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Abstract— The paper introduces the first formulation of
convex Q-learning for Markov decision processes with function
approximation. The algorithms and theory rest on a relaxation
of a dual of Manne’s celebrated linear programming characteri-
zation of optimal control. The main contributions firstly concern
properties of the relaxation, described as a deterministic convex
program: we identify conditions for a bounded solution, and a
significant relationship between the solution to the new convex
program, and the solution to standard Q-learning. The second
set of contributions concern algorithm design and analysis: (i) A
direct model-free method for approximating the convex program
for Q-learning shares properties with its ideal. In particular, a
bounded solution is ensured subject to a simple property of the
basis functions; (ii) The proposed algorithms are convergent and
new techniques are introduced to obtain the rate of convergence
in a mean-square sense; (iii) The approach can be generalized
to a range of performance criteria, and it is found that variance
can be reduced by considering “relative” dynamic programming
equations; (iv) The theory is illustrated with an application to
a classical inventory control problem.

I. INTRODUCTION

The Q-learning algorithm introduced in [24] is a highly
celebrated approach to reinforcement learning, that has
evolved over the past decades to form part of the solution to
complex optimal control problems. It was originally designed
to compute the state-action value function (known as the
Q-function). This early work considered the discounted-
cost optimal control problem for Markov decision processes
(MDPs), in the tabular setting so that the function class spans
all functions.

The ultimate goal then and now is to approximate the
Q-function within a restricted function class, notably neural
networks, though much of the theory is restricted to a linearly
parameterized function class. Counterexamples show that
conditions on the function class are required in general, even
in a linear function approximation setting [1], [23]. Criteria
for stability based on sufficient exploration are contained in
the recent work [16].

Moreover, when convergent, the limit of Q-learning or
DQN solves a “projected Bellman equation” (see (11)), but
we know little about the implication of this conclusion. These
concerns have motivated new ways of thinking about how to
approximate a Q-function [16], [15].

The linear programming (LP) approach to optimal control
pioneered by Manne [13] has inspired alternative approaches
to RL and approximate dynamic programming. The earliest
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such work was found in [21], with error bounds appearing
in [4], [3], [9]. Model-free algorithms appeared in [14], [10],
[11] and [15, Ch. 5], where the term convex Q-learning
(CvxQ) was coined. In parallel came logistic Q-learning [2],
which solves a regularized dual of the LP in [10]. There
is however a gap in the settings: CvxQ was developed for
deterministic control systems, while logistic Q-learning treats
MDPs. Also, the stochastic setting is so far restricted to
tabular [2] or linearly factorable MDPs [18].

LP approaches are attractive because we obtain by design a
convergent algorithm. Moreover, the L∞-framework is more
likely to lead to an interpretable solution, since performance
bounds on the resulting feedback policy can be obtained
through Lyapunov function techniques [4], [9]. The main
contributions are summarized here:
i) Convex Q-learning for optimal control is introduced in
a stochastic environment for the first time. It is found that
the constraint region is bounded subject to a persistence of
excitation, generalizing the conclusions obtained recently
for deterministic optimal control problems [11]. Several
approaches to approximating the solution to the convex
program are proposed and analyzed.
ii) Prop. 2.4 implies a surprising connection between CvxQ
and standard Q-learning.
iii) Techniques are introduced to obtain the rate of conver-
gence in a mean-square sense—see Prop. 4.2.
Comparison with existing literature. The new algorithms
and some of the analysis might be anticipated from the theory
for deterministic control systems in [11]. Prop. 2.4 is new
(and was initially surprising to us) even in the deterministic
setting. The variance analysis surveyed in Prop. 4.2 is novel;
Complementary results appeared in [19], motivated by MDP
LP relaxations. Conclusions in this prior work is based on
i.i.d. samples of trajectories, designed to permit application of
Hoeffding’s inequality to obtain sample complexity bounds for
constraint-sampled LPs. The covariance formula in Prop. 4.2
is similar to what is anticipated from stochastic approximation
(SA) theory, even though CvxQ falls outside of standard SA
recursions —see discussion following the proposition.
Organization: Section II conditions foundations for the
CvxQ algorithms introduced in Section III. Theory for
convergence rates is contained in Section IV. The theory
is illustrated in Section V with an application to a classical
inventory control problem.

