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Abstract— The paper discusses delay injection attacks on
regulator loops and suggests joint recursive prediction error
identification of delay and dynamics for supervision and attack
detection. The control system is assumed to be operated either
in open- or closed-loop mode. It is shown why delay insertion
in the feedback path before the user switches to closed-
loop operation is advantageous to disguise the attack. The
detection performance is evaluated numerically for a linearized
automotive cruise control feedback loop.

I. INTRODUCTION
Delay is a major enemy of feedback that limits perfor-

mance and may cause instability [1], [2], [3]. The present
paper observes that delay injection can also be a powerful
tool for cyber attacks on feedback regulator systems. Mit-
igation means are therefore proposed, using joint recursive
prediction error identification of loop delay and dynamics for
supervision and early attack detection.

Cyber attacks on feedback controllers have proved to
be efficient in the past, see the discussion on STUXNET
in [4]. Such attacks on control systems have been exten-
sively discussed in the literature and include, for example,
deception [5], denial-of-service [6], and replay [7]. The
present paper is however focused on the intentional injection
of delay into the feedback loop. Protection against such
attacks requires development and deployment of prevention,
supervision, detection, and mitigation schemes, c.f. [8]. The
classical literature on dynamic systems with delay provide
general tools of analysis, see for example [1] and [3], as well
as general methods to estimate delays [9]. The mitigation
of delay injection attacks have been addressed by robust
controller design [10], in particular for smart grids [11],
[12]. However, the detection of delay attacks has only been
subject to limited discussion, for example in [13], [14],
[15]. Remaining gaps of knowledge include, for example,
the conditions for detectability of delay attacks in open- and
closed-loop, as well as the need for online robust detection
algorithms tailored to such attacks

The paper [16] discusses delay attacks on networked
servo control systems and corresponding detection schemes.
Important additional questions posed and answered by the
present paper include how delay attacks may be performed
on closed-loop regulators, and how a successful detection
of such attacks can be designed. As compared to the servo
control problem, the detection challenges in closed-loop may
be more significant, since the regulation objective tends to
suppress signal variations useful for detection.
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In the paper, this research problem is formulated for a
general setup with linear time-invariant single-input-single-
output (SISO) plant dynamics, subject to linear quadratic
Gaussian regulation (LQG) with integral action, cf. [2], [17].
A specific property of the considered control loop is that the
user selects between open-loop and closed-loop operation.
The first question is then: how is the attack best applied and
disguised? The questions for the defender treated in the paper
are: how should a robust online detection of the delay attack
be designed and what performance is obtained?

The paper first contributes with an analysis that imply
opportunities to disguise the delay attack if the delay in-
jection is performed in the feedback path of the regulator.
Secondly, the paper contributes with delay attack supervision
and detection by joint recursive prediction error identification
of loop delay and open loop dynamics. The third contribution
illustrates a disguised delay attack and the proposed delay
attack detection method, when applied to a linearized auto-
motive cruise control loop [18], [19]. Linear quadratic (LQ)
control is used in this example.

It was shown in [9] that off-line output error identifica-
tion algorithms perform the best when delay and dynamics
are jointly identified. This is why the recursive prediction
error method (RPEM) of [20] is applied for supervision
and attack detection. However, identification of delay is a
classical research subject. Potential alternatives to [20] may,
for example, be based on time domain impulse response
delay estimation [21], frequency domain methods [22], or
higher order statistics [23].

The paper is organised with the description of the control
loop in Section II. Delay injections attacks and their detection
are discussed in Sections III and IV. Sections V and VI apply
the methods of Sections III and IV to an automotive cruise
control regulator. Conclusions follow in Section VII.

II. CONTROL SYSTEM
A. Block Diagram

The control system is depicted in the block diagram of Fig.
1. It consists of a standard linear state-space-based control
loop. The formulation follows [2] and avoids stochastic
ODEs, since delay attack and detection aspects are not af-
fected by this choice. The focus is on the regulator problem.

The distinguishing feature of the control loop of Fig. 1 is
the user-controlled switch between open-loop and closed-
loop operation. Such a switch is, for example, found in
adaptive cruise control (ACC) functionality [18], [19], [24].

