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Abstract— This paper addresses a continuous-time risk-
minimizing two-player zero-sum stochastic differential game
(SDG), in which each player aims to minimize its probability
of failure. Failure occurs in the event when the state of the
game enters into predefined undesirable domains, and one
player’s failure is the other’s success. We derive a sufficient
condition for this game to have a saddle-point equilibrium and
show that it can be solved via a Hamilton-Jacobi-Isaacs (HJI)
partial differential equation (PDE) with a Dirichlet boundary
condition. Under certain assumptions on the system dynamics
and cost function, we establish the existence and uniqueness of
the saddle-point of the game. We provide explicit expressions
for the saddle-point policies which can be numerically evaluated
using path integral control. This allows us to solve the game
online via Monte Carlo sampling of system trajectories. We
implement our control synthesis framework on two classes
of risk-minimizing zero-sum SDGs: a disturbance attenuation
problem and a pursuit-evasion game. Simulation studies are
presented to validate the proposed control synthesis framework.

I. INTRODUCTION

Interactions among multiple agents are prevalent in many
fields such as economics, politics, and engineering. Game
theory studies the collective decision-making process of mul-
tiple interacting agents [1]. Two-person zero-sum games in-
volve two players with conflicting interests, and one player’s
gain is the other’s loss. Pursuit-evasion games (competition
between a pursuer and an evader) [2] and robust control
(competition between a controller and the nature) [1] are
some examples of two-player zero-sum games. In this paper,
we consider a two-player stochastic differential game (SDG)
in which the outcome of the game depends not only on
the decision of both players but also on the stochastic input
added by nature.

When the game dynamics and cost functions are known,
the saddle-point equilibrium of a two-player zero-sum SDG
can be characterized by the Hamilton-Jacobi-Isaacs (HJI)
partial differential equation (PDE). The analytical solutions
of the HJI PDEs are in general not available, and one needs to
resort to numerical methods such as grid-based approaches
[3], [4] to solve these PDEs approximately. However, the
grid-based approaches suffer from curse of dimensionality,
making them computationally intractable for systems with
large dimensions [5]. Moreover, in general, the solutions
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can not be computed in real-time using these methods; they
need to be precomputed as lookup tables and recalled for
use in an online setting [4]. Several reinforcement learning
algorithms have also been proposed to find approximate
solutions to game problems. A reinforcement-learning-based
adaptive dynamic programming algorithm is proposed in
[6] to determine online a saddle-point solution of linear
continuous-time two-player zero-sum differential games. A
deep reinforcement learning algorithm based on updating
players’ policies simultaneously is proposed in [7] to solve
two-player zero-sum games. These methods assume deter-
ministic game dynamics and do not consider system uncer-
tainties. In the presence of system uncertainties, the perfor-
mance and safety of both players are affected unpredictably,
if the uncertainties are not accommodated while designing
policies. An effective uncertainty evaluation method, the
multivariate probabilistic collocation, was used in [8] with
integral reinforcement learning to solve multi-player SDGs
for linear system dynamics online. A two-person zero-sum
stochastic game with discrete states and actions is solved in
[9] using Bayesian inverse reinforcement learning. Common
challenges in the learning-based methods include training
efficiency and rigorous theoretical guarantees on convergence
and optimality. Moreover, these approaches do not explicitly
take into account the players’ failure probabilities while
synthesizing their policies.

In our work, we formulate a continuous-time, nonlinear,
two-player zero-sum SDG on a state space modeled by
an Itô stochastic differential equation. Since the stochastic
uncertainties in our model are unbounded, both players have
nonzero probabilities of failure. Failure occurs when the state
of the game enters into predefined undesirable domains, and
one player’s failure is the other’s success. Our objective is
to solve a game in which each player seeks to minimize its
risk of failure (failure probability)1 along with its control
cost; hence, the name risk-minimizing zero-sum SDG. We
explain the risk-minimizing zero-sum SDG via the following
example:

Example 1: Consider a pursuit-evasion game in which the
pursuer catches the evader if they are less than a certain
distance ρ away from each other. In this setting, the evader
wishes to minimize its probability of entering the ball of
radius ρ centered at the pursuer’s location. Whereas, the
pursuer wishes to minimize the probability of staying out
of the ball of radius ρ centered at the evader’s location. The

1Throughout this paper the word “risk” simply means the probability of
failure. It is not our intention to discuss various risk measures existing in
the literature (e.g. [10], [11]).
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goal of each player is to balance the trade-off between the
above probabilities (probabilities of failure) and the control
cost (e.g., their energy consumption). This problem can be
formulated as a risk-minimizing zero-sum SDG.

