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Abstract— In this article, we propose a novel moving horizon
estimation method for discrete-time linear systems through
transfer learning. Most moving horizon estimator designs re-
quire data from the considered systems of interest. However,
practical processes might suffer from data availability issues,
especially in a new or early operating environment. Motivated
by the idea of transfer learning, this manuscript proposes a
moving horizon estimator design using data from a similar but
different system (i.e., source system) instead of the considered
system (i.e., target system). Based on the data from the source
system, we propose a novel moving horizon state estimation
method for the target system and provide convergence and
stability analyses. The state estimation error is upper bounded
by a time-dependent sequence that is related to three types
of similarities/differences between target and source systems,
including initial conditions, disturbance levels, and model
parameters. The effectiveness of the proposed approach is
demonstrated through a numerical example.

I. INTRODUCTION

Over the past decades, moving horizon estimation (MHE),
or receding horizon estimation, has been an active re-
search topic in the systems and control community. As
an optimization-based technique, MHE has shown its ca-
pacity of addressing state and parameter estimation while
handling constraints, and hence has been applied to vari-
ous types of dynamical systems, including linear lumped
parameter (finite-dimensional) systems [1]–[3], nonlinear
lumped parameter systems [4]–[6], linear distributed param-
eter (infinite-dimensional) systems [7], hybrid systems [8]–
[10], and so on. However, most of the MHE designs rely on
data from the considered systems of interest, which might
not be possible for some practical applications, e.g, those at
early or new operating conditions. In this work, we propose a
novel MHE method named transfer MHE by using concepts
from transfer learning, and prove its convergence properties
by using data borrowed from a similar system.

The fundamental motivation of transfer learning for ma-
chine learning (ML) was discussed in a NIPS-95 workshop
on “Learning to Learn”, where one theme was focused
on developing methods using models previously learned
for some problems as a basis when learning new, but
related, problems 1. The specific aspects and methods of
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transfer learning were comprehensively reviewed in [11],
where four different classes of approaches were summa-
rized, including instance-transfer (or output data trans-
fer), feature-representation-transfer, parameter-transfer, and
relational-knowledge-transfer, which provide important in-
sights and concepts on the transfer learning. Transfer learning
approaches have been widely used for fault diagnosis and
soft sensing; see e.g., [12], [13]. Recently, the concepts
of transfer learning were used for solving a linear system
identification problem in [14], where state measurement data
generated by a similar (but not identical) system as well as
state measurement data from the true system were jointly
utilized for identifying the true system in the presence of
process noise. However, research work on transfer learning
for state estimation remains under-explored in the literature.

In this work, we apply the concepts of transfer learning to
the moving horizon estimator design of discrete-time linear
time-invariant systems. More specifically, we consider the
cases that there is no data available in the considered system
(i.e., target system), and design a moving horizon estimator
of the target system by leveraging data from a similar but
different system (i.e., source system). To the best of authors’
knowledge, it is the first contribution that combines moving
horizon estimation and transfer learning and uses them for
state estimation of a target system using data from a source
system. The MHE framework that we use in this work is
adopted from [3] considering that it is formulated as an
entirely deterministic scheme using a fixed prior diagonal
matrix (a user-designed parameter) as the arrival cost, which
is different from the ones in [1], [2]. Moreover, we con-
sider three types of similarities/differences between target
and source systems, including initial conditions, disturbance
levels, and model parameters. The contributions of this article
are two-fold.

The first contribution is that we develop a novel mov-
ing horizon estimation approach based on the concepts of
transfer learning. The typical MHE algorithms deploy a
recursive least squares mechanism using equally weighted
output samples. In this article, we propose a transfer MHE
algorithm as a recursive weighted least squares algorithm
that allows one to assign different weights to each output
sample to express the transferability individually. Moreover,
we propose a method to determine the weights via solving
an optimization problem.

The second contribution is that we provide the conver-
gence and stability analyses for the proposed transfer MHE
approach. In particular, we have established the convergence
and stability analyses in Theorem 2 in terms of the con-
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sidered three kinds of similarities/differences between target
and source systems, including initial conditions, disturbance
levels, and model parameters. We prove that the state estima-
tion error is upper bounded by a time-dependent bounding
sequence whose convergence depends on the considered
three kinds of similarities/differences between target and
source systems. In addition, we show that in Corollary 1 the
transfer MHE using source-domain data would outperform
the traditional MHE using target-domain data, provided that
the difference between the model parameters of target and
source systems are sufficiently small and the disturbance
level of source-domain data is milder than that of the target-
domain data.