II. Q-LEARNING CONVEX PROGRAMS

The control model for which algorithm design and analysis
is based on the standard Markov Decision Process (MDP)

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 776



with finite state space X, finite input space U, and non-negative
cost function c : Z → R+, with Z := X× U.

The state process is denoted X = {X(k) : k ≥ 0}, the
input (or action) sequence U = {U(k) : k ≥ 0}, and the
pair process Z = (X,U). The controlled transition matrix
is denoted Pu for u ∈ U, so that P{X(k+1) = x′ | X(k) =
x, U(k) = u} = Pu(x, x

′); it acts on functions V : X → R
via PuV (x) :=

∑
x′∈X Pu(x, x

′)V (x′).
Choice of training input. Theory and analysis are couched in
a stationary setting: the input used for training is defined by
a randomized stationary policy, so that the joint process Z is
a time homogeneous Markov chain. It is assumed uni-chain,
with unique invariant pmf denoted ϖ1.

Theory is also restricted to the discounted-cost optimality
criterion, with discount factor γ ∈ (0, 1). The Q-function is
the state-action value function,

Q∗(z) := min
U

∞∑
k=0

γkE[c(Z(k))|Z(0) = z] , z = (x, u) ∈ Z

where the minimum is over all adapted input sequences. It is
the unique solution to the Bellman equation,

Q∗(z) = c(z) + γPuQ
∗(x) (1)

with Q(x) := minuQ(x, u). The optimal input is state
feedback Uk = ϕ∗(Xk), using the “Q∗-greedy” policy,

ϕ∗(x) ∈ argmin
u∈U

Q∗(x, u) , x ∈ X (2)

A. Convex programs for approximation
Convex Q-learning algorithm is motivated by the classical

LP characterization of optimal control problem due to Manne
[13]. The following is a simple corollary:

Proposition 2.1: For any pmf µ on Z, the Q-function Q∗

is a solution to the convex program,

max
Q

⟨µ,Q⟩

s.t. Q(z) ≤ c(z) + γPuQ(x) , z = (x, u) ∈ Z.
(3)

The proof follows from verification that Q ≤ Q∗ when-
ever Q is feasible, which is a standard Lyapunov function
argument.

This section is devoted to relaxations of (3) that are model-
based. The conclusions motivate model-free algorithms and
analysis in Section III.

To obtain a convex program we restrict to a linear family:
{Qθ(x, u) = θ⊺ψ(x, u) : θ ∈ Rd}, with ψ : X × U → Rd

the vector of basis functions, and based on an appropriate
approximation obtain a policy in analog with (2):

ϕθ(x) ∈ argmin
u∈U

Qθ(x, u) (4)

The following is suggested by (3),

max
θ

⟨µ,Qθ⟩ s.t. Qθ(z) ≤ c(z) + γPuQ
θ(x) (5)

This is not practical in typical applications because it requires
knowledge of the model, and there are so many constraints:
one for each z = (x, u) ∈ Z.

1We often obtain faster convergence when using an epsilon-greedy policy;
an explanation may be found through an extension of [16].

Galerkin relaxations Practical algorithms are obtained by
expressing the constraints of (5) in sample path form: if a
vector θ ∈ Rd is feasible, then the following inequality is valid
for any adapted input sequence: with Fk = σ(Z(i) : i ≤ k)
the filtration generated by the observations,

E
[
Dk+1(θ)|Fk

]
≥ 0 , for all k ≥ 0,

Dk+1(θ) :=−Qθ(Z(k)) + c(Z(k)) + γQθ(X(k + 1))
(6)

A relaxation of (5) is obtained by specifying a sequence of
non-negative d+-dimensional random vectors {ζk : k ≥ 0},
with d+ > d. Denote g(θ):=Eϖ

[
−Dk+1(θ)ζk

]
. A relaxation

of (5) is then defined by

max
θ

⟨µ,Qθ⟩ s.t. g(θ) ≤ 0. (7)

An equivalent LP formulation is required for analysis. Let
Φ denote the set of all deterministic policies, and for each
ϕ ∈ Φ and k ≥ 0 denote

Dk+1(θ,ϕ) = c(k) + θ⊺{−ψ(k) + γψϕ
(k+1)} , (8)

in which the following conventions will be used to save space
when necessary: c(k) := c(Z(k)), and

ψ(k) := ψ(X(k), U(k)) , ψϕ
(k) := ψ(X(k),ϕ(X(k)))

Similar to (7), we denote g(θ,ϕ) :=Eϖ

[
−Dk+1(θ,ϕ)ζk

]
for

each ϕ ∈ Φ.
Proposition 2.2: Any solution to the Q-learning convex

program (7) is also a solution to the linear program,

max
θ

⟨µ,Qθ⟩ s.t. g(θ,ϕ) ≤ 0 , ϕ ∈ Φ , (9)

with identical optimal values.