The regulated system is assumed to be described by
˙̄x(t) = Āx̄(t) + B̄ū(t) + w̄(t)
ȳ(t) = C̄x̄(t) + ē(t).

(1)
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Fig. 1. The LQG regulator block diagram of the paper, with the preferred delay attack alternative 6 shown in red. T denotes the injected delay.

Here the overhead bar is used to distinguish w.r.t the state of
the augmented model below that has an additional integrator
state. As usual, x̄(t) ∈ Rn is the state vector, t is the time,
ū(t) ∈ R1 is the control signal, ȳ(t) ∈ R1 is the output
signal and ˆ̄x(t) ∈ Rn is the estimated state vector, given
measurements up to time t. Furthermore, w̄(t) ∈ Rn is the
systems noise, and ē(t) ∈ R1 is the measurement noise. The
matrices Ā and B̄ are the system and input matrices, while
C̄ is the measurement matrix.

B. Integrating Control
Since the regulator problem is addressed, handling of un-

modelled disturbances with nonzero mean is a pre-requisite,
which implies that integrating control is needed. This is
achieved by augmentation of the state x̄(t) with an integrator
state using the differential equation,

ẋn+1(t) = −δxn+1 +
(
yref (t)− C̄x̄(t)

)
. (2)

Here yref (t) is the reference signal.
Remark 1: The small δ > 0 in (2) is needed to ensure

detectability according to assumption A4 below. Note that
this avoids a singular inverse caused by rank loss of A
in (27). Since the components of B and z̃(t) equal 0 for
the integrator state, it follows that u(t) of (34) will become
independent of δ, c.f. section VI.B. Integrating control is
obtained when δ → 0. The use of C̄x̄(t) instead of y(t) is
standard when applying state feedback from estimated states.

After the augmentation

x(t) =
(
x̄T (t) xn+1(t)

)T
, (3)

the system equations are transformed to the standard form

ẋ(t) = Ax(t) +Bu(t) +Nyref (t) +w(t)
y(t) = Cx(t) + e(t),

(4)

where u(t) = ū(t), y(t) = ȳ(t), e(t) = ē(t), and

A =

(
Ā 0
−C̄ −δ

)
, (5)

B =
(
B̄T 0

)T
, (6)

N =
(
0T 1

)T
, (7)

w(t) =
(
w̄T (t) 0

)T
, (8)

C =
(
C̄ 0

)
. (9)

C. Open-Loop Operation and Steady State Removal

When operated in open-loop, the system equations are
valid around an operating point, here referred to as the
steady state. When formulating the LQG problem for closed-
loop operation, it is convenient to first remove the nonzero
operating point from all signals, since LQG is typically
formulated without consideration of biases. Assume that
A1) The constant operating point of the control system is

defined by the steady state signal values yrefs , ys, us

and xs, where ys = ȳs and us = ūs.
When used as a subscript, s thus denotes steady state. The
use of integral control implies

ys = yrefs . (10)

Then, by the superposition principle, the zero mean distur-
bances w(t) and e(t) are temporarily disregarded. By using
(4) and the fact that in steady state ẋ(t) = 0

0 = Āx̄s + B̄ūs, (11)

0 = −C̄x̄s − δxn+1,s + yrefs = −C̄x̄s − δ0 + yrefs . (12)

The last equality follows since (12) needs to be consistent
with the measurement equation in steady state, cf. (1), (4),
(9). Define the zero mean state, state estimate, input, output
and reference signals

x̃(t) = x(t)− xs, (13)

ˆ̃x(t) = x̂(t)− xs, (14)

ũ(t) = u(t)− us, (15)
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ỹ(t) = y(t)− yrefs , (16)

ỹref (t) = yref (t)− yrefs . (17)

Using the superposition principle again to bring back the
disturbances, and using (3) - (9) and (13) then give

˙̃x(t) = ẋ(t) = Ax(t) +Bu(t) +Nyref (t) +w(t)

= Ax̃(t) +Bũ(t) +Nỹref (t) +w(t)

+Axs +Bus +Nyrefs . (18)

As may be readily checked using (3), (5)-(9), (11) and (12),
the last three terms of (18) sum up to 0, i.e.

