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Abstract— The distributed tracking control of multi-agent
systems with the general pure-feedback agent dynamics, the
full state constraints, and the control input constraints is
investigated in this paper. Based on the one-to-one nonlinear
mapping, the saturation function transformation, and the de-
gree elevation techniques, the pure-feedback multi-agent system
with full state constraints and control input constrains is firstly
transformed into a novel one without constraints. Considering
the unknown control sign and the unknown dynamic models, a
distributed adaptive control law is proposed by leveraging the
merits of Nussbaum function and neural networks. The rigorous
Lyapunov stability analysis shows that the agent constraints
are always satisfied, and the cooperative tracking errors can be
made as small as possible by appropriately setting the control
parameters. Finally, a numerical simulation is conducted to
clarify the effectiveness of the proposed control strategy.

Index Terms— Multi-agent systems, full state constraints,
unknown control directions, pure-feedback form.

I. INTRODUCTION

Distributed tracking control of multi-agent systems (MAS)
has broad applications in multiple unmanned aerial vehicles,
attitude alignment, robotic teams and so on [1]. From the
aspective of agent dynamics, the first-order linear agent
[2], the second-order agent [3],[4], the nonlinear dynamics
with external noises or other unpredictable disturbances
[5]-[7], the strict-feedback nolinear dynamics [9], the non-
affine dynamics [10] or pure-feedback form [11] have been
extensively investigated. Based on the backstepping method,
the cooperative tracking controller for high-order nonlinear
MASs can be desinged and analyzed. Moreover, by applying
the dynamic surface control (DSC) technique [8] and the neu-
ral network universal approximation property, the explosion
of complexity in the conventional backstepping method and
the unknown dynamics can be overcome.

In real situation, the constraints often appear owing to
physical limitations or the safe operation of systems such
as the maximum allowable speed of wheeled mobile robots
[12], actuator saturation [13], and so on. To solve the
problems of state constraints, the Barrier Lyapunov Function
(BLF) and the nonlinear mapping method (NM) have been
extensively applied. By employing the BLF, the output-
constrained consensus protocol for second-order nonlinear
MASs was proposed in [14]. The work in [15] investigated
the distributed control of the nonlinear strict-feedback system
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with state constraints, unmeasured states, and disturbances.
For the BLF-based control method, it is inconvenient to make
the new designs of controllers to adapt to the changes of
Lyapunov functions. As a result, a novel nonlinear mapping
methodology was proposed [16]. The NM technique was
introduced to transform the strict-feedback system with full
state constraints into a novel one without state constraints
and then be applied to the non-affine pure-feedback system
with full state constraints [17],[18]. Compared with the
BLF-based control method, the NM-based design process
employed traditional Lyapunov functions rather than re-
designing the Lyapunov function. As a result, the proofs of
results are more concise and understandable.

For most of the adaptive consensus algorithms, it is a
common assumption that the control direction or the sign
of control input is known in advance such as [14], [15]
and [17]. In [19], the consensus problem with unknown
control direction was discussed for single-integrator MASs.
The work [20] introduced a neural adaptive consensus control
algorithm for high-order nonlinear MASs with unknown
control directions. In [21]-[23], the similar problems were
addressed for strict-feedback nonlinear MASs with the un-
known control direction by applying backstepping adaptive
control. To the best of our knowledge, the adaptive consensus
problem for pure-feedback nonlinear systems with full state
constraints, input constraints, and unknown control direction
remains unsolved.

Inspired by the above works, this paper attempts to
propose a distributed consensus control protocol for pure-
feedback nonlinear MASs with full state constraints, input
saturation, and unknown control directions. The contributions
of this paper are briefly summarized as follows. (1) The
pure-feedback form of MASs discussed in this paper is
more general and the more relaxed assumptions are made as
compared with the existing works [21]-[23]. (2) The control
sign problem appears in the pure-feedback nonlinear multi-
agent systems. Unlike the previous results in [14]-[17], the
control sign is not required in this work. (3) The pure-
feedback nonlinear multi-agent systems with full state con-
straints and input saturation are considered simultaneously
and they are dealt with under the same framework in this
paper. (4) We first transform the constrained system into the
unconstrained form. By the degree elevation technique, we
further transform the non-affine form into the affine-form.
The unknown nonlinearities are approximated by the neural
networks and the problem of explosion of complexity is
avoided by applying the DSC in the backstepping design
process.
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II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Problem Formulation

