · · · ;x⊤
n ] ∈ Rn×p and Y = [y1 · · · yn]⊤ ∈ Rn

denote the matrices of features and labels, respectively. We
also consider loss functions ℓ(xi, yi; θ) = ∥x⊤

i θ − yi∥2
and ℓ(xi, yi; θ) = 1(yi = 1) log(1/(1 + e−x⊤

i θ)) + 1(yi =

0) log(e−x⊤
i θ/(1 + e−x⊤

i θ)) for our regression and logistic
regression problems, respectively.

Digits recognition dataset. The UCI handwritten digits
dataset [29] contains n = 2000 images of p = 8× 8 pixels
of handwritten digits along with their labels. We consider
two different binary classification tasks on this dataset. The
first task is a binary classification of digits 0 and 1. In the
second task, we set our goal to detect loops in the digits, that
is, classifying digits to either of the two groups {0, 6, 8, 9}
or {1, 2, 3, 5, 7}.

Figures 1a and 1b demonstrate the decay of the training loss
versus the number of (directional) oracle calls for LRGD with

(a) Binary 0/1 classification
(n, p)=(200, 64), ϵ=102 (LR).

(b) Binary loop detection
(n, p) = (1800, 64), ϵ = 106.

Fig. 1: Training error for digits recognition

(a) Full-rank data
(n, p) = (10, 50), ϵ = 0.1.

(b) Planted rank r = 2
(n, p) = (10, 50), ϵ = 0.1.

Fig. 2: Training error for synthetic data.

several values of the rank. For this dataset, the optimization
objective is that of logistic regression. For instance, Figure
1a demonstrates that the same level of accuracy is attained by
LRGD with 10 times fewer oracle calls than GD. Furthermore,
the better performance of LRGD with medium ranks reveals
inherent low-rank structures in the dataset.

Synthetic data with full rank. Here, the features are
generated independently from a standard normal distribution
xi ∼ N (0, Ip) for i ∈ [n]. The response variable yi is a noisy
linear measurement of a ground-truth model θ∗ = [1 · · · 1]⊤,
i.e., yi = ⟨xi, θ

∗⟩+ ni with i.i.d. noises ni ∼ N (0, 0.1). For
the logistic regression experiments, the quantity yi is turned
into a binary value by randomly sampling from a Bernoulli
distribution with parameter 1/(1 + e−yi).

Synthetic data with low rank. This dataset differs from
the previous solely in the way the features xi, i ∈ [n] are
sampled. To guarantee an approximate low-rank structure, we
first sample matrices U ∈ Rn×r and V ∈ Rp×r, and set the
feature matrix as X = UV ⊤. The entries of U and V are
i.i.d. and sampled from a standard normal distribution, i.e.,
Ui,j ∼ N (0, 1) and Vi,j ∼ N (0, 1).

Figure 2 illustrates the training loss for the full-rank and
low-rank datasets described above, respectively. Interestingly,
LRGD’s performance is superior to GD’s performance even in
the full-rank setting. Moreover, LRGD is particularly effective
on the low-rank datasets as well. The convergence curves of
LRGD have several successive drops in the function value–
much like a “waterfall”. This is particularly noticeable when
the rank parameter of the algorithm is small. Moreover, Table
I quantifies the total oracle complexity of iterated LRGD for
different ranks r and the two linear and logistic regression
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rank 1 rank 2 rank 4 rank 6 GD (rank p)

LS, full rank 353 518 614 596 880
LS, low rank (2) 564 362 616 862 10000
LR, low rank (4) 3667 1050 940 1266 3580

TABLE I: Number of oracle calls for least square (LS) and
logistic regression (LR).