We derive a sufficient condition for this game to have a
saddle-point equilibrium and show that it can be solved via
an HJI PDE with Dirichlet boundary condition. Under certain
assumptions on the system dynamics and cost function,
we establish the existence and uniqueness of the saddle-
point equilibrium of the formulated risk-minimizing zero-
sum SDG. Furthermore, explicit expressions for the saddle-
point policies are derived which can be numerically evaluated
using path integral control. The idea behind the path integral
control is to use the Feynman-Kac lemma [12] and solve a
linear PDE via Monte Carlo samples of system trajectories
[13], [14]. The Monte Carlo simulations can be massively
parallelized through the use of graphics processing units
(GPUs); hence this approach is less susceptible to the curse
of dimensionality. The use of the path integral technique to
solve stochastic games was proposed in [15]. In this paper,
we generalize their work and develop a path integral formu-
lation to solve HJI PDEs with Dirichlet boundary conditions
and find saddle-point equilibria of risk-minimizing zero-sum
SDGs. The proposed framework allows us to solve the game
online using Monte Carlo simulations of system trajectories,
without the need for any offline training or precomputations.

The contributions of this work are as follows: 1) We
formulate a continuous-time risk-minimizing zero-sum SDG
in which players aim at balancing the trade-off between the
failure probability and control cost. A sufficient condition for
this game to have a saddle-point equilibrium is derived, and
it is shown that this game can be solved via an HJI PDE with
a Dirichlet boundary condition. 2) Under certain assumptions
on the system dynamics and cost function, we establish the
existence and uniqueness of the saddle-point solution. We
also obtain explicit expressions for the saddle-point policies
which can be numerically evaluated using path integral
control. 3) The proposed control synthesis framework is
validated by applying it to two classes of risk-minimizing
zero-sum SDGs, namely a disturbance attenuation problem
and a pursuit-evasion game.

Notation

Bold symbols such as xxx represent random variables. If a
stochastic process xxx(s), s ≥ t starts from x at time t, then
let Px,t (E) denote the probability of event E conditioned
on xxx(t) = x, and let Ex,t [F (xxx)] denote the expectation of
a functional F (xxx) conditioned on xxx (t) = x. Let 1E be an
indicator function, that returns 1 when the condition E holds
and 0 otherwise. Tr(A) denotes the trace of a matrix A.

II. PROBLEM FORMULATION

We consider a two-player zero-sum stochastic differential
game (SDG) on a finite time horizon t ∈ [t0, T ], t0 <
T . Consider a class of control-affine stochastic systems
described by the following Itô stochastic differential equation
(SDE):

dxxx(t) =f (xxx(t), t) dt+Gu (xxx(t), t)u(xxx(t), t)dt

+Gv (xxx(t), t) v (xxx(t), t) dt+Σ(xxx(t), t) dwww(t)
(1)

where xxx(t) ∈ Rn is the state, u(xxx(t), t) ∈ Rm is the
control input of the first player (henceforth called the agent),
and v(xxx(t), t) ∈ Rl that of the second player (called the
adversary). www(t) ∈ Rk is a k-dimensional standard Wiener
process on a suitable probability space (Ω,F , P ). We as-
sume sufficient regularity in the functions f (xxx(t), t) ∈ Rn,
Gu (xxx(t), t) ∈ Rn×m, Gv (xxx(t), t) ∈ Rn×l and Σ (xxx(t), t) ∈
Rn×k so that a unique strong solution of (1) exists [12].
Both the control inputs u, and v are assumed to be square
integrable (i.e., of finite energy). In the rest of the paper,
for notational compactness, the functional dependencies on
x and t are dropped whenever it is unambiguous.