Consider a multi-agent system consisting of a leader and
N followers. A digraph Ḡ = (V̄, Ē) with V̄ = 0, · · · , N is
used to describe the communication topology among the N+
1 agents. The subgraph G = (V, E) is applied to represent
the topology of N followers with the adjacency matrix A =
[aij ] ∈ RN×N , the in-degree matrix D = diag{d1, . . . , dN},
and the Laplacian matrix L = D−A. The Laplacian matrix L̄

corresponding to Ḡ is defined as L̄ =

[
L+B −b

0 0

]
, where

b = [b1, ..., bN ]T , B = diag(b1, ..., bN ) with bi = 1 if the
leader has access to the ith follower and bi = 0 otherwise.
Assumption 1: The directed communication topology Ḡ

has a directed spanning tree with the leader being the root
node.

The ith follower agent with the pure-feedback dynamics
is modeled by ẋi,m = fi,m (x̄i,m, xi,m+1)

ẋi,n = fi,n (x̄i,n, ui)
yi = xi,1

(1)

where x̄i,m = [xi,1, ....xi,m]T ∈ Rm; xi,m, yi, ui (m =
1, . . . , n, i = 1, . . . , N ) are system state, output, control
input of the ith agent, respectively. fi,m(.),m = 1, . . . , n is
unknown but smooth function. To circumvent the challenge
of controller design for the pure-feedback systems, the degree
elevation technique is used here and the following low pass
filter is introduced

u̇i = −ui + τi(vi) (2)

where u(0) = 0 and τi(vi) = sat (vi) is the control input
with saturation nonlinearity as

τi = sat (vi) =

{
sgn (vi)UN , |vi| ≥ UN
vi, |vi| < UN

(3)

where UN is a known bound of τi.
It is obvious that the relationship between τi and vi has

a sharp corner when |vi| = UN . In order to employ the
backstepping method directly in the following design, the
saturation is approximated by a smooth function defined as

Pi (vi) = UN tanh

(
vi
UN

)
= UN

evi/UN − e−vi/UN
evi/UN + e−vi/UN

(4)

Then τi can be written as τi (vi) = sat (vi) =
Pi (vi) + qi (vi), where |qi (vi)| = |sat (vi)− Pi (vi)| ≤
UN (1− tanh (1)) = q̄i. By using the mean-value theorem,
there exists a constant µi(0 < µi < 1), such that

Pi (vi) = Pi
(
v0
i

)
+
∂Pi (vi)

∂vi
|vi=viµi

(
vi − v0

i

)
(5)

where vµii = µivi + (1− µi) v0
i . Let v0

i = 0, and
(∂Pi (vi)/∂vi) |vi=viµi = Pi,0 (vi

µi), the equation (5) can
be rewritten as

Pi (vi) =
∂Pi (vi)

∂vi
|vi=viµi · vi = Pi,0 (vi

µi) vi (6)

In this paper, the function Pi,0 and its sign are not known,
which is challenging in the controller design.

The objective of this paper is to design a distributed adap-
tive consensus protocol for the MAS (1) with input saturation
such that the outputs of the followers yi track the reference
trajectory yr and all the signals in the closed loop system
are bounded. Meanwhile, all states are required to remain in
an open set Ωxi,m = {xi,m : −bm1 < xi,m < bm2}, where
bm1 and bm2 are known positive design constants.
Assumption 2: The reference trajectory yr is continuous

with |yr| < B1 < min {bm1, bm2}, where B1 is a known
positive constant. In addition, the derivative |ẏr| satisfies
|ẏr| ≤ r <∞ with r being an unknown positive constant.

B. Radial Basis Function Neural Network Approximation

In this paper, the radial basis function neural network
(RBFNN) is used to approximate the unknown continuous
functions. According to the universal approximation prop-
erty, for any given known continuous functions ψ(ξ), there
exists φ(ξ) such that

ψ(ξ) = W ∗Tφ(ξ) + ε(ξ) (7)

where ξ ∈ Rq is the input vector, ε(ξ) is the approximation
error satisfying |ε(ξ)| 6 ε̄. W ∗ = [W ∗1 , ...,W

∗
l ]T ∈ Rl is an

idealized constant weight vector.