Proof. For any ϕ ∈ ϕ, we have

Eϖ

[
Dk+1(θ,ϕ)ζ

i
k

]
≥ Eϖ

[
Dk+1(θ)ζ

i
k

]
, 1 ≤ i ≤ d+

The proof is completed on recognizing that this lower bound
is achieved with ϕ = ϕθ. ⊓⊔

Let Θ = {θ ∈ Rd : g(θ) ≤ 0} denote the constraint set
for (7). It is always non-empty since it contains the origin.
Prop. 2.3 tells us that this set is bounded if the vectors
{ψ(k) : 0 ≤ k} are not restricted to any half space in Rd, for
almost every initial condition [ϖ]. See [12] for a proof.

Proposition 2.3: Suppose Pϖ{v⊺ψ(k) ≥ 0} < 1 for any
non-zero v ∈ Rd. Then, Θ is compact.

B. Comparison with Q-learning

The standard Q-learning algorithm is expressed,

θk+1 = θk + αk+1Dk+1(θk)ζk (10)

where {ζk} is the sequence of d-dimensional eligibility
vectors, typically taken as ζk = ∇θQ

θ(Z(k)) (which is ψ(k)

with linear function approximation), and {αk+1} the step-
size sequence. When convergent, the limit θ∗ solves the so-
called projected Bellman equation (also known as a Galerkin
relaxation),

Eϖ

[
Dk+1(θ

∗)ζik
]
= 0 , 1 ≤ i ≤ d , (11)
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where the expectation is in steady-state [22], [15].
Prop. 2.4 that follows shows that (7) also solves a Galerkin

relaxation. The proof follows from Prop. 2.2, and recognition
that in (9) we may restrict to basic feasible solutions (BFS).

Proposition 2.4: If the convex program (7) admits at least
one optimizer, then there is an optimizer θ∗ together with
indices {i1, . . . , id} ⊂ {1, . . . , d+} satisfying

Eϖ

[
Dk+1(θ

∗)ζiℓk
]
= 0 , 1 ≤ ℓ ≤ d . (12)

III. ALGORITHMS

In Convex Q-learning, the function g : Rd → Rd+ in (7)
is replaced by its approximation via Monte Carlo

gN (θ) :=
1

N

N−1∑
k=0

[−Dk+1(θ)ζk].

Convex Q-learning Given the data {Z(k) : 0 ≤ k < N}
and a pmf µ on Z, solve

max
θ

⟨µ,Qθ⟩ s.t. gN (θ) ≤ 0 (13)

As we increase the time horizon N , the variance of the
solution to (13) decreases, but the complexity of the linear
program increases. The batch algorithms described next are
designed to reduce complexity.

A. Batch algorithms

The two approaches below begin with the specification
of intermediate times T0 = 0 < T1 < T2 < · · · < TB−1 <
TB = N . The parameter will be updated at these times
to obtain {θn : 0 ≤ n ≤ B}, initialized with θ0 ∈ Rd.
Also required are two positive step-size sequences satisfying
limn→∞ αn/βn = 0.

The empirical distribution over the nth batch of observa-
tions is denoted πn. Hence, for any vector-valued function,

⟨πn, g⟩ =
1

Tn+1 − Tn

Tn+1−1∑
k=Tn

g(Φk)

In view of (7), we denote, for any θ ∈ Rd,

⟨πn,D(θ)ζ⟩ := 1

Tn+1 − Tn

Tn+1−1∑
k=Tn

Dk+1(θ)ζk

We introduce a convex regularizer Rn, so that the objective
function at stage n of the algorithm becomes