˙̃x(t) = Ax̃(t) +Bũ(t) +Nỹref (t) +w(t). (19)

Similarly

ỹ(t) = y(t)− yrefs = Cx(t) + e(t)− yrefs

= Cx̃(t) + e(t) + C̄x̄s + δ0− yrefs . (20)

The sum of the last three terms equals 0 by (12) and therefore

ỹ(t) = Cx̃(t) + e(t). (21)

Finally, define the control objective as

z̃(t) = z(t)− zs =

(
C̄ 0
0T 1

)
x̃(t) = Mx̃(t). (22)

The dynamics of (19) and (21) is now equivalent to (4), but
with the steady state removed.

D. Linear Quadratic Gaussian Regulation

Assume that
A2) w(t) is Gaussian, zero mean with covariance matrix

R1 ≥ 0.
A3) e(t) is Gaussian, zero mean with variance R2 > 0.
A4) The pair (A,C) is detectable.
A5) The pair (A,R1) is stabilizable.
A6) The penalty matrix Q1 ≥ 0.
A7) The penalty matrix Q2 > 0.
A8) The pair (A,B) is stabilizable.
A9) The pair (A,MTQ1M) is detectable.

The above conditions lead to the following standard result,
where E denotes expectation:

Lemma 1 (LQG control, [2], Theorem 5.4, Theorem 9.1,
and [17], p. 175): Consider the time-invariant system (19)
and (21). Assume that A1-A9 hold and consider the control
problem

min
ũ∈L2

E

∫ ∞

0

(
(z̃(t)−Mx̃(t))

T
Q1 (z̃(t)−Mx̃(t))

+ũT (t)Q2ũ(t)
)
dt. (23)

Then the optimal controller is given by

ũ(t) = −Lˆ̃x(t) + Lref z̃(t). (24)

Here
L = Q−1

2 BTS (25)

where S = ST > 0 is a unique solution to

ATS+ SA+MTQ1M− SBQ−1
2 BTS = 0, (26)

while

Lref = −Q−1
2 BT

(
AT − SBQ−1

2 BT
)−1

MTQ1. (27)

Furthermore,
˙̂
x̃ = Aˆ̃x(t)+Bũ(t)+Nỹref (t)+K

(
ỹ(t)−Cˆ̃x(t)

)
, (28)

where the Kalman gain

K = PCTR−1
2 , (29)

and where P = PT > 0 is a unique solution to

AP+PAT +R1 −PCTR−1
2 CP = 0. □ (30)

E. Re-substitution of the Steady State

To complete the regulator design it remains to compute
u(t) and x̂(t). Insertion of (13)-(17) in (28) gives

˙̂x(t) =
˙̂
x̃(t)

= Ax̂(t) +Bu(t) +Nyref (t) +K (y(t)−Cx̂(t))

−Axs −Bus −Nyrefs −K
(
yrefs −Cxs

)
. (31)

Using the partitioning (5)-(9), together with (11) and (12), it
is found that the last four terms sum up to zero. Hence

˙̂x(t) = Ax̂(t) +Bu(t) +Nyref (t) +K (y(t)−Cx̂(t)) ,
(32)

which appears in Fig. 1.
Referring to (15) and (24) the control signal becomes

u(t) = us − L (x̂(t)− xs) + Lref (z(t)− zs)

= −Lx̂(t) + Lrefz(t) + us + Lxs − Lrefzs. (33)

Here the last three terms cancel by definition of the steady
state applied to (24). It follows from (22) that

u(t) = −Lx̂(t) + Lrefyref (t). (34)

III. FEEDBACK PATH DELAY INJECTION ATTACK

The objective of the attacker is to destabilize the closed-
loop system, or achieving a significantly reduced damping as
in [16]. It is assumed that the attacker has acquired access
so that the control and feedback signals can be manipulated.
Since the means of the attack is delay injection, input-output
theory governs the effect on stability [3]. The definitions
that underpin input-output stability theory can be found in
the appendix. The appendix also states the Nyquist criterion
which is used to prove the following elementary proposition
that is exploited in sub-section V.C:

Proposition 1: Assume that the loop gain ĝ(s) has order 2,
is proper, minimum phase and stable with at most one pole
in 0. Then the closed-loop system is L2-stable. □

Proof: A calculation shows that −π < Arg(ĝ(jω)) < π.
Hence the Nyquist plot is bounded away from the negative
real axis and −1 + j0 is not encircled. □
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A. Delay Injection
1) Manipulation of time: In case time stamps are used,

the attacker could manipulate the associated messages and,
for example, decrease the time values of the control signal
so that they appear to be earlier than they actually are. This
way the system could be manipulated to delay the control
action, thereby increasing the loop delay. Such actions could
be introduced right after the controller implementation or
just before the plant, as illustrated by Fig. 1. The same type
of attack could also be applied in the feedback signal path,
before or after the Kalman filter of Fig. 1.

2) Delayed signals: In case time stamps are not used,
the attacker could instead delay the control signal message,
either close to the control signal functionality or close to
the plant, as illustrated in Fig. 1. The attacker may, for
example, implement the attack by creating an additional
queue in the signal path. The same type of attack could
also be implemented in the feedback path, before or after
the Kalman filter of Fig. 1.

B. Disguised Attack by Delay Injection Point Selection
There are several signal points of Fig. 1, where a delay

attack could be attempted. An obvious question is then if
there is a set of preferred delay injection points?

To answer the question, it is noted that the system is
operating in either open-loop or closed-loop, as selected
by the user. When the system is operated in open-loop an
operator may then be able to detect the delay attack on
the control signal path, by manually sensing the delayed
response of the plant. This is particularly true in cases
where a human closes the feedback loop. In a cruise control
application the driver would, for example, be able to feel the
slowed down response of the accelerator pedal command.
Attacks on the control signal paths are therefore seldom
perfectly disguised.

However, in case the delay attack is executed on the
feedback path, no such open-loop control effect can be
observed by a human operator that closes the feedback loop.
On the contrary, a delay attack on the feedback path could
be inserted and left dormant and completely disguised for as
long as open-loop operation is maintained.

The conclusion is that the opportunities to disguise a delay
injection attack are better if the attack targets the feedback
path, rather than the control signal path. Even when the
existing Kalman filter is used to monitor the system for
anomalies, the delay attack induces a multiplicative anomaly
that is difficult to detect without tailored approaches such as
the one proposed later in this paper.

C. Destabilization
In any of the cases listed above, the delay starts affecting

the stability (or damping) when the operation is switched
from open-loop control to closed-loop control, since the loop
gain ĝ(s) corresponding to Fig. 1 is then modified to

ĝT (s) = e−sT ĝ(s). (35)

If in closed-loop when the attack is initiated, the destabiliza-
tion or the reduced damping will be instantaneous.

IV. DELAY ATTACK DETECTION BY RECURSIVE
IDENTIFICATION

The present paper proposes joint recursive identification
of delay and dynamics to detect injected delays. The reason
why recursive identification is preferred is that supervision
and delay attack detection must be performed on line and
in such situations recursive identification excels in terms of
computational complexity, memory requirements and track-
ing ability [25]. The RPEM proposed for supervision and
delay attack detection was introduced in [20], and it is of
output error type. This is exactly the type of algorithm that
was found to have the best performance in the evaluation
of [9]. In the paper, the focus is on open-loop delay attack
detection. The closed loop problem is significantly harder
due to lack of signal excitation and is left for future research.

The algorithm of [20] jointly identifies the delay and
dynamics of a continuous time nonlinear dynamic system in
state space form. In the present paper scaling of the sampling
period is applied as well, as explained in [26]. Next the model
underpinning the RPEM algorithm is reviewed in the setting
with SISO linear dynamics that is needed in the present paper.

A. Linear State Space Model With Delay
The model of [20] is an ordinary differential equation

(ODE) in canonical state space form, with a single output
delay. For time-invariant systems the delay location does not
matter, hence the output delay can also model delays on the
input side. It follows that a notation without bars is used, to
remain consistent with [20] and Fig. 1. In section VII this
is changed to a notation with bars, since then the open-loop
plant without integrating control is identified.