C. Nussbaum-type Function

A function N(ϑ) is called Nussbaum type function
if it has the properties lim suph→∞

1
h

∫ h
0
N(ϑ)dϑ =

+∞, lim infh→∞
1
h

∫ h
0
N(ϑ)dϑ = −∞. There are

many functions that satisfy these conditions such as
exp(ϑ2) cos(ϑ), ϑ2 cos(ϑ), ln(ϑ + 1) cos(

√
ln(ϑ+ 1)) and

so on. In this paper, the Nussbaum function ϑ2 cos(ϑ) is
utilized. The following result is important in the subsequent
analysis [24].
Lemma 1: Let V (t) and ϑ(t) be smooth functions with

V (t) ≥ 0 for ∀t ∈ [0, tf ). If V (t) satisfies the inequality
V (t) ≤

∫ tf
0

(G(t)N(ϑ(t))+1)ϑ̇(t)dt+const with G(t) being
a bounded function, N(ϑ(t)) being a smooth Nussbaum
function, and const representing the suitable constant, then
V (t), ϑ(t) and

∫ tf
0

(G(t)N(ϑ(t))+1)ϑ̇(t)dt must be bounded
on [0, tf ).

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

A. System Transformation

By utilizing (2), (3), and (6), the system (1) can be
rewritten as 

ẋi,m = fi,m (x̄i,m, xi,m+1)
ẋi,n = fi,n (x̄i,n, ui)
u̇i = −ui + Pi,0vi + qi (vi)
yi = xi,1

(8)

To proceed, the non-affine constrained MAS (8) is trans-
formed into a strict feedback one by introducing the one-to-
one NM technique [17]. Define

zi,m = M(bm1, bm2, xi,m) = log
bm1 + xi,m
bm2 − xi,m

(9)
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where bm1 and bm2 are known positive constants. From
(9), it is easy to obtain that xi,m = bm2e

zi,m−bm1

ezi,m+1
. Then,

we further get that żi,m = hi,m(zi,m)ẋi,m, where hi,m =
ezi,m+e−zi,m+2

bm1+bm2
. Let zi,n+1 = ui. Then, the system (8) is

rewritten as:
żi,m = Fi,m + zi,m+1

żi,n = Fi,n + zi,n+1

żi,n+1 = −zi,n+1 + Pi,0vi + qi(vi)
ŷi = zi,1

(10)

where Fi,m(z̄i,m, zi,m+1) = hi,m(zi,m)fi,m(x̄i,m, xi,m+1)−
zi,m+1, Fi,n(z̄i,n) = hi,n(zi,n)fi,n(x̄i,n, zi,n+1)− zi,n+1.
Remark 1: After the system transformation, the objec-

tive of this paper is converted to design a distributed adaptive
consensus protocol for the transformed multi-agent systems
(10) such that the output ŷi of the followers will track the
reference trajectory ŷr = [log(b01 + yr)/(b02 − yr)], while
the system states remain bounded.

B. Controller Design

For the strict feedback system (10), based on the back-
stepping method, the DSC technique, and RBFNNs, the true
control law is constructed through n steps.

Step 1: This step is to design the virtual control αi,2d. The
local error surface ei,m and the boundary layer error Si,m
for the ith agent can be defined as

ei,1 =

N∑
j=1

aij (zi,1 − zj,1) + bi (zi,1 − ŷr) (11)

ei,m = zi,m − αi,m (12)
Si,m = αi,m − αi,md,m = 2, . . . , n, (13)

where αi,m refers to the output of the first-order filter with
a time constant τi,m which is of the form:

τi,mα̇i,m + αi,m = αi,md, αi,m(0) = αi,md(0) (14)

The first part of the Lyapunov function candidate for the ith
agent can be constructed as

Vi,1 =
1

2 (bi + di)
e2
i,1 +

1

2γ1,1
χ̃2
i,1 +

1

2
S2
i,2 (15)

where γi,1 is the design parameter and χ̃i,1 is the estimation
error which is expressed as χ̃i,1 = χi,1 − χ̂i,1. χ̂i,1 is the
estimation of χi,1 defined as χi,1 = ‖W ∗i,1‖22. zi,2 = ei,2 +
Si,2 + αi,2d. The derivative of ei,1 is computed as ėi,1 =

(bi + di) (Fi,1 + zi,2) −
N∑
j=1

aij (Fj,1 + zj,2) − bi ˙̂yr. Taking

the time derivative of Vi,1, we have

V̇i,1 =
1

bi + di
ei,1ėi,1 +

χ̃i,1

(
− ˙̂χi,1

)
γi,1

+ Si,2Ṡi,2 (16)

