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Abstract— Implementing a closed-loop irrigation system re-
quires an accurate estimation of soil moisture given a limited
number of sensors. However, the main challenge lies in the
potential high dimensionality (104-108) of the agro-hydrological
model used for water dynamics, which is modeled based on
the nonlinear Richards equation. To address this challenge, we
propose a state estimation method for large-scale agricultural
fields. Our approach uses an error-triggered adaptive model
reduction utilizing a trajectory-based clustering technique. An
adaptive extended Kalman filter (EKF) is designed accordingly
based on the adaptive reduced model. We apply this to an
actual agricultural field and conduct extensive simulations to
demonstrate its effectiveness and applicability.

I. INTRODUCTION

Agriculture exerts a significant influence on global fresh-
water and land usage decisions, with increasing popula-
tion growth and climate change exacerbating water scarcity.
Notably, agricultural irrigation accounts for nearly 70% of
annual freshwater consumption [1], with the average water-
use efficiency of irrigation methods being only 50-60% [2].
FAOSTAT [3] data shows that agriculture utilizes 38% of the
world’s land surface, with one-third being cropland. As the
global population continues to expand, the demand for crop-
land intensifies, which further leads to more irrigation water
consumption. Therefore, enhancing water-use efficiency in
the agricultural sector is an urgent priority for addressing
the water crisis.

Currently, open-loop irrigation methods are commonly
used in agriculture, where irrigation policies are established
based on empirical or heuristic knowledge rather than real-
time feedback from the field. This can result in over or
insufficient irrigation, which can be avoided by implement-
ing closed-loop irrigation. Closed-loop irrigation takes into
account real-time soil moisture information from the field
and determines the necessary water quantity, leading to sig-
nificant improvements in water-use efficiency [4]. However,
due to the limited availability of soil sensors, soil moisture
can only be monitored in certain locations of a large field.
This limited knowledge of soil moisture, combined with
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the high dimensionality of the agro-hydrological system,
presents two major challenges. To address these challenges,
model reduction-based state estimation can be an effective
approach.

Various state estimation algorithms have been developed,
including those based on model reduction. For example,
in [5], a state estimation method for wastewater treatment
plants using proper orthogonal decomposition (POD) model
reduction was proposed. In another study [6], a reduced
model was developed by selecting relevant inputs and outputs
and the method was applied to estimate states of a reactor-
separator system. Pertaining to soil moisture estimation of
large-scale agro-hydrological systems, a structure-preserving
cluster-based model reduction approach that preserves essen-
tial dynamic properties and physical topology, in contrast
to POD, was proposed in [7]; and in [8], an adaptive
model reduction method was presented and a moving horizon
estimator (MHE) was designed. The model adaptation was
performed every sampling time. This strategy together with
the MHE estimation scheme made the method’s computa-
tional complexity high.

In this work, we present an error-triggered adaptive model
reduction method for state estimation of large-scale agro-
hydrological systems. In the proposed approach, model
adaptation is performed when the current reduced model
is not sufficient to capture the dynamics of the system. To
obtain a reduced model, state trajectories are first generated
using irrigation information and rain forecast. Subsequently,
an unsupervised clustering method is employed to obtain
a projection-based reduced model. At each sampling time,
the accuracy of the reduced model is evaluated using a
moving horizon error indicator, which triggers online model
re-identification when there is a significant deviation between
the reduced model and the Richards equation. The purpose
of the re-identification of the reduced model is to minimize
the model-plant mismatch. An adaptive EKF is then designed
based on the reduced model. Finally, the performance of the
proposed method is compared to an EKF designed based on
the Richards equation and an EKF based on a non-adaptive
reduced model.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A. System description

An agro-hydrological system represents the hydrological
cycle of soil, crop, atmosphere, and water. The water infil-
tration in soil under the action of capillary and gravitational
forces is characterized by the Richards equation [10]. A
diagram of the agro-hydrological system is shown in Figure
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Fig. 1. Schematic of an agro-hydrological system [9]