The rest of this article is organized as follows. The
problem statement of transfer moving horizon estimation is
formulated in Section II. The moving horizon estimation
algorithm design and its convergence and stability analyses
are presented in Section III. Section IV validates the pro-
posed theoretical results on a numerical example. Finally,
concluding remarks are drawn in Section V.

Notations: We denote vmn = col(vm, vm+1, . . . , vn) and
{xk}T0 = {x0, x1, . . . , xT }. N0 denotes the set of non-
negative integers and Rn denotes the n-dimensional Eu-
clidean space. For an element u ∈ Rn, the symbol ‖u‖
denotes the 2-norm of u in space Rn, and ‖u‖P represents
the weighted norm of u, namely, ‖u‖P = (u′Pu)1/2.
Moreover, for a positive integer N ,

∏N
i=1Ai = A1A2...AN

denotes the ordered product of matrix Ai, i = 1, 2, . . . , N .

II. PROBLEM STATEMENT

Consider a discrete-time linear system with plant and
measurement disturbances as:

xk+1 = Axk + wk (1a)
yk = Cxk + vk (1b)

for k ∈ N0, where xk ∈ Rn denotes the state (the initial
state x0 is unknown) and yk ∈ Rp represents the output
measurement at time k. Notations wk ∈ W ⊂ Rn and
vk ∈ V ⊂ Rp represent plant and measurement disturbances,
respectively. We assume that the statistics of initial state
x0, plant disturbance wk, and output disturbance vk are
unknown, and consider them as deterministic variables of an
unknown kind. If there are output data available from system
(1), also termed as target system of interest, one can readily
deploy the typical methods proposed in [1]–[3] for a moving
horizon state estimator design. In this paper, we consider that
there are no data available from target system (1), and we
aim to address the moving-horizon state estimation of target
system (1) using data from another system that is similar to
but different from the target system.

Consider another discrete-time linear system with plant
and measurement disturbances as:

xsk+1 = (A+ δAk)xsk + wsk (2a)
ysk = (C + δCk)xsk + vsk (2b)

for k ∈ N0, where xsk ∈ Rn denotes the state (the initial
state xs0 is unknown) and ysk ∈ Rp represents the output

measurement at time k. Notations wsk ∈ W s ⊂ Rn and
vsk ∈ V s ⊂ Rp represent the plant and measurement
disturbances, respectively. To distinguish the notations from
the target system (1), we use the superscript “s” to denote
the system (2) (termed as the source system2). Similar to
the target system, we assume that the statistics of initial
state, plant disturbance, and output disturbance of source
system (2) are unknown, and consider them as deterministic
variables of an unknown kind. In addition, the matrices
δAk and δCk are assumed to be known to the designer
but time varying, indicating that the parameters of the target
and source systems are different in a time-varying manner.
Moreover, δAk and δCk are assumed to belong to the known
compact sets A and C, respectively.

Throughout this article, we consider the following estima-
tion problem:
Problem 1: Estimate state {xk}T0 of the target system (1) by
using output measurements {ysk}T0 from source system (2).

Most existing references (e.g., [1]–[10]) address the state
estimation problems using data coming from the considered
system (i.e., target system). However, in practice, this might
not be the case, where no (or very limited) data are available
from the target system, while sufficient data available from
similar systems (i.e., source systems). This motivates the
present work. In particular, the formulated state estimation
problem of target system (1) by using measurements from
source system (2) enables one to account for the similarities
and differences between source system (2) and target system
(1) in terms of model parameters, initial conditions, as well
as the disturbance levels. Intuitively, if the differences be-
tween source system (2) and target system (1) is sufficiently
small, the state estimation of the target system using source-
domain data can achieve relatively reasonable results.