= − ei,1
bi + di

N∑
j=1

aij (Fj,1 + zj,2) + ei,1 (Fi,1 + zi,2)

− ei,1bi ˙̂yr
bi + di

+
χ̃i,1
γi,1

(
− ˙̂χi,1

)
+ Si,2Ṡi,2

Let Φi,1(ξi,1) = W ∗Ti,1 φi,1 + δi,1 = Fi,1 −

1
bi+di

[
N∑
j=1

aij (Fj,1 + zj,2)+bi ˙̂yr

]
. Then, we have

V̇i,1 =ei,1
(
W ∗Ti,1 φi,1 + δi,1 + ei,2 + αi,2d + Si,2

)
+
χ̃i,1
γ1,1

(
− ˙̂χi,1

)
+ Si,2Ṡi,2 (17)

By employing Young’s inequality, we have ei,1W
∗T
i,1 φi,1 ≤

χi,1
2η2i,1

φTi,1φi,1e
2
i,1 +

η2i,1
2 , ei,1δi,1 ≤

e2i,1
2 +

ε̄2i,1
2 , ei,1ei,2 ≤

e2i,2
2 +

e2i,1
2 , ei,1Si,2 ≤

S2
i,2

2 +
e2i,1
2 , where ηi,1 is the design

parameter. Now, we design the virtual controller αi,2d and
the update law ˙̂χi,1 as

αi,2d =− ki,1ei,1 −
3

2
ei,1 −

χ̂i,1
2η2
i,1

φTi,1φi,1ei,1 (18)

˙̂χi,1 =γi,1

(
e2
i,1

2η2
i,1

φTi,1φi,1 − σi,1χ̂i,1

)
(19)

where ki,1, ηi,1, σi,1, γi,1 are design parameters. Substituting
the virtual control law (18) and the update law (19) into (17)
yields

V̇i,1 ≤− ki,1e2
i,1 +

e2
i,2

2
+ σi,1χ̃i,1χ̂i,1

+
S2
i,2

2
+ Si,2Ṡi,2 +

η2
i,1

2
+
ε̄2
i,1

2
(20)

Using the fact that χ̂i,1χ̃i,1 = χ̃i,1 (χi,1 − χ̃i,1) ≤ − 1
2 χ̃

2
i,1 +

1
2χ

2
i,1, one can obtain that

V̇i,1 ≤ −ki,1e2
i,1 +

e2
i,2

2
−
σi,1χ̃

2
i,1

2

+
S2
i,2

2
+ Si,2Ṡi,2 + ci,1 (21)

where ci,1 = σi,1χ
2
i,1

/
2 + η2

i,1

/
2 + ε̄2

i,1

/
2 is a constant.

Step m (2 6 m 6 n): The Lyapunov function for m =
2, . . . , n can be constructed as

Vi,m =
1

2
e2
i,m +

1

2γi,m
χ̃2
i,m +

1

2
s2
i,m+1 (22)

where γi,m is the design parameter and χ̃i,m is the estimation
error which is expressed as χ̃i,m = χi,m− χ̂i,m. χ̂i,m is the
estimation of χi,m. Let Φi,m(ξi,m) = W ∗Ti,mφi,m (ξi,m) +
δi,m (ξi,m) = Fi,m − α̇i,m. Taking the time derivative of
Vi,m yields that

V̇i,m =ei,mėi,m +
χ̃i,m

(
− ˙̂χi,m

)
γi,m

+ Si,m+1Ṡi,m+1

= ei,m
(
W ∗Ti,mφi,m + δi,m + ei,m+1 + Si,m+1 + αi,(m+1)d

)
+
χ̃i,m

(
− ˙̂χi,m

)
γi,m

+ Si,m+1Ṡi,m+1 (23)

Since zi,m+1 = ei,m+1 + Si,m+1 + αi,(m+1)d, the time
derivative of ei,m can be represented as

ėi,m =żi,m − α̇i,m
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=Fi,m + ei,m+1 + Si,m+1 + αi,(m+1)d − α̇i,m (24)

By applying Young’s inequality, we have ei,mW
∗T
i,mφi,m ≤

χi,m
2η2i,m

φTi,mφi,me
2
i,m +

η2i,m
2 , ei,mδi,m ≤ e2i,m

2 +

ε̄2i,m
2 , ei,mei,m+1 ≤ e2i,m+1

2 +
e2i,m

2 , ei,mSi,m+1 ≤
S2
i,m+1

2 +
e2i,m

2 , where ηi,m is the design parameter. The
virtual controller αi,(m+1)d and the update law ˙̂χi,m are
proposed as