1 and the field is facilitated with a center-pivot irrigation
system that rotates in a circular motion. To capture the
movement of the center pivot, the Richards equation in
cylindrical coordinate form is as follows [9]:

∂θ

∂ t
= c(h)

∂h
∂ t

=
1
r

∂

∂ r

[
rK(h)

∂h
∂ r

]
+

1
r

∂

∂θ

[
K(h)

r
∂h
∂θ

]
+

∂

∂ z

[
K(h)

(
∂h
∂ z

+1
)]

−S (h,z) (1)

where h [m] is the field water pressure head, θ [m3m−3] is
the field water soil moisture content, c(h) [m−1] is the soil
water capacity, K(h) [ms−1] is the hydraulic conductivity,
r [m], θ [rad], z [m] are the radial, azimuthal, and axial
spatial variables, respectively, and S(h,z) [m3m−3s−1] is the
sink term. The reader may refer to [8] for more details.

B. Problem formulation

We consider a continuous-time state-space model through
the spatial discretization of equation (1) as follows:

ẋ(t) = f (x(t),u(t)) (2)

where x(t) ∈ RNx denotes the state vector of the pressure
head value of size Nx at each discretized node and u ∈ RNu

represents the input vector of length Nu irrigation quantity
at each discretized node at the surface. f defines the non-
linear system dynamics. At any given time, the center pivot
irrigation system can only irrigate the nodes aligned with it,
leaving the rest of the field unirrigated.

In this work, we assume the use of tensiometer sensors
to measure the soil pressure head values at some selected
nodes of the field at each sampling time. This considers the
soil moisture observations at the surface as well as at vari-
ous rooting depths. The measurements of these tensiometer
sensors can be modeled as follows:

y(t) =Cx(t)+ v(t) (3)

where y(t) ∈RNy denotes the measured outputs, C is a Ny ×
Nx matrix indicating the relation between x and the outputs
and v denotes measurement noise. It is assumed that Ny ≪Nx
but still provides observability of the entire x.

Fig. 2. The proposed model reduction and state estimation scheme

Our objective is to estimate the soil pressure head x at the
discrete nodes throughout the field by utilizing the measure-
ment y. It is assumed that y is sampled with a sampling time
∆; that is, y(tk) with tk = k∆, k = 0,1, . . ., are available. This
is a standard state estimation problem except that the size of
x can be very large. The large dimensionality of x typically
leads to two challenges: (a) computational complexity of the
model and the associated estimation schemes and (b) low
degree of observability of x when the number of measured
outputs is small. We propose to address these challenges by
using an error-triggered adaptive model reduction method
and design estimators based on the reduced model.

III. PROPOSED ADAPTIVE STATE ESTIMATION

In this section, we present the error-triggered adaptive
model reduction method and the associated extended Kalman
filter design. Figure 2 illustrates the essential steps in-
volved in the proposed approach. The state-space model of
Richards’ equation (2) serves as the original model, and an
error metric eL is evaluated at each sampling time tk to assess
the accuracy of the reduced model against the original model
by comparing their predictions of the system evolution. The
metric eL will be introduced later in equation (13). If the
error metric exceeds a pre-determined threshold the set for
the triggered criterion, a new reduced model is created to
replace the previous reduced model. Soil moisture estimation
of the entire field is done based on the reduced model and
field measurements. The main components of the proposed
approach are explained in the remainder of this section.

A. Adaptive model reduction

The implementation involves identifying a reduced model
used for soil moisture estimation. At each sampling time, the
metric eL is computed, and if it surpasses the threshold the,
the reduced model is re-identified. For model identification
initially or upon eL surpassing the threshold, identical steps
are followed, outlined as follows:

Step 1: state trajectory generation: At a sampling time tk,
when the re-identification of the reduced model is triggered,
the state trajectory of the original system (1) is generated.
Specifically, the current state estimate at sampling time tk is
used as the initial condition, and the equation (2) is simulated
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with prescribed irrigation actions for total sampling intervals
of N fd . The trajectory of the state over the N fd steps is
denoted as Xm as follows:

Xm = [x(tk) x(tk+1) . . . x(tk+N f d )]
T

where Xm ∈ RN f d×Nx is the state snapshot matrix for the
mth model reduction assuming that there were m−1 model
changes occurred before tk. The reduced models that are
generated during this process are expected to perform well
for at least N fd sampling intervals.