α rank 1 rank 2 rank 4 rank 6 GD (rank p)

1/2L 564 362 616 862 10000
1/4L 640 438 768 1090 10000
1/8L 792 590 1072 1546 14800

TABLE II: Least square regression, synthetic data with planted
rank r = 2, (n, p) = (50, 10), ϵ = 0.1.

problems, where the case r = p coincides with GD. For
the same setting and problems described above, Table II
demonstrates the total oracle complexity for different values
of the stepsize α. Table I further confirms that picking the
proper rank particularly for the planted low-rank datasets
yields the lowest complexity as seen in columns with rank
close to the planted rank.

V. PROOFS OF ORACLE COMPLEXITY

A. Proof of Theorem 1

First, we characterize the gradient inexactness induced by
the gradient approximation step of LRGD.

Lemma 1 (Gradient approximation). Assume that the f is
(η, ϵ)-approximately rank-r according to Definition 2 and the
following condition holds

2r

σr

(
η +

ϵ

ϵ′

)
<

1√
10

, (3)

where σr is the smallest singular value of the matrix G =
[g1/∥g1∥, · · · , gr/∥gr∥] with gj := ∇f(θj) and ∥gj∥ > ϵ′

for all j ∈ [r]. Then, the gradient approximation error of
LRGD is bounded as ∥∇̂f(θ) − ∇f(θ)∥ ≤ η̃∥∇f(θ)∥ + ϵ,
for η̃ := η + 2r(η + ϵ

ϵ′ )/σr.

Proof. Let G = UΣV ⊤ and GH = UHΣHV ⊤
H respectively

denote SVDs for matrices G and GH , where

G =
[

g1
∥g1∥ , . . . ,

gr
∥gr∥

]
, GH =

[
ΠH(g1)
∥g1∥ , . . . , ΠH(gr)

∥gr∥

]
.

Since f is (η, ϵ)-approximately rank-r per Definition 2, we
can bound the operator norm of G−GH as follows

∥G−GH∥op ≤
√
r∥G−GH∥F

≤ rmax
j∈[r]

∥∥∥∥ gj
∥gj∥

− ΠH(gj)

∥gj∥

∥∥∥∥ ≤ r
(
η +

ϵ

ϵ′

)
, (4)

where in the last inequality we used the assumption that
∥gj∥ > ϵ′ for all j ∈ [r]. The condition stated in the lemma
ensures that G is full-rank (since σr > 0). Next, we show
that projecting columns of G on H does not degenerate its
rank, that is, GH is full-rank as well. To this end, we employ
Weyl’s inequality [30, Corollary 7.3.5(a)] to write that

σr(GH) ≥ σr − σ1(G−GH) ≥ σr − ∥G−GH∥op
(a)

≥ σr − r
(
η +

ϵ

ϵ′

) (b)
> 0.

In above, σr(GH) and σ1(G−GH) respectively denote the
smallest and largest singular values of GH and G−GH , (a)
follows from the bound in (4), and (b) is an immediate result
of the condition (3). Since H is a subspace of rank r and
columns of GH are all in H , we have that H = span(UH).
Next, we employ Wedin’s sinΘ theorem [31] to conclude

SinΘ(span(U), span(UH)) = ∥ΠU −ΠH∥op

≤ 2

σr
∥G−G∗∥op ≤

2r

σr

(
η +

ϵ

ϵ′

)
.

This yields that ∀θ ∈ Rp we can uniformly bound the LRGD
gradient approximation error as follows

∥∇̂f(θ)−∇f(θ)∥ = ∥ΠU (∇f(θ))−∇f(θ)∥
≤ ∥ΠH∇f(θ)−∇f(θ)∥+ ∥ΠH∇f(θ)−ΠU∇f(θ)∥
≤ η̃∥∇f(θ)∥+ ϵ,

for η̃ := η + 2r(η + ϵ
ϵ′ )/σr. □

Next, we characterize the convergence of inexact gradient
descent and use LRGD’s gradient approximation error bound
derived in Lemma 1 to complete the proof.