αi,(m+1)d =− ki,mei,m − 2ei,m −
χ̂i,m
2η2
i,m

φTi,mφi,mei,m

(25)

˙̂χi,m =γi,m

(
φTi,mφi,m

2η2
i,m

e2
i,m − σi,mχ̂i,m

)
(26)

where ki,m, ηi,m, σi,m, γi,m are design parameters.
Taking the virtual control law (25) and the update law (26)

into (23), we have

V̇i,m ≤− ki,me2
i,m −

1

2
e2
i,m + σi,mχ̃i,mχ̂i,m +

e2
i,m+1

2

+
S2
i,m+1

2
+
η2
i,m

2
+
ε̄2
i,m

2
+ Si,m+1Ṡi,m+1 (27)

Similarly, we have

χ̂i,mχ̃i,m = χ̃i,m (χi,m − χ̃i,m) ≤ −1

2
χ̃2
i,m +

1

2
χ2
i,m (28)

From (27) and (28), we get

V̇i,m ≤− ki,me2
i,m −

1

2
e2
i,m +

1

2
e2
i,m+1 −

1

2
σi,mχ̃

2
i,m

+
1

2
S2
i,m+1 + Si,m+1Ṡi,m+1 + ci,m (29)

where ci,m = σi,mχ
2
i,m

/
2 + η2

i,m

/
2 + ε̄2

i,m

/
2 is a constant.

Step n+1: In this step, the actual control law will be
designed. Considering a Lyapunov function as

Vi,n+1 =
1

2
e2
i,n+1 +

1

2γi,n+1
χ̃2
i,n+1 (30)

The derivative of the first term of the right side of (30) is

ėi,n+1 =żi,n+1 − α̇i,n+1

=− zi,n+1 + Pi,0vi + qi(vi)− α̇i,n+1 (31)

Let Φi,n+1 = W ∗Ti,n+1φi,n+1 + δi,n+1 = −zi,n+1 −
α̇i,n+1. By applying Young’s inequality, we have
ei,n+1W

∗T
i,n+1φi,n+1 ≤ χi,n+1

2η2i,n+1
φTi,n+1φi,n+1e

2
i,n+1 +

1
2η

2
i,n+1, ei,n+1δi,n+1 ≤

e2i,n+1

2 +
ε̄2i,n+1

2 , where ηi,n+1 is
the design parameter. Taking the time derivative of Vi,n+1

yields that

V̇i,n+1 = ei,n+1ėi,n+1 −
χ̃i,n+1

˙̂χi,n+1

γi,n+1

≤ χi,n+1

2η2
i,n+1

e2
i,n+1φ

T
i,n+1φi,n+1 +

1

2
η2
i,n+1 +

1

2
ε̄2
i,n+1

+ e2
i,n+1 +

1

2
q̄2
i + Pi,0ei,n+1vi −

χ̃i,n+1
˙̂χi,n+1

γi,n+1
(32)

The control law vi and the update law ˙̂χi,n+1 are designed
as

vi = Ni (ζi)[
ki,n+1ei,n+1 +

3

2
ei,n+1 +

χ̂i,n+1

2η2
i,n+1

φTi,n+1φi,n+1ei,n+1

]
(33)

ζ̇i = ki,n+1e
2
i,n+1 +

3

2
e2
i,n+1 +

χ̂i,n+1

2η2
i,n+1

φTi,n+1φi,n+1e
2
i,n+1

(34)

˙̂χi,n+1 = γi,n+1

(
e2
i,n+1

2η2
i,n+1

φTi,n+1φi,n+1 − σi,n+1χ̂i,n+1

)
(35)

where ki,n+1, ηi,n+1, σi,n+1 and γi,n+1 are positive design
parameters. Based on (33), (34) and (35), the time derivative
of Vi,n+1 is obtained as follows

V̇i,n+1 ≤ (Ni (ζi)Pi,0 + 1) ζ̇i − ki,n+1e
2
i,n+1

− 1

2
e2
i,n+1 −

1

2
σi,n+1χ̃

2
i,n+1 + ci,n+1 (36)

where ci,n+1 = σi,n+1χ
2
i,n+1

/
2+η2

i,n+1

/
2+q̄2

i /2+ε̄2
i,n+1

/
2

is a constant.