For rigorous analysis, we make the following assumptions.
Assumption 1: W , V , W s, and V s are compact sets, and
we denote that rw = maxw∈W ‖w‖, rv = maxv∈V ‖v‖,
rsw = maxws∈W s ‖ws‖, and rsv = maxvs∈V s ‖vs‖.
Assumption 2: System (1) is stable, and system (2) is
quadratically stable, that is, there exists a positive definite
matrix P such that is:

(A+ δA)′P (A+ δA)− P < 0, ∀δA ∈ A

Assumption 3: The pair (A,C) is completely observable in
N steps.

Assumption 1 ensures bounded plant and measurement
disturbances in both target and source systems. Assumption
2 guarantees that the spectral radius of A is smaller than 1,
and the spectral radius of A + δA is smaller than 1 for all
δA ∈ A, namely,

a , ‖A‖ < 1 and aP , max
δA∈A

‖A+ δA‖P < 1 (3)

where we further denote aδ , maxδAk∈A ‖δAk‖P . For
an operating procedure to verify Assumption 2, readers are
referred to [15, Proposition 2]. The observability condition

2In transfer learning problems, target and source domains are commonly
used terminologies. Here, we adopt the similar terminologies.
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in Assumption 3 is commonly needed to show the stability
analysis in observer/estimator design.
Remark 1: For simplicity, we consider target and source
systems (1)-(2) by omitting control inputs. It is worth noting
that in practice the target and source systems can possibly
have totally different control inputs from close loops depend-
ing the specific regulation purposes, thus making it more
challenging for a meaningful transfer.

III. MOVING HORIZON ESTIMATION

In this section, we propose a novel moving horizon es-
timation framework based on the one proposed in [3]. The
differences between our design and the one in [3] are two-
fold. First, our framework takes a weighted least squares
framework instead of a least squares framework as in [3].
Second, we use the output measurement data from source
system (2) (instead of the data from the considered system)
for state estimation of target system (1). The main idea of
the MHE design for system (1) is to minimize a quadratic
cost Jt defined on the interval [t−N, t] as:

Jt(x̂t−N |t)=µ‖x̂t−N |t−x̄t−N‖2+

t∑
k=t−N

‖qkysk−Cx̂k|t‖2 (4a)

s.t. : x̂k+1|t = Ax̂k|t, k ∈ {t−N, . . . , t− 1} (4b)

where ‖ · ‖ denotes the Euclidean norm, x̂k|t represents the
estimated state at time t, x̄t−N denotes a priori estimate of
xt−N at time t− 1, and µ is a non-negative scalar that is a
design parameter expressing the belief in the state estimate
x̄t−N compared to the observation model. The second term
in (4a) denotes the prediction error computed on the basis of
the most recent measurements multiplied by weights qk. The
use of a weighted least squares is motivated by the fact that
the target and source systems are similar but different, and we
aim to compensate the difference via a weighted least squares
framework with proper weights qk. A similar weighted least
squares has been reported in [14] for addressing a system
identification problem.

Based on the proposed MHE framework (4), we formulate
the following estimation problem:
Problem Et: For a given priori state estimate x̄t−N and
output measurements ys,t−Nt , find the optimal estimates x̂ok|t
for k ∈ {t − N, . . . , t} that minimize the cost Jt in (4a)
subject to constraint (4b).

When moving from the estimation problem Et to the
next estimation problem Et+1, the optimal state estimate is
propagated through:

x̄t−N+1 = Ax̂ot−N |t (5)

For brevity, we make the following notations. The output
measurements of target system (1) in the interval [t −N, t]
are written as:

yt−Nt = FNxt−N +HNw
t−N
t−1 + vt−Nt (6)

where FN and HN are defined as follows:

FN =


C
CA

...
CAN

, HN =


0 0 . . . 0
C 0 . . . 0
CA C . . . 0

...
...

. . .
...

CAN−1 CAN−2 . . . C

 (7)

Considering that Assumption 3 holds, we denote

δb , λmin(F ′NFN ) > 0 (8)

Similarly, one can define the output measurements sequence
of source system (2) in the interval [t−N, t] as:

ys,t−Nt = FN (δAt−1
t−N , δC

t
t−N )xst−N

+HN (δAt−1
t−N , δC

t
t−N )ws,t−Nt−1 + vs,t−Nt (9)

where FN and HN are denoted as follows:

FN (δAt−1
t−N , δC

t
t−N )=


(C + δCt−N )

(C+ δCt−N+1)(A+δAt−N )
...