Let Xs ⊆ Rn be a bounded open set representing a safe
region, ∂Xs be its boundary, and closure Xs = Xs ∪ ∂Xs.
Suppose that the agent tries to keep the system (1) in the
safe set Xs for the entire time horizon [t0, T ] of the game,
whereas the adversary seeks the opposite. For example, in
pursuit-evasion games, the safe set Xs could be a region
outside the ball of radius ρ, centered at the adversary’s
location. Or, in the disturbance rejection problems, if an
agent wishes to navigate through obstacles in the presence
of adversarial disturbances, then the region outside obstacles
could be considered as a safe set. Suppose, when the game
starts at t0, the system is in the safe set i.e., xxx(t0) = x0 ∈ Xs.
If the system leaves the region Xs at any time t ∈ (t0, T ],
we say that the agent fails. On the other hand, the adversary
fails if the system stays in Xs for all t ∈ [t0, T ]. Therefore,
we define the agent’s probability of failure P ag

fail as

P ag
fail :=Px0,t0

 ∨
t∈(t0,T ]

xxx(t) /∈ Xs

 (2)

and the adversary’s probability of failure P ad
fail := 1 − P ag

fail.
We define the terminal time tttf of the game as

tttf :=

{
T, if xxx(t) ∈ Xs,∀t ∈ (t0, T ),

inf {t ∈ (t0, T ) : xxx(t) /∈ Xs}, otherwise.
(3)

Alternatively, tttf can be defined as

tttf := inf{t > t0 : (xxx(t), t) /∈ Q} (4)

where Q = Xs × [t0, T ) is a bounded set with the boundary
∂Q = (∂Xs × [t0, T ]) ∪ (Xs × {T}), and closure Q =
Q ∪ ∂Q = Xs × [t0, T ]. Note that by the above definitions,
(xxx(tttf ), tttf ) ∈ ∂Q and the agent’s failure probability P ag

fail in
(2) can be written in terms of tttf as

Px0,t0

 ∨
t∈(t0,T ]

xxx(t) /∈ Xs

=Ex0,t0

[
1xxx(tttf )∈∂Xs

]
. (5)

Since the stochastic uncertainty of the system (1) is modeled
with an unbounded distribution, both the agent and the adver-
sary have nonzero probabilities of failure. In our two-player
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SDG setting, we assume that both players aim to design an
optimal policy against the worst possible opponent’s policy
such that their own risk of failure is minimized. Therefore,
we define the following risk-minimizing cost function:

C (x0, t0;u, v) := η Ex0,t0

[
1xxx(tttf )∈∂Xs

]
+ Ex0,t0

[
ψ(xxx(tttf))·1xxx(tttf )∈Xs

+

∫ tttf

t0

L(xxx(t),uuu(t), vvv(t), t)dt

]
.

(6)

The first term indicates the penalty associated with the
agent’s failure with the weight parameter η > 0. ψ (xxx(tttf ))
and L (xxx(t),uuu(t), vvv(t), t) denote the terminal and running
costs, respectively. Note that the game ends at tttf and the
system doesn’t evolve after that (this is motivated by the
applications where “collision” or “capture” ends the game).
Therefore, the running cost is integrated over the time
horizon [t0, tttf ]. The agent tries to minimize C by controlling
u, whereas the adversary tries to maximize it by controlling
v. The weight parameter η balances the trade-off between
the control cost and the failure probability.