C. Stability Analysis

From the boundary layer errors Si,m+1 (13) and the filter
for αi,(m+1) (14), we have α̇i,m+1 =

αi,(m+1)d−αi,m+1

τi,m+1
=

−Si,m+1

τi,m+1
. Furthermore, Ṡi,m+1 = α̇i,m+1 − α̇i,(m+1)d =

−Si,m+1

τi,m+1
− α̇i,(m+1)d. It is obvious that α̇i,(m+1)d is the

function of variables ei,1, . . . , ei,m, χ̂i,1, . . . , χ̂i,m. Thus,∣∣∣∣Ṡi,m+1 +
Si,m+1

τi,m+1

∣∣∣∣ ≤ Ji,m+1(ei,1, . . . , ei,m, χ̂i,1, . . . , χ̂i,m)

(37)

where Ji,m+1(.) is a continuous function, m = 1, . . . , n.
Now, construct the Lyapunov function candidate for the ith
agent as Vi =

∑n+1
m=1 Vi,m. By applying (21), (29), (36) and

taking the time derivative of Vi, we have

V̇i ≤−
n+1∑
m=1

ki,me
2
i,m −

n+1∑
m=1

1

2
σi,mχ̃

2
i,m

+

n∑
m=1

(
1

2
S2
i,m+1 + Si,m+1Ṡi,m+1

)

+

n+1∑
m=1

ci,m + (Ni (ζi)Pi,0 + 1) ζ̇i (38)

In view of (37), all the variables in the function Ji,m+1(.)
are bounded, and thus we assume that there exists an upper
bound on Ji,m+1(.) such that |Ji,m+1(·)| ≤ Ni,m+1 [8].
Using Young’s inequality, we have that

Si,m+1Ṡi,m+1 ≤ −
S2
i,m+1

τi,m+1
+

1

2
S2
i,m+1 +

1

2
N2
i,m+1 (39)
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Substituting (39) into (38), it follows that

V̇i ≤−
n+1∑
m=1

ki,me
2
i,m −

n+1∑
m=1

1

2
σi,mχ̃

2
i,m + Ci

−
n∑

m=1

(
1

τi,m+1
− 1

)
S2
i,m+1 + (Ni (ζi)Pi,0 + 1) ζ̇i

(40)

where Ci =
n+1∑
m=1

ci,m+
n∑

m=1

1
2N

2
i,m+1 is a constant.

Let K1 = min
{

2ki,1 (bi + di) , 2ki,m,
2

τi,m
− 2
}
,m =

2, · · · , n + 1,K2 = min {σi,mγi,m} ,m = 1, · · · , n + 1.
Then, we have

V̇i ≤ −K
n+1∑
m=1

(
1

2
e2
i,m +

1

2γi,m
χ̃2
i,m

)
+ Ci

−K
n∑

m=1

S2
i,m+1 + (Ni (ζi)Pi,0 + 1) ζ̇i

≤ −KVi + Ci + (Ni (ζi)Pi,0 + 1) ζ̇i (41)

where K = min {K1,K2}. Integrating the differenti-
ation inequality (41) with respect to [0, t) yields that
0 ≤ Vi (t) ≤ e−Kt

∫ t
0
eKτ (Ni (ζi)Pi,0 + 1) ζ̇idτ +(

Vi (0)− Ci
K

)
e−Kt + Ci

K . According to Lemma 1, we have
that Vi,

∫ t
0

(Ni (ζi)Pi,0 + 1) ζ̇idτ and ζi are bounded on
[0, t). Therefore, it can be concluded that for the ith sub-
system all the signals in the closed-loop remain bounded.

The Lyapunov function candidate for the whole
MAS is selected as V =

∑N
i=1 Vi. Applying

(41) yields V̇ =
N∑
i=1

V̇i ≤
N∑
i=1

(−KVi + Ci) +

N∑
i=1

(Ni (ζi)Pi,0 + 1) ζ̇i ≤ −KV + C +

N∑
i=1

(Ni (ζi)Pi,0 + 1) ζ̇i, where C =
N∑
i=1

Ci. Then, we

have V ≤
N∑
i=1

e−Kt
∫ t

0
eKτ (Ni (ζi)Pi,0 + 1) ζ̇idτ +

(V (0)− C
K )e−Kt + C

K . Note that
∫ t

0
(Ni (ζi)Pi,0 + 1) ζ̇idτ

is bounded on [0, t). Let Mi be upper bound of∣∣∣e−Kt ∫ t0 eKτ (Ni (ζi)Pi,0 + 1) ζ̇idτ
∣∣∣. Finally, we get

V ≤ M + (V (0) − C
K )e−Kt + C

K where M =
∑N
i=1Mi.