1) Dynamic model: The input signal, state vector and
output of the model are denoted by u(t), x̂(t,θS) and
ŷ(t, θT ,θS), respectively, where θS is the parameter vector
of the ODE and where T = θT is the delay parameter. The
definition of these quantities and the system model are

θ =
(
θT θT

S

)T
, (36)

u(t) =
(
u(t) ... u(n−1)(t)

)T
, (37)

x̂(t,θS) = (x̂1(t,θS) ... x̂n(t,θS))
T
, (38)

˙̂x(t,θS)

=


˙̂x1(t,θS)

...
˙̂xn−1(t,θS)
˙̂xn(t,θS)

 =


x̂2(t,θS)

...
x̂n(t,θS)

φT (x̂(t,θS), u(t))θS

 ,

(39)
ŷ(t, θT ,θS) = Cx̂(t− θT ,θS) = Cx̂(t,θ). (40)

Here C is the measurement matrix and (i) denotes differen-
tiation i times. Referring to the parameter enumeration and
corresponding nonlinear notation of [20], the regression and
parameter vectors are given by

θS =
(
θS,0...0 ... θS,0...(n−1) θS,0...10 ... θS,1...0)

T
,

(41)
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φ (x̂(t,θS), u(t)) =
(
1 ... u(n−1)(t)

x̂n(t,θS) ... x̂1(t,θS))
T
. (42)

The notation may be unfamiliar when used for linear system,
but it is needed to systemize the parameters of the multi-
polynomial model of [20]. It is retained here to facilitate the
use of the software [27]. To understand the notation it is
useful to note that the parameter and regression vectors are
filled with terms from left to right according to the indices
of the parameter vector, where the outermost index varies
the fastest. From left to right the indices represent the first
state vector component to the last state vector component,
with the rightmost index representing the input signal and
its derivatives.

2) Delay model: The delay modeling allows identification
of non-integer delays in terms of the sampling period TS . The
idea exploited in [20] is to interpolate between time shifted
multiple state space models for identification of a fractional
part of the delay. To do so the delay is parameterized by

θT = T = mTs + Tf , m ∈ [0,M − 1]. (43)

Here m counts the number of sampling periods m of the
delay, while Tf denotes the fractional delay such that,

0 ≤ Tf < TS . (44)

Then define M+1 models in terms of um(t) and x̂m(t,θS),

um(t) = u(t−mTS), m = 0, ...,M, (45)

x̂m(t,θS) = x̂(t−mTS ,θS), m = 0, ...,M. (46)

Time invariance implies that (46) can be generated using the
m:th delayed input of (39). In fact, these delayed states can
be obtained by time shifting of previously generated states
when the adaptation gain is small, thereby restricting the
need for integration to one state ODE and one gradient ODE.

The RPEM interpolates inputs, state vectors and gradients,
using the integer delay signals (45) and (46) adjacent to the
running estimate of the delay. To define the interpolation
mathematically, the running estimate of the delay, i.e. θ̂T (t)
is first decomposed

θ̂T (t) = m̂(t)TS + T̂f (t), m̂(t) ∈ [0,M − 1]. (47)

Linear interpolation then gives

x̂(t− θ̂T (t), θ̂S(t))

=

(
1− T̂f (t)

TS

)
x̂m̂(t, θ̂S(t)) +

T̂f (t)

TS
x̂m̂+1(t, θ̂S(t)).