Step 2: clustering and reduced model generation: In this
step, the new reduced model is created based on the snapshot
matrix Xm. Each column in Xm indicates the trajectory of
a state element or a node xi where i (i = 1, . . . ,Nx). The
purpose of the clustering is to merge similar trajectories into
one cluster. Instead of the state element xi, a cluster will be
considered as a state element of the reduced model. In this
work, the agglomerative hierarchical clustering [11] is used.
Initially, individual state elements are treated as clusters,
and subsequently, the distances between these clusters are
computed. Then, the clusters are merged such that the
average distance is smaller than a threshold thC. The average
distance between two clusters is calculated as follows:

D(p,q) =
1

npnq

np

∑
i=1

nq

∑
j=1

d(xpi,xq j)

where p and q denote the two clusters, np, nq are the sizes
of the clusters of p and q respectively, xpi and xq j denote
data points within clusters p and q respectively.

Consider that after clustering, there are rm clusters. Denote
C(m) = {C(m)

1 ,C(m)
2 , . . . ,C(m)

rm } as the collection of clusters for
the mth model reduction. The clusters satisfy the following
two properties: i) C(m)

i ∩C(m)
j = Φ and ii) C(m)

1 ∪C(m)
2 ∪ . . .∪

C(m)
rm = Xm.
The mth reduced system is constructed based on the

Petrov-Galerkin projection framework [12]. For the Petrov-
Galerkin projection method, the projection matrix is required.
The projection matrix (U (m) ∈RNx×rm ) is generated based on
the clusters (C(m)) and the elements of U (m) are expressed
as follows:

U (m)
i, j =

{
wi, if point i ∈C(m)

j
0, else

and wi is determined as follows:

wi = 1/||αi||, αi = ET
i α

where α = [1, . . . ,1]T ∈ RNx , ||αi|| is the L2 norm of αi,
Ei = eCi ∈ RNx×NCi (NCi is the size of Ci) denoting a matrix
whose columns are e j’s and each e j is the j-th column of
the identity matrix of size RNx×Nx .

The mth reduced model of (2) is expressed as follows:

ξ̇
(m)(t) = f (m)

r (ξ (m)(t),u(t)) (4)

where f (m)
r =U (m)T f and ξ (m)(t) =U (m)T x(t). Note that the

predicted state x from (2) can be approximated based on

Fig. 3. Information exchange between reduced models

mapping x̃(t) = U (m)ξ (m). After carrying out the numerical
discretization, the discrete-time reduced-order model is as
follows:

ξ
(m)(tk+1) = f (m)

rd (ξ (m)(tk),u(tk)) (5)

where frd is the discrete-time function of the reduced model.
Note that when transitioning from one reduced model to
another, the order of the new reduced model may differ from
the order of the previous reduced model. To ensure a smooth
transition between reduced models, the state information of
the previous reduced model is mapped back to the full state
and then the full state is projected to the new reduced model
using the new projection matrix illustrated in Figure 3.

B. Adaptive extended Kalman filter

In this work, we design an estimator based on the adaptive
model in the framework of extended Kalman filter (EKF).
EKF is a commonly used filtering method for state estimation
of nonlinear systems, which involves successive linearization
of the nonlinear system. The advantage of using EKF is its
computational efficiency [13].