It shows that V (t), ei,m, χ̃m(m = 1, . . . , n + 1),
Si,m(m = 2, . . . , n + 1) are bounded. Furthermore,
αi,md, αi,m(m = 2, . . . , n + 1) are also uniformly
ultimately bounded. Let E1 = (e1,1, · · · , eN,1)T

and z1 = (z1,1, · · · , zN,1)T . From (11), we have
E1 = (L + B) (z1 − ŷr). Then, it is obvious that
‖z1 − ŷr‖ ≤ ‖E1‖/(λmin(L+B)) is bounded. Based on
(12) and (13), zi,m(m = 2, . . . , n+ 1) are also bounded. By
appropriately setting the parameters ki,m, τi,m, σi,m, γi,m,
the value E1 can be made as small as possible. By setting
b01 = b11, b02 = b12, the tracking error |xi,1 − yr| is also
made as small as possible. All system states are remained
in the constrains xi,m ∈ Ωxi,m ,m = 1, . . . , n.

From the above analysis, we derive the main result in the
following theorem.
Theorem 1: Consider the non-affine pure-feedback MAS

(1) under Assumptions 1-2, with the virtual control laws (18),
(25), the adaptive laws (19), (26), (35) and the actual con-
troller (33). For any initial conditions satisfying χ̂i,m (0) > 0
and xi,m(0) ∈ Ωxi,m , by appropriately setting the parameters
ki,m, τi,m, σi,m, γi,m, the cooperaitve tracking errors can be
made as small as possible while the full states are bounded in
Ωxi,m for any t ≥ 0 and the control inputs are also bounded.

IV. SIMULATION RESULTS

To confirm the effectiveness of the proposed control, the
simulation is conducted in this section.

Consider a MAS including four agents modeled by
ẋi,1 = xi,2 + 0.05 sin (xi,2)

ẋi,2 = 0.1 sin (ui) +
(

0.9 + 0.05e−x
2
i,1

)
ui

yi = xi,1

(42)

The communication topology is set as 1 ← 0 → 2 →
4, 2 → 3. The trajectory of the leader node labeled by
0 is yr = sin(0.5t). The input saturation for τi (vi) are
considered with UN = 3. The initial conditions of the fol-
lowers are set as xi,1(0) = [0.5,−0.4, 0.8,−0.1]T , xi,2(0) =
[−0.7, 1, 0.9, 0]T . The design parameters are selected as
ki,1 = [5, 6, 6, 6]

T , ki,2 = [2, 1, 2, 1]
T , γi,1 = γi,2 = 2,

σi,1 = σi,2 = 0.5, ηi,1 = ηi,2 = 2, τi,2 = 0.001, b11 = 1.3,
b12 = 1.6, b21 = 1, b22 = 1.1. The tracking performance
is illustrated in Fig.1(a). By applying the proposed control
method, it shows that outputs of the followers can track
the desired trajectory and always remain in Ωxi,1 = {xi,1 :
−1.3 < xi,1 < 1.6}. Fig.1(b) shows that the states xi,2 of
the followers also remain in Ωxi,2 = {xi,2 : −1 < xi,2 <
1.1}. Fig.2 represents the control inputs of the four agents.
Fig.3 is the estimations of the unknown parameters χi,1
and χi,2. As Fig.4 shows, there is a significant difference
between system states xi,2 with or without constraints. As
we see, it is apparent that the proposed control based on NM
method guarantees that the system states always stay in the
constraints Ωxi,2 = {xi,2 : −1 < xi,2 < 1.1}.
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Fig. 1. (a)The tracking performance; (b) xi,2 with constraints.

V. CONCLUSION

This paper addresses the tracking problem of a class
of pure-feedback nonlinear uncertain MASs with full state
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constraints and input saturation under the unknown control
direction. Based on the NM, Nussbaum functions,and degree
elevation technique, a distributed neural adaptive control law
is proposed recursively and the proposed scheme is very
concise. It is proven that the tracking errors can be made
as small as possible while all the state and control input
constraints are always guaranteed.
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