(48)
The corresponding output signal becomes

ŷ(t, θ̂T (t), θ̂S(t))

= ŷ(t− θ̂T (t), θ̂S(t)) = Cx̂(t− θ̂T (t), θ̂S(t)). (49)

B. The Recursive Prediction Error Method

To obtain the RPEM, a discretization of the continuous
time state space model and gradient is performed with the
Euler forward method. The discretization can exploit scaling
of the actual sampling period, which has been found to
enhance the performance of the algorithm significantly, see
[26]. Such scaling is used in the present paper. Since output
error identification is applied it is also necessary to check
model stability online. This is done by a projection algorithm
that maintains the parameters in the set of asymptotically sta-
ble models [20], [25]. The Gauss-Newton RPEM minimizes

V (θ,Λ) =
1

2
lim
t→∞

E
[
Λ−1(t,θ)ε2(t,θ) + ln (Λ(t,θ))

]
,

(50)
using three recursive equations for the running estimate
of the parameter vector θ̂(t), the Hessian R(t), and the
estimated covariance matrix Λ(t) of the prediction error ε(t).
Here

ε(t) = y(t)− ŷ(t, θ̂T (t), θ̂S(t)), (51)

where y(t) is the measured output signal. The complete
algorithm is listed in [20].

V. FEEDBACK PATH DELAY ATTACKS IN CRUISE
CONTROL

Automotive cruise control is a well known application
where the driver switches between open-loop and closed-
loop operation, cf. [24] and [18]. Here the focus will be on
the basic constant velocity regulation mode.

A. Linearized Dynamic Model

A vehicle cruising at a speed x̄1(t) is mainly affected by
a forward force mū(t) where m is the mass of the vehicle
and ū(t) is the control signal commanded by the accelerator
pedal or the cruise control system, and by a wind resistance
force proportional to the square of the speed [19], [24]. When
linearized the wind resistance may be written as −γx̄1(t).
The vehicle is also affected by a deterministic disturbance
force −md̄(t) caused by the varying vertical slope of the
road [19]. No measurement is assumed to be available for
d̄(t). Other friction forces are also present [19], however for
the purpose of the paper, the following model that result from
Newton’s second law is sufficient

˙̄x1 = − γ

m
x̄1(t) + ū(t)− d̄(t). (52)

The speed can, for excample, be measured with GPS, i.e.

ȳ(t) = x̄1(t) + ē(t), (53)

where e(t) is a small measurement disturbance.

B. Linear Quadratic Integrating Regulator

Since the main system disturbance −d̄(t) is not random,
and since GPS provides very accurate speed measurements,
the controller design is here relaxed from LQG control to
LQ-control, by disregarding the Kalman filter of Lemma 1.

Proceeding with controller design using Lemma 1, it
follows from (52) and (53) that Ā = −γ/m, B̄ = 1 and

3868



C̄ = 1. The input signal penalty is given by Q2 = q2, while
a diagonal state penalty matrix is selected, i.e.

Q1 =

(
q11 0
0 q22

)
. (54)

Then, since M = I2 is the unity matrix, (5), (6) and the
Riccati equation (26), give

1

q2
s211 + 2

γ

m
s11 + 2s12 − q11 = 0, (55)

γ

m
s12 +

1

q2
s11s12 + s22 = 0, (56)

1

q2
s212 − q22 = 0. (57)

The positive definite analytical solution to (26) is obtained
(in order) from

s12 = −√
q22q2, (58)

s11 = −γq2
m

+

√
γ2q22
m2

+ q2q11 − 2q2s12, (59)

s22 = − γ

m
s12 −

1

q2
s11s12. (60)

The controller gains are obtained from (25) and (27) as

L = (L1 L2) =
1

q2
(s11 s12) . (61)

With S available, straightforward algebra gives

Lref =
1

q2

(
q11

γ
m + s11

q2

− 1

δ

q22
γ
m + s11

q2

)
. (62)

It follows from (22) and (34) that the terms of ū(t) are

ū(t) = u(t)

= −Lx̂(t) +
1

q2

q11
γ
m + s11

q2

yref (t) = −Lx̂(t) + Lrefyref (t).

(63)
as stated in Remark 1 and appearing in Fig. 1.