In the adaptive reduced-order model framework, the stan-
dard EKF cannot be applied. To address this issue, we
develop an adaptive EKF based on the adaptive model.
Let us consider the discrete reduced model (5) with the
corresponding output equation as follows:

ξ
(m)(tk+1) = f (m)

rd (ξ (m)(tk),u(tk))

y(tk) =C(m)
r ξ

(m)(tk)+ v(tk)
(6)

where v(tk) denotes the measurement noise at time k, C(m)
r =

CU (m).
Adaptive EKF design: There are two steps in EKF:

prediction step and update step. At the sampling time tk,
in the prediction step, the adaptive EKF first predicts the
reduced state at tk based on the state estimate at tk−1 and the
reduced model as follows:

ξ̂
(m)(tk|k−1) = f (m)

rd (ξ̂ (m)(tk−1),u(tk−1)) (7)
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where ξ̂ (m)(tk|k−1) represents the prediction of the reduced
state at time instant tk based on the estimated reduced state
ξ̂ (m)(tk−1). The evolution of the variance of the process noise
is also propagated based on the reduced model:

P(m)
r (tk|k−1) = A(m)

d (tk−1)P
(m)
r (tk−1)A

(m)
d (tk−1)+Q(m)

r (8)

where P(m)
r and Q(m)

r are the reduced covariance matrices
for the state and process noise respectively, and A(m)

d (tk−1) =
∂ f (m)

rd
∂ξ (m)

∣∣∣∣
ξ̂ (m)(tk−1)

is the state-transition matrix obtained by lin-

earizing the nonlinear reduced model at the estimated state
at tk−1. Note that if P and Q are the covariance matrices
of the state and process disturbance for the original system,
P(m)

r =U (m)T PU (m) and Q(m)
r =U (m)T QU (m).

At the sampling instant tk, once the measurement y(tk)
is available, it is used to update the predictions generated
in the prediction step. This is the update step of the EKF.
In the update step, an estimate of the current reduced state
ξ̂ (m)(tk) is obtained based on the predicted value ξ̂ (m)(tk|k−1)
as follows:

ξ̂
(m)(tk) = ξ̂

(m)(tk|k−1)+K(m)
r (tk)(y(tk)−C(m)

r ξ̂
(m)(tk|k−1))

(9)
where ξ̂ (m)(tk) represents the estimated reduced state at time
tk, and K(m)

r (tk) is the correction gain used to minimize
a posteriori error covariance based on the measurement
innovation y(tk)−C(m)

r ξ̂ (m)(tk|k−1). The correction gain can
be determined as below:

K(m)
r (tk) = P(m)

r (tk|k−1)C
(m)T
r (R+C(m)

r P(m)
r (tk|k−1)C

(m)T
r )−1

(10)
where R is the covariance matrix of the measurement noise.
The state covariance matrix is also updated as follows:

P(m)
r (tk) = (Irm −K(m)

r (tk)C
(m)
r )P(m)

r (tk|k−1) (11)

where P(m)
r (tk) is the posteriori error covariance matrix of

the estimation error at time tk and Irm is an identity matrix
of the mth reduced model with size rm. It is noted that P(t0),
Q, and R are three tuning parameters for the EKF. The state
estimate at the time tk is ˆ̃x and evaluated from:

ˆ̃x(tk) =U (m)
ξ̂
(m)(tk). (12)

Information exchange during model transition: When
there is a model update, the information in the EKF based
on the previous model should be smoothly transferred to
the EKF based on the new reduced model. The information
transfer is performed by mapping all the information back to
the full state system and then projecting to the new reduced
model. Consider that we need to transfer the information of
the EKF based on the mth reduced model to the EKF based
on the (m+1)th model. The following steps are performed:

• Mapping the estimated reduced state and state covari-
ance to the full order state and covariance: ˆ̃x=U (m)ξ̂ (m),
P =U (m)P(m)

r U (m)T .
• Projecting the full order information to the new re-

duced model using the new projection matrix: ξ̂ (m+1) =

U (m+1)T ˆ̃x, P(m+1)
r =U (m+1)T PU (m+1).