Γn(θ) :=−⟨µ,Qθ⟩+Rn(θ)

and Γn(θ, λ) :=Γn(θ)−⟨πn,D(θ)ζ⊺λ⟩ for λ ∈ Rd+

+ . Updates
of λ are obtained to approximate the Lagrange multiplier
associated with (7). Given parameter estimates {θn : n ≥ 0},
obtain a sequence of vectors in Rd+ via

vn+1 = vn + βn+1

[
⟨πn+1,D(θn+1)ζn⟩ − vn

]
The sequence of Lagrange multiplier estimates are obtained
via the recursion λn+1 = [λn+αn+1v

n+1]+, with λ0 ∈ Rd+

+

an arbitrary initial condition and [x]+ = max{0, x}. Below
are two choices for parameter updates:

Batch Convex Q-learning implicit update

θn+1 = argmin
θ

{
Γn(θ, λn) +

1
αn+1

1
2∥θ − θn∥2

}
It is called implicit because the solution is obtained via the
fixed point equation,

θn+1 = θn − αn+1∇θΓn(θ, λn)
∣∣∣
θ=θn+1

(14)

The explicit update is obtained by introducing a one-step
delay on the right-hand side.

Batch CvxQ explicit update

θn+1 = θn − αn+1∇θΓn(θ, λn)
∣∣∣
θ=θn

(15)

Assumptions on the regularizer are required to ensure
convergence. For convenience we take

Rn(θ) = κ{[⟨πn,D(θ)ζ⊺λ⟩] }2 + ε∥θ∥2 (16)

with κ, ε > 0 and [x]− := max(0,−x). Let R(θ) denote its
steady-state mean, and

Γ̄(θ, λ) :=−⟨µ,Qθ⟩ − ⟨ϖ,D(θ)ζ⊺λ⟩+R(θ)

Proposition 3.1: Consider either algorithm (implicit or
explicit). The algorithm is convergent to a pair (θ∗, λ∗) that
solves the saddle point problem: θ∗ = argminθ Γ̄(θ, λ

∗),
λ∗ = argmaxλ minθ Γ̄(θ, λ).

The proof is a standard stochastic approximation analysis,
in which the ODE approximation is precisely the primal-dual
flow considered in [20], [7] and their references.

B. Relative Convex Q-Learning

Given any pmf ω on Z, denote H∗ := Q∗ − ⟨ω,Q∗⟩.
Since we are subtracting a constant, we have ϕ∗(x) =
argminu∈UH

∗(x, u). The advantage of estimating H∗ is that
it remains bounded for 0 < γ < 1 [6]. The extension of the
preceding theory to this relative Q-function is straightforward,
beginning with

Proposition 3.2: For any positive pmfs µ and ω on Z and
positive scalar δ > 0, H∗ solves the convex program,

max
H

⟨µ,H⟩
s.t. H(z) ≤ c(z) + γPuH(x)− δ⟨ω,H⟩ ,

for every z = (x, u) ∈ Z.

(17)

This motivates one version of relative convex Q-learning:

Relative CvxQ Given the data {Z(k) : 0 ≤ k < N} and
probability measures µ and ω on Z, solve

max
θ

⟨µ,Hθ⟩ s.t. gN (θ) ≤ 0 (18)

where gN is defined as in (13), with Dk+1 replaced by the
relative temporal difference:

D̂k+1(θ) :=−Hθ(Z(k)) + c(Z(k)) + γHθ(X(k + 1))

− δ⟨ω,Hθ⟩.

Formulation of batch algorithms is also straightforward.
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IV. RATES OF CONVERGENCE

We consider here the rate of convergence for the basic
algorithm (13), whose solution is denoted θN . Subject to
mild conditions we establish that θN → θ∗ with probability
one as N → ∞, where θ∗ solves (7); one assumption is that
the solution is unique. It is more challenging to establish
bounds on the mean-square error (MSE) E[∥θ̃N∥2], with
θ̃N = θN − θ∗. In fact, we have not been able to find a
deterministic N0 for which E[∥θ̃N∥2] < ∞ for N ≥ N0.
We fix r > 0 satisfying |θ∗i | < r for each i, and let θrN
denote the L∞ projection of the solution of (13) to the region
Θr = {θ ∈ Rd : |θi| ≤ r , 1 ≤ i ≤ d}. We set θrN = 0 if the
convex program (13) is unbounded or infeasible.