Notice that if we define ϕ : Xs → R as:

ϕ (x) := ψ (x) · 1x∈Xs
+ η · 1x∈∂Xs

, (7)

then, the first term in (6) can be absorbed in a new terminal
cost function ϕ as follows:

C(x0, t0;u, v)=Ex0,t0

[
ϕ (xxx(tttf ))+

∫ tttf

t0

L(xxx,uuu,vvv, t) dt
]
. (8)

In this paper, we consider the following running cost that is
quadratic in u and v:

L(xxx,uuu,vvv, t)=V (xxx, t)+
1

2
uuuTRu(xxx, t)uuu−

1

2
vvvTRv(xxx, t)vvv (9)

where V (xxx, t) denotes a state dependent cost, and
Ru (xxx, t) ∈ Rm×m and Rv (xxx, t) ∈ Rl×l are given positive
definite matrices (for all values of xxx and t). Now, we
formulate our risk-minimizing zero-sum SDG as follows:

Problem 1 (Risk-Minimizing Zero-Sum SDG):

min
u

max
v

Ex0,t0

[
ϕ (xxx(tttf ))+

∫ tttf

t0

(
1

2
uuu⊤Ruuuu−

1

2
vvv⊤Rvvvv+V

)
dt

]
s.t. dxxx =fdt+Guudt+Gvvdt+Σdwww, (10)

xxx(t0) = x0.

where the admissible policies u, v are measurable with
respect to the σ-algebra generated by xxx(s), t0 ≤ s ≤ t.
Note that Problem 1 is a variable-terminal-time zero-sum
SDG where the terminal time is determined by (4).

III. SYNTHESIS OF MINIMAX POLICIES

In Section III-A, we show that Problem 1 can be solved via
an HJI PDE with appropriate Dirichlet boundary condition.
In Section III-B, we find a solution of a class of risk-
minimizing zero-sum SDGs via path integral control.

A. HJI PDE with Dirichlet Boundary Condition

Problem 1 can be solved by utilizing the principle of
dynamic programming. For each (x, t) ∈ Q, and admissible
policies u, v over [t, T ), define the cost-to-go function:

C (x, t;u, v) =Ex,t

[
ϕ (xxx(tttf ))

]
+ Ex,t

[∫ tttf

t

(
1

2
uuu⊤Ruuuu− 1

2
vvv⊤Rvvvv + V

)
dt

]
.

(11)

Definition 1 (Saddle-point solution): [16, Chapter 2]:
Given a two-player zero-sum differential game, a pair of
admissible policies (u∗, v∗) over [t, T ) constitutes a saddle-
point solution, if for each (x, t) ∈ Q, and admissible policies
(u, v) over [t, T ),

C(x, t;u∗, v) ≤ C∗ := C(x, t;u∗, v∗) ≤ C(x, t;u, v∗).

The quantity C∗ is the value of the game. The value of the
game is defined if it satisfies the following relation

C∗=min
u

max
v

C (x, t;u, v) = max
v

min
u
C (x, t;u, v) .

The following theorem provides the sufficient condition for
a saddle-point solution of Problem 1 to exist.

Theorem 1: Suppose there exists a function J : Q → R
such that

(a) J(x, t) is continuously differentiable in t and twice
continuously differentiable in x in the domain Q;

(b) J(x, t) solves the following stochastic HJI PDE:

−∂tJ=V +f⊤∂xJ+
1

2
Tr

(
ΣΣ⊤∂2xJ

)
+

1

2
(∂xJ)

⊤(
GvR

−1
v G⊤

v −GuR
−1
u G⊤

u

)
∂xJ,

∀(x, t)∈Q,

lim
(x,t)→(y,s)
(x,t)∈Q

J(x, t) = ϕ(y), ∀(y, s) ∈ ∂Q.

(12)

Then, the following statements hold:

(i) J(x, t) is the value of the game formulated in Problem
1. That is,

J (x, t) =min
u

max
v

C (x, t;u, v)

=max
v

min
u
C (x, t;u, v) , ∀ (x, t)∈Q.