C. Design of the error metric eL

The reduced model update or re-identification is triggered
by an error metric eL, which is evaluated every sampling
time. Specifically, at tk, the estimated state ˆ̃x(tk) is considered
as the initial condition. The trajectory of the system state over
the next N fd steps is predicted both based on the original
model of (2) and the current reduced model. It is assumed
that the irrigation amounts of the next N fd steps are known,
which is typically the case in agricultural irrigation. Once
the predictions are generated, the deviation of the trajectory
generated from the reduced model from the trajectory of the
original full model is calculated and is used as the error
metric eL. The design of eL is inspired by the work of [14]
and is shown below:

eL(tk) =
1

Nx

N fd

∑
j=1

Nx

∑
i=1

|x̃i(tk+ j)− xi(tk+ j)| (13)

where x̃i and xi denote the predictions of ith state element
using the reduced model and the original model respectively.
A prediction horizon N fd is considered. A model reduction is
triggered if eL(tk) exceeds the predefined threshold the and
subsequently a new reduced model is generated as discussed
earlier.

IV. APPLICATION TO AN AGRICULTURAL FIELD

In this section, we demonstrate the effectiveness of the
proposed adaptive model reduction and estimation in the
state estimation of an agricultural field. The field is located
to the east of Lethbridge, Alberta, Canada, with geographical
coordinates ranging from Long: −112.7385 :−112.7365 and
Latd: 49.6896 : 49.6908. The field consists of a central pivot
irrigation system, and the crop being grown is sugar beet in
its growing stage.

The soil depth considered in this study is 0.4 m, which
is discretized evenly into 12 nodes. The field has a radius
of 50 m, which is discretized radially into 20 nodes and
azimuthally into 40 nodes. The surface boundary condition
is characterized by the Neumann boundary condition, which
specifies the flow of water out of the system, and the bottom
boundary condition is specified as free drainage. In this work,
we assume the use of tensiometer sensors to measure the soil
pressure head values at 90 selected nodes of the field at each
sampling time, including surface nodes and nodes at various
depths. The total number of nodes in the field is 9600. The
discretized diagram of the research farm and the farm itself
are shown in Figure 4.

The soil parameters in the field are known to vary across
the field, as shown in Figure 5. In order to simulate the
system, information about evapotranspiration (ET ), crop
coefficient (Kc), irrigation, and rain are used, as shown in
Figure 6. The initial actual soil moisture x0 in pressure head
is simulated to be a distinct value for each quadrant of the
field, namely, −3.5, −4.0, −2.7, and −1.5 m.

We consider three different estimation schemes to illustrate
the proposed approach. Scheme I involves using the proposed
adaptive modeling and EKF. In Scheme II, a reduced EKF is
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(a) (b)

Fig. 4. (a) Demo farm in Lethbridge, (b) A discretized diagram [8]

Fig. 5. Different soil parameters used in the simulation [8]

Fig. 6. Input (irrigation, ET and rain) and Kc to the system

Fig. 7. Actual state trajectories and state prediction of schemes I and II

Fig. 8. The proposed error-triggered adaptive EKF Scheme I

designed based on a single non-adaptive reduced model. This
approach assumes that all information, such as irrigation,
Evapotranspiration (ET ), and rain, is available for the entire
growing season and is used to generate trajectories for the
non-adaptive model creation. Finally, Scheme III involves
a full-order estimator design based on a regular EKF, in
which the original model is used. These three schemes
will be compared to evaluate the proposed adaptive EKF’s
performance and determine its effectiveness in accurately
estimating the entire field’s soil moisture.

The simulation runs for a total of 52 days, and the
initial guess for the soil moisture x̂(0) is set to −2.5, −3.0,
−1.9, and −2.0 m for the four quadrants, which differ from
the actual values of soil moisture x(0). The units for the
soil pressure head values are measured in meters (m). The
covariance matrices Q and R are defined as identity matrices
with diagonal elements of Q = 1.0× INx and R = 0.08× INy,
respectively. The initial state covariance matrix P has entries
of 5 × 10−5 for all off-diagonal elements and a value of
1.0 for all diagonal elements. The measurement noise is
considered normally distributed with a zero mean and a
standard deviation of 0.1. The sampling time is ∆ = 30 min.