(C+ δCt)
∏N
i=1(A+δAt−i)

 (10)

HN (δAt−1
t−N , δC

t
t−N )=


0 0 . . . 0

(C + δCt−N+1) 0 . . . 0
(C + δCt−N+2)(A+ δAt−N+1) (C + δCt−N+1) . . . 0

...
...

. . .
...

(C + δCt)
∏N−1
i=1 (A+ δAt−i) (C + δCt)

∏N−2
i=1 (A+ δAt−i) . . . (C + δCt−N+1)

 (11)

From (6) and (9) along with notation Q =
diag{qt−N , qt−N+1, . . . , qt}, we define “transfer innovation”
as the distance between the disturbance-free output
measurements of target system (1) and the disturbance-free
weighted output measurements of source system (2) as:

‖QFN (δAt−1
t−N , δC

t
t−N )xst−N − FNxt−N‖

≤‖(QFN (δAt−1
t−N , δC

t
t−N )− FN )xst−N‖

+ ‖FN (xst−N − xt−N )‖
≤γ‖xst−N‖+ fmax‖xst−N − xt−N‖
≤c0‖xs0‖P + c1‖xs0 − x0‖P + c2r

p
w + c3r

s,p
w (12)

where the last equality holds due to ‖xst−N‖ ≤
1/
√
λmin(P )(at−Np ‖xs0‖ +

1−at−Np

1−ap rs,pw ), and
we denote that fmax = ‖FN‖, γ =
maxδAt−1

t−N∈AN+1,δCtt−N∈CN+1 ‖QFN (δAt−1
t−N , δC

t
t−N )−FN‖,

and

c0 =
1√

λmin(P )

(
γat−Np + fmaxaδ

t−N−1∑
i=0

aipa
t−N−1−i

)

c1 =
fmax√
λmin(P )

× at−N , c2 =
fmax√
λmin(P )

× 1− at−N

1− a
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c3 =
1√

λmin(P )
×

(
γ

1− at−Np

1− ap
+ fmax ×

(1− at−N

1− a

+ aδ

t−N−1∑
i=1

1− aip
1− ap

at−N−1−i
))

Remark 1: The defined “transfer innovation” is dependent
on both system parametric difference (reflected by δAk and
δCk) and the distance between actual initial conditions of
target and source systems. Motivated by that the terminology
“innovation” is often used in Kalman filter, the definition
“transfer innovation” enables us to quantify the transferrable
output from source system (2) to facilitate state estimation
of target system (1). As expected, it would approach to zero,
as the similarity between the target and source domains
increases. In the extreme case where target and source
domains are identical, such term would be equal to zero,
implying we handle two identical systems, and the MHE
design reduces to the typical MHE framework with Q = I .

For any given initial conditions, we can minimize the
transfer innovation with respect to Q as follows:

Q = arg min
δAt−1

t−N,δC
t
t−N ,Q

‖QFN (δAt−1
t−N , δC

t
t−N )−FN‖ (13)

where δAi ∈ A for i = t − N, . . . , t − 1 and δCi ∈ C for
i = t−N, . . . , t.
Proposition 1: Suppose that µ > 0 or that Assumption 3 is
verified. Then, problem Et has a unique solution given by:

x̂ot−N |t = (µI+ F ′NFN )−1×
[
µx̄t−N+ F ′NQy

s,t−N
t

]
(14)

for t = N,N + 1, . . . .
Proof of Proposition 1: The proof can be similarly done by
following that of [3, Proposition 1], and hence it is omitted.

In the following, we first revisit an existing result (i.e.,
[3, Theorem 1]) on stability analysis of MHE in a slightly
different form, by using data coming from the considered
system, namely, target system (1). The norm of the state
estimation error is upper bounded by a sequence that de-
creases if suitable conditions on the scalar parameter of
the cost function are satisfied. This result will be used for
performance comparison with the proposed MHE later on.
Theorem 1: Under Assumptions 1 and 3, the norm of the
state estimation error of target system (1) using data {yk}
from target system (2) is bounded as ‖et−N‖2 = ‖xt−N −
x̂t−N‖2 ≤ ηt−N , for t = N,N + 1, . . . , and the sequence
{ηt} is given by