(13)

(ii) The optimal solution to Problem 1 is given by

u∗(x, t) = −R−1
u (x, t)Gu

⊤(x, t) ∂xJ(x, t) , (14)

v∗(x, t) = R−1
v (x, t)Gv

⊤(x, t) ∂xJ(x, t) . (15)

Proof: Refer to the supplementary material [17, Ap-
pendix A]

Remark 1: Theorem 1 does not say anything about the
existence of a function J(x, t) satisfying statements (a) and
(b), and it is not in the scope of this paper. However, in
Section III-B, we focus on a special case in which (12) can
be linearized where the existence and uniqueness of such a
function are guaranteed.
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B. Path Integral Formulation

In this section, we derive a path integral formulation
to solve a class of risk-minimizing zero-sum SDGs that
satisfy certain assumptions on the system dynamics and
cost function. Let ξ(x, t) be the logarithmic transformation
(known as Cole-Hopf transformation in the PDE literature)
of the value function J(x, t) defined as

J(x, t) = −λ log (ξ (x, t)) (16)

where λ is a proportionality constant to be defined. Applying
the transformation in (16) to (12) yields



∂tξ=
V ξ

λ
− 1

2
Tr
(
ΣΣ⊤∂2xξ

)
+

1

2ξ
(∂xξ)

T
ΣΣ⊤∂xξ

+
λ

2ξ
(∂xξ)

⊤(
GvR

−1
v G⊤

v −GuR
−1
u G⊤

u

)
∂xξ−f⊤∂xξ,

∀(x, t) ∈ Q,
lim

(x,t)→(y,s)
(x,t)∈Q

ξ(x, t)=exp
(
−ϕ(y)

λ

)
, ∀(y, s) ∈ ∂Q.

(17)
Now, we make the following assumption:

Assumption 1: For all (x, t) ∈ Q, there exists a constant
λ > 0 such that

Σ(x, t)Σ⊤(x, t)=λGu(x, t)R
−1
u (x, t)G⊤

u (x, t)

− λGv(x, t)R
−1
v (x, t)G⊤

v (x, t).
(18)

Assumption 1 is similar to the assumption required in the
path integral formulation of a single agent stochastic control
problem [18]. A possible interpretation of condition (18)
is that in a direction with high noise variance, the agent’s
control cost has to be low whereas that of the adversary
has to be high. Therefore, the weights of the control cost
Ru and Rv need to be tuned appropriately for the given
diffusion coefficient Σ(x, t) and the control gains Gu(x, t)
and Gv(x, t) in the system dynamics (1). See [13], [14] for
further discussion on a similar condition in the single agent
setting. Assumption 1 also implies that the stochastic noise
has to enter the system dynamics via the control channels.
Therefore, in what follows, we assume that system (1) can be
partitioned into subsystems that are directly and non-directly
driven by the noise as:[

dxxx(1)

dxxx(2)

]
=

[
f (1)(xxx, t)
f (2)(xxx, t)

]
dt+

[
0

Gu
(2)(xxx, t)

]
u(xxx, t)dt

+

[
0

Gv
(2)(xxx, t)

]
v(xxx, t)dt+

[
0

Σ(2)(xxx, t)

]
dwww

(19)

where 0 denotes a zero matrix of appropriate dimensions.
By assuming a λ satisfying Assumption 1 holds in (17), we
obtain the linear PDE in ξ with Dirichlet boundary condition:
∂tξ=

V ξ
λ −f⊤∂xξ − 1

2Tr
(
ΣΣ⊤∂2xξ

)
, ∀(x, t)∈Q,

lim
(x,t)→(y,s)
(x,t)∈Q

ξ(x, t)=exp
(
−ϕ(y)

λ

)
, ∀(y, s)∈∂Q. (20)

The solution of a linear Dirichlet boundary value problem
of the form (20) exits under a sufficiently regular boundary

condition, and it is unique [19, Chapter 6]. Furthermore,
the solution admits the Feynman-Kac representation [20].
Suppose x̂xx(t) ∈ Rn is an uncontrolled process driven by
the following SDE:

dx̂xx(t)=f(x̂xx(t),t)dt+Σ(x̂xx(t),t)dwww(t) (21)

and let t̂ttf := inf{t > t0 : (x̂xx(t), t) /∈ Q}. Then, the solution
of the PDE (20) is given as

ξ (x, t) = Ex,t

[
exp

(
− 1

λ
S (τ)