C. Transformation to the Frequency Domain

Since LQ control is applied, the state estimate of Lemma
1 is replaced by the state, resulting in the control signal

ū(t) = u(t) = −L1x1(t)− L2x2(t) + Lrefyref (t)

= L1

(
yref (t)− x1(t)

)
− L2

∫ (
yref (t)− x1(t)

)
dt

+
(
Lref − L1

)
yref (t)

= L1ϵ(t)− L2

∫
ϵ(t)dt+

(
Lref − L1

)
yref (t). (64)

Here ϵ(t) is the control error. The transfer function C(s) of
the controller therefore becomes

C(s) =

(
L1 −

L2

s

)
=

L1s− L2

s
, (65)

Fig. 2. Delay attack during closed-loop operation. Reference speed (blue)
and cruise controlled speed (red) (top). Cruise control acceleration signal
(bottom).

which represents PI-control, [28]. Using (52) and (53) gives
the plant transfer function

H(s) =
1

s+ γ
m

. (66)

The loop gain therefore becomes

ĝ(s) = C(s)H(s) =
L1s− L2

s
(
s+ γ

m

) . (67)

It follows from (58) and (61) that L2 < 0, and from (59) and
(61) that L1 > 0. Hence the loop gain is minimum phase.
Since the order is 2, the loop gain is (strictly) proper, there is
one pole in 0 and one asymptotically stable pole, it follows
from Proposition 1 that the closed-loop system is L2-stable.
Note that this is true for all controllers with these properties,
not only LQ control which can be proved to give a stable
closed-loop system by other methods.

D. Destabilization by Feedback Path Delay Injection

The attack destabilizes the system by injection of delay in
the feedback path, which modifies the loop gain of (67) by
a phase loss according to

ĝT (s) = e−sT L1s− L2

s
(
s+ γ

m

) . (68)

To illustrate the effect of a delay attack, vehicle movement
was simulated with closed-loop cruise control using the
parameters γ = 50 Ns/m, m = 1500 kg. The standard
deviation of ē(t) was 0.1 m/s. The control signal penalty
was q2 = 1.00, while the state penalties where q11 =
10.00 and q22 = 1.00, respectively, emphasizing integral
control. Tustin’s approximation, [29] was used to discretize
the system with a sampling period of Ts = 0.001 s. The
system was simulated for 100 s, with a delay attack occurring
after 65 s injecting a delay of T = 0.50 s. As is evident from
Fig. 2 the instability becomes increasingly troublesome for
the driver.
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Fig. 3. Delay attack at t = 4000 s during open-loop operation. Speed
(top), accelerator control signal (blue) and disturbance red (bottom).

VI. DELAY ATTACK DETECTION IN CRUISE
CONTROL

A. Linear Dynamic Model With Delay

The RPEM described in Section V is the basis for the de-
lay attack detection and the focus here is on the performance
of this identification algorithm. A complete automated delay
attack detection algorithm requires safety nets and additional
logic that is beyond the scope of the present paper.

The RPEM is used to recursively identify the dynamics
and the delay between the signal point where the open-loop
accelerator input signal ū(t) enters in Fig. 1, to the measured
output speed, at the closed/open-loop switch. The dynamic
model of this path is assumed to be given by

˙̄̂x1(t, θ̄S) =
ˆ̄θS,00(t)1 +

ˆ̄θS,01(t)ū(t) +
ˆ̄θS,10 ˆ̄x1(t,

ˆ̄θS(t)),
(69)

ˆ̄y(t, ˆ̄θT (t),
ˆ̄θS(t)) = ˆ̄x1(t− ˆ̄θT (t),

ˆ̄θS(t)). (70)

θ̂S,00(t) is included to compensate for acceleration bias.

B. Delay Detection in Open-Loop

The numerical values of subsection VI.D were used for
data generation. The driver accelerator signal ū(t) was gen-
erated as a uniform Gaussian process, with mean 0.40 m/s2,
standard deviation 0.15 m/s2, switching every 40 s. The
disturbance d̄(t) was also generated as a Gaussian random
process with mean 0.0 m/s2, standard deviation 0.01 m/s2,
switching every 60 s. The delay attack appeared at time
t = 4000 s, with injection of T = 0.5 s in the feedback
path. The signals, sampled with Ts = 0.10 s for recursive
identification appear in Fig. 3.