ηt = āηt−1 + b̄, η0 = κ̄ (15)

for t = 1, 2, . . . , where

κ̄ =
4

µ+ δb
(µ‖x0 − x̄0‖2 + c̄), ā =

8µa2

µ+ δb

b̄ =
8(µr2

w + c̄)

µ+ δb
, c̄ = N2r2

w‖HN‖2 + (N + 1)2r2
v

If µ is selected such that ā < 1, then
1) the sequence {ηt} converges to ηss = limt→+∞ ηt =

b̄
1−ā

2) if ηt > ηss, then ηt+1 < ηt; the sequence {ηt} is
strictly decreasing if η0 >

b̄
1−ā . �

Proof of Theorem 1: The proof can be similarly done by
following that of [16, Theorem 1]. �

By the following theorem, we show that the stability
analysis of the proposed MHE using data coming from
source system (2). In a similar manner to Theorem 1, we
show that norm of the state estimation error is upper bounded
by a sequence that decreases if suitable conditions on the
scalar parameter of the cost function are satisfied.
Theorem 2: Under Assumptions 1-3, the norm of the state
estimation error of target system (1) using data {ysk} from
source system (2) is bounded as ‖et−N‖2 = ‖xt−N −
x̂t−N‖2 ≤ ζt−N , for t = N,N + 1, . . . , and the bounding
sequence {ζt} is given by

ζt = āζt−1 + b̂, ζ0 = κ (16)

for t = 1, 2, . . . , where

κ =
4

µ+ δ
(µ‖x0 − x̄0‖2 − 2µr2

w) + b̂

b̂ = d1r
2
w + d2(rsw)2 + d3(rsv)

2 + d4‖xs0‖2P
+ d5‖xs0 − x0‖2P + d6(rpw)2 + d7(rs,pw )2

and ā is given in Theorem 1, where d1 = 8µ
µ+δb

, d2 =
12q2max‖HN‖

2N2

µ+δb
, d3 =

12q2max(N+1)2

µ+δb
, d4 =

48c20
µ+δb

, d5 =
48c21
µ+δb

, d6 =
48c22
µ+δb

, and d7 =
48c23
µ+δb

, with definition qmax =
‖Q‖ and notations c̄i, for i = 0, . . . , 3 given in (12).

If µ is selected such that ā < 1, then
1) the sequence {ζt} converges to ζss =

limt→+∞ ζt = 1
µ+δb−8µa2 ×

[
8µr2

w +

12(rsw)2q2
max‖HN‖2N2 + 12(rsv)

2q2
max(N + 1)2 +

48(rs,pw )2

λmin(P )

(
γ

1−ap + fmax
1−a × (1 + aδ

1−ap )
)2

+
48f2

max(r
p
w)2

λmin(P )(1−a)2

]
,

where we denote rpw = maxw∈W ‖w‖P and
rs,pw = maxws∈W s ‖ws‖P .

2) if ζt > ζss, then ζt+1 < ζt; the sequence {ζt} is strictly
decreasing if ζ0 > b̂

1−ā . �
Proof of Theorem 2: The rationale of the proof is motivated
by that of [3, Theorem 1]. More specifically, we seek to find
the upper and lower bounds for the cost function Jt.

From the optimality principle, we note that Jt(x̂t−N |t) is
upper bounded by Jt(xt−N |t) as follows:

Jt(x̂t−N |t) ≤ Jt(xt−N |t)
= µ‖xt−N |t − x̄t−N‖2 + ‖Qys,t−Nt − FNxt−N‖2

= µ‖A(xt−N−1 − x̄t−N−1)− wt−N−1‖2

+ ‖QFNxst−N− FNxt−N+QHNws,t−Nt−1 +Qvs,t−Nt ‖2

≤ 2µ‖A(xt−N−1 − x̂t−N−1)‖2 + 2µ‖wt−N−1‖2

+ 3‖QFNxst−N − FNxt−N‖2 + 3‖QHNws,t−Nt−1 ‖2

+ 3‖Qvs,t−Nt ‖2

≤ 2µa2‖et−N−1‖2 + 2µr2
w + 3q2

max‖HN‖2N2(rsw)2

+3q2
max(N + 1)2(rsv)