Let us get back to the setting of Theorem 1. From
smoothness of f in Assumption 1 and the update rule of
LRGD, i.e. θt+1 = θt − α∇̂f(θt), we can write

f(θt+1) = f(θt − α∇̂f(θt))

≤ f(θt)− α⟨∇f(θt), ∇̂f(θt)⟩+
L

2
α2∥∇̂f(θt)∥2

= f(θt)− α∥∇f(θt)∥2 − α⟨∇f(θt), et⟩+
L

2
α2∥∇̂f(θt)∥2,

(5)

where et := ∇̂f(θt)−∇f(θt) denotes the gradient approxi-
mation error at iteration t. Next, we employ the gradient
approximation error bound derived in Lemma 1, that is
∥et∥ ≤ η̃∥∇f(θt)∥ + ϵ̃, where we denote ϵ̃ :=

√
µϵ/5 and

η̃ := η+2r(η + ϵ̃
ϵ′ )/σr for notation simplicity. Together with

simple algebra from (5), we have that

f(θt+1) ≤ f(θt)− α∥∇f(θt)∥2 +
α

2
∥∇f(θt)∥2

+
α

2
∥et∥2 + α2L∥∇f(θt)∥2 + α2L∥et∥2,

≤ f(θt) + α(1 + 2αL)ϵ̃2

− α

2

(
1− 2αL− 2η̃2(1 + 2αL)

)
∥∇f(θt)∥2.

(6)

Next, we use the gradient dominant property of strongly
convex loss functions, that is ∥∇f(θ)∥2 ≥ 2µ(f(θ) − f∗),
∀θ, which together with (6) implies that

f(θt+1)− f∗ ≤ (1− α̃µ) (f(θt)− f∗) + α(1 + 2αL)ϵ̃2,

with notation α̃ := α
(
1− 2αL− 2η̃2(1 + 2αL)

)
. Now we

pick the stepsize α = 1
8L and use the condition η̃ ≤ 1/

√
10

to conclude that

f(θt+1)− f∗ ≤
(
1− 1

16κ

)
(f(θt)− f∗) +

5

32L
ϵ̃2. (7)
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The contraction bound in (7) implies that after T iterations
of LRGD the final suboptimality is bounded as below

f(θT )− f∗ ≤ exp

(
− T

16κ

)
(f(θ0)− f∗) +

ϵ

2
.

Finally, in order to reach an ϵ-minimizer of f , it suffices to
satisfy the following condition exp(− T

16κ ) (f(θ0)− f∗) ≤
ϵ/2, i.e., LRGD runs for T = 16κ log(2∆0/ϵ) iterations. Thus,
the total oracle complexity of LRGD is

CLRGD = Tr + pr = 16κr log(2∆0/ϵ) + pr.

B. Proof of Proposition 1

We write Taylor’s expansion around θ∗,

∇f(θ) = ∇2f(θ∗)(θ − θ∗) + o(∥θ − θ∗∥),

where ∇2f(θ∗) is invertible, and the little-o notation applies
entry-wise. For any given subspace H , we can consider u =
∇2f(θ∗)−1v where v ∈ H⊥ and note that

∇f(θ∗ + tu) = tv + o(t), ΠH(∇f(θ∗ + tu)) = o(t).

As a consequence, as t→ 0,

∥∇f(θ∗ + tu)−ΠH(∇f(θ∗ + tu))∥
∥∇f(θ∗ + tu)∥

→ 1.

Assuming that η < 1 and ϵ = 0 would imply that the above
limit is strictly less than one, which gives a contradiction.

C. Proof Sketch of Proposition 2

We omit a detailed proof due to space constraints, and note
that the proof follows from the known convergence analysis
of GD for smooth and strongly convex functions (see, e.g.,
[3]). More precisely, one can show that the LRGD updates
on f are identical to GD updates on the function projected to
the r-dimensional subspace H , which is strongly convex.
It takes κ log(∆0/ϵ) iterations of such updates to reach
an ϵ-optimal solution, each iteration costing r directional
derivative computations. Together with the cost of the initial
r full gradient computations to construct G, the total oracle
complexity is κr log(∆0/ϵ) + pr.
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