The RPEM was setup using sampling period scaling with
a scale factor of α = 10, cf. [20], [27]. The projection
algorithm used a discrete pole radius of 0.9995, together with
M = 10, i.e. the delay range was [0.0 s, 1.0 s]. The algorithm
was tuned with an initial Hessian of 0.10I for the dynamics
and 0.01 for the unknown delay. Λ(0) = 1.0 was used and

Fig. 4. Detection of delay attack during open-loop operation. Recursively
identified delay parameter (left), recursively identified parameters of the
vehicle dynamics (right).

the forgetting factor was 0.9999. The initial parameter vector
was ˆ̄θ(0) = (0.000 0.000 1.000 − 1.000)

T . The results
of Fig. 4 shows that the algorithm converges quickly to
a setting with ˆ̄θT (t) ≈ 0.0 s, where it remains until the
delay attack. Immediately after the attack, ˆ̄θT (t) begins to
increase toward the attack value T = 0.5 s , which is reached
before t = 5000 s. Visual inspection indicates that an attack
detection should be possible within 100 s after he attack,
despite the fact that the attack appears to be completely
disguised in Fig. 3. The value of the re-scaled [26] dynamic
part of the parameter vector at the end of the run was

ˆ̄θS(10000) = (0.385 1.004 − 0.0036)
T (71)

which is in good agreement with the values calculated from
subsection VI.D

θ̄0
S = (0.000 1.000 − 0.0033)

T
. (72)

VII. CONCLUSIONS

The paper discussed cyber attacks on feedback loops by
injection of delay, with the purpose of destabilization. In case
the system is operated in both open-loop and closed-loop it
was shown that it is advantageous for the attacker to inject
delay in the feedback paths since then the attack remains
disguised until closed-loop operation is initiated. Such cases
include automotive cruise control which was used in the
paper to illustrate a disguised attack together with a new
supervision and attack detection method using joint recursive
identification of the open-loop dynamics and the delay. The
RPEM was shown to successfully and very rapidly detect
the disguised delay attack.

Future work needs to focus on closed-loop detection of
delay attacks that reduce damping but do not destabilize.
This is a hard problem since the regulation objective is
contradictory to the need for signal excitation for recursive
identification. Further work on nonlinear ACC systems and
platooning of vehicles are other interesting topics , [30], [31].
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APPENDIX

Lp Stability Definitions

D1) For all p ∈ [1,∞), Lp[0,∞) denotes the set of all
measurable functions f(·) : [0,∞) → R, such that

∥f(·)∥pp =

∫ ∞

0

|f(t)|pdt < ∞.

D2) The set of all measurable functions f(·) : [0,∞) → R,
such that their truncations

fT (t) =

{
f(t), 0 ≤ t ≤ T
0, t > T

∈ Lp[0,∞),∀T,

is denoted the extension Lpe[0,∞) of Lp[0,∞).
D3) The mapping A : Lpe → Lpe is Lp-stable if i) Af ∈ Lp

whenever f ∈ Lp, and ii) there exist finite constants l, c,
such that

∥Af∥p ≤ l∥f∥p + c, ∀f ∈ Lp.

D4) A denotes the set of generalized functions of the form

f(t) =

{
0, t < 0∑∞

i=0 fiδ(t− ti) + fa(t), t ≥ 0
,

where δ(·) is the unit delta distribution, ti are non-
negative constant delays, fa(t) is measurable and∑∞

i=0 |fi| < ∞,
∫∞
0

|fa(t)|dt < ∞.

D5) Â denotes the set of all function f̂ : C+ → C that are
Laplace transforms of elements of A.

A system is hence Lp-stable if the internal signals are all
integrable using the Lp-norm, provided that the external
exciting signals are in Lp, for some p.

The Nyquist criterion

Lemma 2 (Nyquist Criterion, [3] Theorem 6.6.58): Con-
sider the system of Fig. 1 and denote its loop gain ĝ(s).
Assume that the inverse Laplace transform of the transfer
function ĝ(s) fulfils g(·) ∈ A. Then the system is L2-stable
if and only if the Nyquist plot

ω ∈ [0,∞) → Re[ĝ(jω)] + jIm[ĝ(jω)] ∈ C (73)

is bounded away from and does not encircle −1 + j0. □
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