2 + 12c20‖xs0‖2P + 12c21‖xs0 − x0‖2P
+12c22(rpw)2 + 12c23(rs,pw )2 (17)
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where (9) is used in the above derivation, and for brevity, we
drop the dependence of FN and HN on δAt−1

t−N and δCtt−N .
By applying the triangular inequality, we derive the fol-

lowing lower bound for Jt(x̂t−N |t) as:

Jt(x̂t−N |t)

= µ‖x̂t−N |t − x̄t−N‖2 + ‖Qys,t−Nt − FN x̂t−N‖2

≥ µ
[1

2
‖xt−N − x̂t−N |t‖2 − ‖xt−N − x̄t−N‖2

]
+

1

2
‖FNxt−N− FN x̂t−N |t‖2−‖Qys,t−Nt −FNxt−N‖2

≥ µ+ δb
2
‖xt−N − x̂t−N |t‖2

− µ‖A(xt−N−1 − x̂t−N−1)− wt−N−1‖2

− 3‖QFNxst−N − FNxt−N‖2 − 3‖QHNws,t−Nt−1 ‖2

− 3‖Qvs,t−Nt ‖2

≥ µ+ δb
2
‖et−N‖2 − 2µa2‖et−N−1‖2 − 2µr2

w

−3q2
max‖HN‖2N2(rsw)2 − 3q2

max(N + 1)2(rsv)
2

−12c20‖xs0‖2P − 12c21‖xs0 − x0‖2P − 12c22(rpw)2

−12c23(rs,pw )2 (18)

Then by combining the upper and lower bounds in (17) and
(18), we can derive the following inequality:

‖et−N‖2 ≤
8µa2

µ+ δb
‖et−N−1‖2 + d1r

2
w + d2(rsw)2 + d3(rsv)

2

+ d4‖xs0‖2+ d5‖xs0−x0‖2+ d6(rpw)2+ d7(rs,pw )2

where the notations of di, i = 1, . . . , 7, are given in Theorem
2. Through further algebraic manipulation, one can derive
the bounding sequence {ζt} given by (16). The proof is
completed. �

Theorem 2 provides a converging bounding sequence for
the norm of the estimation error under the condition ā < 1. If
the prior estimate of the initial condition is chosen properly,
a fast converging estimation result can be expected.
Remark 2: From Theorem 2, we note that the bounding
sequence {ζt} of the state estimation error depends on the
plant disturbance levels of target and source systems (i.e.,
rsw and rw), measurement disturbance level of source system
(i.e., rsv) (as source data is used), and the transfer innovation.
Compared with a typical MHE design using data from the
target system, the bounding sequence of state estimation
error of the the proposed transfer MHE design is additionally
related to the system parametric difference (reflected by δAk
and δCk) and the distance between actual initial conditions
of target and source systems. It is worth noting that Theorems
1 and 2 share the same ā that determines the stability of the
upper bounding sequences {ηt} and {ζt}.

Although transfer MHE introduce additional error com-
ponent related to the system parametric difference and the
distance between actual initial conditions of target and source
systems, the transfer MHE design allows one to achieve
better estimation results provided that the disturbance levels
of the adopted source-system data is milder compared to
those in target systems in a typical MHE design. More

specifically, we will discuss such case in the following
corollary.
Corollary 1: Suppose that Assumptions 1-3 are verified.
The steady-state upper bound of the state estimation by
using the proposed transfer MHE design in Theorem 2
is smaller than that of using the typical MHE design in
Theorem 1 if there exist rw, rv, rsw, r

s
v ∈ R such that the

following holds: 3q2
max

(
(rsw)2‖HN‖2N2 +(rsv)

2(N + 1)2
)
+

12(rs,pw )2

λmin(P )

(
γ

1−ap + fmax
1−a × (1 + aδ

1−ap )
)2

+
12f2

max(r
p
w)2

λmin(P )(1−a)2 <

2(N2r2
w‖HN‖2 +(N+1)2r2

v), where the notations are given
in Theorem 2. �
Proof of Corollary 1: Corollary 1 descends directly from
Theorems 1-2 along with b̂

1−ā <
b̄

1−ā . �
Under the condition considered in Corollary 1, the transfer

MHE in Theorem 2 would achieve a smaller upper bound for
state estimation error compared to the typical MHE design
in Theorem 1.
Remark 3: It is worth noting that the proposed transfer MHE
in the disturbance-free cases (i.e., rw = 0, rsw = 0, and
rsv = 0) is an asymptotically stable observer (as its estimation
error converges asymptotically to zero). Such results are
consistent with the typical MHE design, e.g., [3, Corollary
1]. Due to the data availability issues, the formulated transfer
state estimation problem is more challenging compared to
the typical MHE design in [3]. The proposed transfer MHE
enables to leverage the data from a different system for
the state estimation of the target system with convergence
guarantee.