Note that the initial reduced model is generated based on
the x̂(0) as the initial state and not the actual initial state x(0).
The x(0) is only utilized to generate the actual trajectories
of the system. In Figure 7, the trajectories of actual states
and predicted states of schemes I and II are shown for a
few selected states. The constant thresholds thC for cluster
generation are 0.2 and 0.5 in creating the new reduced model
for scheme I and scheme II, respectively. Additionally, the
non-adaptive reduced model used in Scheme II is found to
be accurate enough at the order of 4708.

The proposed estimation approach, scheme I, employs
a threshold the = 0.3 for the error-triggered criterion with
N fd = 48. As depicted in Figure 8, the bottom plot displays
the instances where error-triggered model re-identification
occurred, with varying model orders. The re-identification is
prompted by the error indicator eL exceeding the. At the start
and end of the simulation, frequent model changes were ob-
served, with the highest model order of 2005 corresponding
to high values of Kc and ET and a rapid decrease in the soil
moisture.
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Fig. 9. Actual state trajectories and the state estimation of all schemes

Fig. 10. State estimation performance of the schemes

In Figure 9, the actual state trajectories and state estimates
for all schemes are shown to have excellent agreement with
the system’s actual trajectories. Figure 10 further highlights
the percentage of the mean average error (% MAE) between
the actual and EKF estimated states for all schemes. Note
that the proposed scheme I converge much faster compared
with the other two schemes may be due to the increased
degree of observability of the estimation problem. In the
proposed scheme, the number of measurements is kept the
same (90) but the number of states that need to be estimated
is significantly less. This helps the estimation scheme to
converge faster. But at the same time, in the proposed
approach, since each reduced model uses fewer nodes and
the model mismatch error accumulates, the accuracy after
the convergence is slightly poorer as can be seen from
Figure 10. But with the triggered model adaptation, scheme I
can maintain the estimation error within the pre-determined
threshold through model adaptation. This can also be seen
in Figure 10. The tuning parameters for re-identification of
the reduced models include the fixed time N fd , threshold for
cluster generation thC, and error threshold the. These also
provide more flexibility in tuning the estimation performance
of the proposed approach.

The proposed approach is also much more computationally
efficient. The error-triggered adaptive EKF scheme I, which
includes adaptive clustering, model reduction, and recursive
calculation, takes approximately 3 seconds to evaluate at
each sampling time. Whereas, the non-adaptive reduced EKF
scheme II utilizes a high number of reduced states, and takes
longer for estimation, around 9 seconds per sampling time. It
is worth noting that the assumption of having all information
beforehand in the non-adaptive reduced EKF is not realis-

tic, and subsequently, the system is prone to process and
weather disturbances. Implementing the classical EKF based
on the actual full-scale nonlinear model scheme III with
9600 discretization nodes is computationally challenging,
and it takes approximately 35 seconds for each step. With
an increase in the number of system states, the evaluation
time for calculating the large state transition matrix Ad also
experiences an exponential rise, rendering the estimation
process computationally intractable, as indicated in [8].

V. CONCLUSIONS

In this paper, we addressed the problem of higher dimen-
sionality of the agro-hydrological system equipped with a
central pivot. We designed a reduced state estimator of the
system based on an error-triggered model reduction method
and implemented it in a real agricultural field. The proposed
estimation scheme provides good estimates and improved the
computation speed as compared to the non-adaptive reduced
estimator and the full state estimator. Overall, the proposed
estimation method is an effective solution for managing
the complexity of large-scale agro-hydrological systems. For
future work, we will consider the real sensor measurements
in estimating soil moisture and apply the proposed method
to a large-scale field.
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