While the sequence {θrN} cannot be represented as the
output of any recursive algorithm, key results from stochastic
approximation theory would suggest that the MSE should
decay as O(1/N). We verify that this rate of convergence
holds, and obtain finer results:

NE[θ̃rN (θ̃rN )⊺] = Σθ +O
(

1√
N

)
√
Nθ̃rN

dist−→ N(0,Σθ) , N → ∞
(19)

where the convergence is in distribution in the second limit,
and θ̃rN = θrN − θ∗. The matrix Σθ ≥ 0 is identified in
Prop. 4.2 after a few preliminary results.

For each θ ∈ Rd and ϕ ∈ Φ denote

gN (θ,ϕ) :=− 1

N

N−1∑
k=0

gk(θ,ϕ) ,

where gk(θ,ϕ) = −Dk+1(θ,ϕ)ζk (recall (8)).
Proposition 4.1: Any solution to the convex program (13)

is also a solution to the linear program

max
θ

⟨µ,Qθ⟩
s.t. giN (θ,ϕ) ≤ 0 , 1 ≤ i ≤ d+, ϕ ∈ Φ .

(20)

Moreover, a vector θ ∈ Rd is a BFS if and only if the
following two properties hold: 1. there is a set Iθ

+ =
{j1, . . . , jd} ⊂ {1, . . . , d+} such that

giN (θ,ϕθ) = 0 , i ∈ Iθ
+

< 0 , i ̸∈ Iθ
+

where ϕθ is the Qθ-greedy policy, and 2. There is no other
Qθ-greedy policy: if ϕ′ ∈ Φ satisfies

ϕ′(x) ∈ argmin
u

Qθ(x, u) , for all x ∈ X,

then ϕ′(x) = ϕθ(x) for all x.

Proof. The proof of the LP characterization (20) is identical
to the proof of Prop. 2.2. The characterization of a BFS is a
consequence of the proof: By definition, if θ is a BFS then
there are exactly d pairs {ϕi, ji : 1 ≤ i ≤ d} for which the
constraints are tight, meaning gjiN (θ,ϕi) = 0. We also have
gjiN (θ,ϕθ) ≥ gjiN (θ,ϕi) = 0, so that by feasibility we must
also have gjiN (θ,ϕθ) = 0 for each i. Since there are exactly
d active constraints, we must have ϕθ = ϕi for each i. ⊓⊔

Prop. 4.1 provides the ingredients required to establish
convergence.

It is assumed that θ∗ is unique, from which it follows that
it is also a BFS. We let I+ = {j1, . . . , jd} denote the set of
d indices for which giN (θ,ϕθ) = 0 when θ = θ∗ and i ∈ I+.

A d-dimensional stochastic process WN is constructed as
an average,

WN =
1

N

N∑
k=1

Wk

in which the d-dimensional stochastic process {Wk} is
obtained in the following steps. First, construct a d×d matrix
A+

k , whose i, j element is given by

[A+
k ]i,j :=

[
−ψ(k−1) + γψθ∗

(k)

]
j
ζjik−1

and let Ā+ = Eϖ

[
A+

k ], where the expectation is in steady-
state. Let β+

k be the d-dimensional vector whose ith compo-
nent is equal to c(k−1)ζ

ji
k−1, whose steady state mean is the

d-dimensional vector β̄+ = Eϖ[β+
k ]. We then take

Wk = β+
k − β̄+ − [A+

k − Ā+]θ∗

This is analogous to the “disturbance sequence” that arises in
variance analysis of standard Q-learning algorithms [5], [15].

Proposition 4.2: Suppose that the linear program (20) has
a unique optimizer θ∗. Then, lim

N→∞
θrN = lim

N→∞
θN = θ∗

with probability one, and (19) holds.
The covariance matrix may be expressed

Σθ = [Ā+]−1ΣW ([Ā+]−1)⊺ ,

with ΣW = lim
N→∞

NE[WN (WN )⊺]

Invertibility of Ā+ is a consequence of the fact that θ∗ is
a BFS.

The form of the covariance Σθ is identical in form to
the minimal covariance identified in the averaging theory
of Polyak and Ruppert for stochastic approximation (see
historical notes in [15, Ch. 8]). It is likely that it is also
minimal here (the batch algorithms may satisfy a CLT, but
the covariance matrix will dominate Σθ).

Proof of Prop. 4.2 (main concepts). The full proof follows
from the more general Prop. A.1 in [12]. We present here
the main ideas through a heuristic, which is conveniently
explained for the more general setting of convex constraints2.