IV. NUMERICAL EXAMPLE

In this section, a numerical simulation is provided to
demonstrate the effectiveness of the proposed transfer mov-
ing horizon state estimation method. More specifically, we
consider the target system (1) with the following parameters:

A =

(
1 0.5

−0.125 0.9

)
, C =

(
1 0

)
For the source system (2), we first consider two cases
having the following parameters: Case 1: A + δAk = A −
0.001I, C + δCk = C − 0.001

(
1 1

)
, and Case 2: A +

δAk = A − 0.01I, C + δCk = C − 0.01
(
1 1

)
. In both

cases, we consider the initial condition for the target system
as x0 = [1; 1]. The parameters of the proposed MHE method
are taken as: N = 10 and µ = 0.001. In each simulation run
of MHE, the priori guess of the initial condition is taken
as zero. In Case 1, we consider the initial condition of
the source system is 0.98x0, along with disturbance norm
bounds: rsw = 0.001 and rsv = 0.001. In Case 2, we consider
the initial condition of the source system is 0.95x0, along
with disturbance bounds: rsw = 0.01, and rsv = 0.01. The
estimation results in both cases by using the proposed MHE
method are illustrated in Fig. 1. It can be observed that in
both cases, the estimated states are similar to the actual ones.
Compared to Case 2, the estimation results in Case 1 are
better, because of the milder disturbance level, similar initial
condition and model parameters.
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In Tables I-III, we carry out a sensitivity analysis of
the proposed MHE algorithm, subject to different parameter
values. The estimation performance is assessed in terms of
the root mean square error (i.e., RMSE), and the results are
obtained as averaged RMSE values of 100 runs. As shown
in Table I, the estimation performance error increases with
the increase of the model parameter difference. It can be
observed in Table II that as the plant and measurement
disturbance levels increase, the estimation performance of
the proposed MHE degrades. The influence of the distance
between the initial conditions of source and target systems
on the estimation performance is shown in Table III, where
the estimation error increases as the distance between the
initial conditions of source and target systems enlarges. The
results verify the proposed theoretical results (e.g., Theorem
2 and Remark 2).
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Fig. 1: State estimation results of x1 (up) and x2 (bottom)

TABLE I: Estimation performance with different δ in A +
δAk = A − δI, C + δCk = C − δ[1, 1] along with xs0 =
1.05x0, rsw = 0.002, and rsv = 0.002

δ 0.001 0.01 0.1
RMSE of estimation of x1 0.0404 0.2320 1.0551
RMSE of estimation of x2 0.0134 0.1504 0.5658

TABLE II: Estimation performance with different rsw and rsv
along with δ = 0.002 and xs0 = 1.05x0

rsw, r
s
v 0.001 0.01 0.1

RMSE of estimation of x1 0.0361 0.0463 0.3172
RMSE of estimation of x2 0.0172 0.0239 0.1853

TABLE III: Estimation performance with different β in xs0 =
βx0 along with rsw = 0.002, rsv = 0.002, and δ = 0.002

β 1.05 1.25 1.50
RMSE of estimation of x1 0.0365 0.2563 0.5595
RMSE of estimation of x2 0.0175 0.1061 0.2470

V. CONCLUSION

In this work, a transfer moving horizon estimator was
designed for linear discrete-time finite-dimensional systems
by using data from a similar but different system. The idea
of transfer learning was used for addressing the formu-
lated problem. A novel MHE algorithm was proposed in a
weighted least squares form. The convergence/stability anal-
yses of the proposed MHE design were conducted in terms
of similarities and differences between the source and target
systems/data, including initial conditions, disturbance levels,
and model parameters. A numerical simulation example
was provided to verify the proposed theoretical results. An
extension to time-varying systems constitutes future work.
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