Consider the minimization of a linear objective v⊺θ subject
to convex constraints gN (θ) ≤ 0, and let θ∗ denote the
minimizer for N = ∞: as in Prop. 4.2 there is a limiting
function g, and θ∗ minimizes v⊺θ subject g(θ) ≤ 0. The
heuristic is based on the convex program

θ∗N = argmin v⊺θ subject to g(θ) ≤ b∗N (21)

with b∗N := g(θ∗) − gN (θ∗). The remainder of the proof
is based on the fact that E[∥b∗N∥2] = O(1/N), along with
sensitivity theory for convex programming.

2Extension of variance theory to general convex constraints may be
valuable when relaxing the assumption that U is finite, or when convex
regularizers are introduced.
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In analysis of (21) the definition of the set I+ remains the
same, characterized in terms of the dual under mild conditions.
Let λ∗ ∈ Rd+ denote the Lagrange multiplier associated with
the optimizer θ∗. If sensitivity is strictly positive for active
constraints then I+ = {i : λ∗i > 0}. ⊓⊔
Example To illustrate the CLT in a simple setting, consider
a quadratic program on R2 with 10 constraints: θ ∈ R2, g :
R2 → R10, and gN (θ) = N−1

∑N−1
k=0 g(θ+∆k), with {∆k}

i.i.d., N(0, I). The function g : R2 → R10 is the quadratic
g(ϑ) = (a⊺ϑ)⊙ (a⊺ϑ) + b⊺ϑ− 1, where a, b ∈ R2×10, 1 is
a vector of ones, and ⊙ denotes element-wise multiplication.

Three quadratic programs were constructed by replacing the
constraint in (21) with gN (θ) ≤ 0, g(θ) ≤ 0, and gN (θ) ≤
b∗N . The solutions to each of these quadratic programs are
denoted θN , θ∗, and θ∗N respectively.

The values of a, b, and v were obtained by sampling
independently from a normal distribution. The results that
follow show typical results for one set of values.

The dual variable λ∗ associated with θ∗ was also obtained.
Exactly two of ten inequality constraints were found to be
tight, and exactly two values of λ∗ were strictly positive.

The theoretical Gaussian density was compared to his-
tograms obtained from repeated independent experiments. In
each of 100 runs, the corresponding errors were recorded:√
Nθ̃∗N :=

√
N [θ∗N − θ∗] and

√
Nθ̃N :=

√
N [θN − θ∗]. See

[12] for histograms: CLT approximations are good even for
N = 104, and nearly perfect for N ≥ 106.

V. APPLICATION TO INVENTORY CONTROL

We survey here results from experiments on a classical
inventory control problem focusing on two topics: (i) Stability
and consistency of CvxQ and relative CvxQ; (ii) Comparison
of convergence rates with Q-learning and CvxQ.3

Preliminaries Consider the inventory model with inventory
level X(k) ∈ X = R (a negative value indicating backlog),
depletion rate β > 0, and stocking decision U(k) ∈ U =
{0, 1}. The MDP model has cost defined by parameters
c+, c− > 0 and evolution equation,

X(k + 1) = X(k)− [β +W (k + 1)] + U(k)

c(x, u) = max(c+x,−c−x) , x ∈ R ;
(22a)

{W (k)} is i.i.d. with zero mean and finite variance σ2
W .

An optimal policy is of the threshold form:

ϕ(x; r) = 1{x ≤ −r}. (23)

For small β > 0 the optimal threshold is approximated
by r† := log(1 + c+/c−)/ϱ with ϱ the positive solution to
σ2
W ϱ2/2− βϱ− γ = 0. See [17, Ch. 7] for background.
We set γ = 0.99, β = 0.1, c− = 1, c+ = 10 and σ2

W = 1
in the experiments that follow, giving r† ≈ 8.77.

3The experiments go beyond the theory because the state space is not finite.
We believe that numerical results are valuable for testing the boundaries of
the theory. We know from experience that some disagree, so we respectfully
ask the reviewers to accept our preferences.
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Fig. 1: Numerical Estimation of the Optimal Inventory Level.

Numerical Estimation of r̄∗. To evaluate the results obtained
using CvxQ we estimated the optimal threshold via Monte-
Carlo, evaluating a range of 100 values of r evenly spaced
in the interval [0, 10]. We used common randomness for the
entire range of thresholds, meaning that we constructed a
single i.i.d. family {W i

k : 1 ≤ i ≤ N, 1 ≤ k ≤ N}, with
N = 2× 104; in each experiment we chose initial condition
Xi(0) = 0. For each threshold r we obtain the sample path
{Xi(k; r) : 0 ≤ k < N}, N = 104, and from this an estimate
of the discounted total cost by truncating and averaging:

Ĵ(x; r) =
1

N

N∑
i=1

N−1∑
k=0

γkc(Xi(k; r)) , r ∈ [0, 10] .

The plots in Fig. 1 show results for two choices of
disturbance, Wk ∼ N(0, 1) and Wk ∼ Exp(1)− 1. In each
case, the value of Ĵ(0; r) at r† closely matches the empirical
minimum r∗.

A. Algorithm Comparisons

CvxQ, relative CvxQ, Q-learning, and relative Q-learning
were applied to approximate the optimal policy under the
same modeling assumptions used to obtain the plots in Fig. 1.

Details of Implementation Theory surveyed in [17, Ch. 7]
tells us that the optimal value function J∗(x):=minuQ

∗(x, u)
is convex, and is approximated by c(x)/(1− γ) for large x.
This motivated the choice of 8-dimensional linear function
class {Qθ = θ⊺ψ : θ ∈ Rd} using the continuously differen-
tiable functions ψ(z) = [ψ′(x)1{u = 0};ψ′(x)1{u = 1}]⊺
where ψ′(x) = [ξ1(x); ξ2(x);x; 1], with ξi(x) = (|x| +
(e−δi|x| − 1))1{x ≥ 0}/δi. The values δ1 = 0.5, δ2 = 0.1,
gave good results.

The following input sequence was used for training:

ϕ(u|x) := P (U(k) = u|X(k) = x)

= εPE(u) + (1− ε)1{u = ϕ(x)}
with ε = 0.9, PE uniform on U, and ϕ a threshold policy
that gave good performance.

We chose {ζk} in (13), (18) to be the indicator functions:

ζik = 1{xi ≤ X(k) ≤ xi+1} , 1 ≤ i ≤ d+

We found that choosing xi to be evenly spaced in the range
[−28, 28] gave good performance. The results that follow
applied this approach using d+ = 200.

Several algorithms were tested: Q-learning using the
recursion (10) with ζk = ψ(k) and constant step size αk+1 =
10−3; relative Q-learning algorithm, defined by replacing
Dk+1(θk) with D̂k+1(θk) in (10); CvxQ (13) and relative
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Fig. 2: Performance Comparison between CvxQ, CvxRQ Q-learning and relative Q-learning.

CvxQ (18) using the convex solver from the Python library
CVXPY.

Independent experiments were conducted with common
disturbance {W (k)} in each run (using the model (22a)).
In each of M = 100 independent runs with time horizon
N = 104, the following data was collected: the final parameter
estimate θm, and the estimate rm of the optimal threshold,
defined as the minimal solution Qθm

(x, 0) ≤ Qθm

(x, 1) for
all x ≥ rm. Selected results are illustrated in Fig. 2. Shown
on the left hand side are histograms of the relative error
{[rm − r∗]/r∗ : 1 ≤ m ≤ M}. We see that relative CvxQ
offers the lowest variance in these experiments.

The right hand side of Fig. 2 shows histograms of
components of the scaled parameter error,

√
n[θ∗m(i)− θ(i)]

for several i, with θ the average of θ∗m. Only results for the
CvxQ algorithms are shown. The CLT appears to hold, with
relative CvxQ giving much lower variance.

VI. CONCLUSIONS

This paper lays out new approaches to reinforcement
learning design and analysis. Important gaps include the
augmentation of CvxQ to impose bounds on performance of
resulting policies, techniques for analysis in non-stationary
settings (motivated by the need for more efficient exploration),
and development of algorithms for more advanced function
approximation architectures (e.g., neural networks and RKHS).
It is important to improve the numerical performance of CvxQ,
build bridges with logistic Q-learning and recent approaches,
such as the interacting particle approach of [8], and find ways
to make comparisons in terms of both training efficiency and
policy performance.
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[22] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2010.

[23] J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale
dynamic programming. Mach. Learn., 22(1-3):59–94, 1996.

[24] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,
King’s College, Cambridge, Cambridge, UK, 1989.

781