)]
(22)

where S (τ) denotes the cost-to-go of a trajectory τ of the
uncontrolled system (21) starting at (x, t):

S (τ) = ϕ
(
x̂xx(̂tttf )

)
+

∫ t̂ttf

t

V (x̂xx(t), t) dt. (23)

Equation (22) provides a path integral form for the expo-
nentiated value function ξ (x, t), which can be numerically
evaluated using Monte Carlo sampling of trajectories gen-
erated by the uncontrolled SDE (21). We now obtain the
expressions for the saddle-point policies via the following
theorem:

Theorem 2: Suppose Assumption 1 holds and the system
(1) can be partitioned as (19). Then, a saddle-point solution
of the risk-minimizing zero-sum SDG (10) exists, is unique,
and is given by

u∗(x, t)dt=Gu(x, t)
Ex,t

[
exp

(
− 1

λS (τ)
)
Σ(2)(x, t) dwww

]
Ex,t

[
exp

(
− 1

λS (τ)
)] , (24)

where

Gu=R
−1
u G(2)

u

⊤(
G(2)

u R−1
u G(2)

u

⊤
−G(2)

v R−1
v G(2)

v

⊤)−1

v∗(x, t)dt=Gv (x, t)
Ex,t

[
exp

(
− 1

λS (τ)
)
Σ(2)(x, t) dwww

]
Ex,t

[
exp

(
− 1

λS (τ)
)] , (25)

where

Gv=−R−1
v G(2)

v

⊤(
G(2)

u R−1
u G(2)

u

⊤
−G(2)

v R−1
v G(2)

v

⊤)−1

.

Proof: The existence and uniqueness of the saddle-
point solution follow from the existence and uniqueness of
the linear Dirichlet boundary value problem (20) [19, Chapter
6] and from Theorem 1. The saddle-point solution u∗(x, t)
(14) and v∗(x, t) (15) can be computed by taking the gradient
of (22) with respect to x and using the condition (18).
(The derivation of (14) and (15) is in the same vein as the
derivation of optimal controls in single agent settings [18],
[21]; not presented here for brevity.)
Equations (24) and (25) provide the path integral forms for
the saddle-point equilibrium. Similar to (22), the expectations
in (24) and (25) can be numerically evaluated in real-time
via the Monte Carlo sampling of the trajectories generated
by the uncontrolled SDE (21). The path integral framework
evaluates the solution locally without requiring knowledge
of the solution nearby so that there is no need for a (global)
discretization of the computational domain. This allows us to
solve the game online without requiring any offline training
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or precomputations. Even though Monte Carlo simulations
must be performed in real-time in order to evaluate (24, 25)
for the current (x, t), these simulations can be massively
parallelized through the use of GPUs.

IV. EXAMPLES

In this section, we apply the path integral framework
to two classes of risk-minimizing zero-sum SDGs (10): a
disturbance attenuation problem and a pursuit-evasion game.

A. Disturbance Attenuation Problem

Consider a special class of systems (1):

dxxx=f(xxx, t)dt+Gu(xxx, t)
(
u(xxx, t)dt+v (xxx, t) dt+dwww

)
(26)

where u (xxx, t) ∈ Rm is the control input, v (xxx, t) ∈ Rm

is the bounded disturbance and www(t) ∈ Rm is a Wiener
process. Here, we have two sources of noise that corrupt
the system’s control input u: the bounded noise v whose
statistics are unknown, and the white noise dwww. In the
disturbance attenuation problem, the objective is to design
a policy u in the presence of stochastic noise and bounded
disturbance v such that the system’s control performance
Ex0,t0

[
ϕ (xxx(tttf ))+

∫ tttf
t0

(
1
2uuu

⊤uuu+ V
)
dt
]

is minimized. This
problem can be solved using the following zero-sum SDG,
where u is considered as a control input of the first player
(agent) and v that of the second player (adversary):

min
u

max
v

Ex0,t0

[
ϕ (xxx(tttf ))+

∫ tttf

t0

(
1

2
uuu⊤uuu− γ2

2
vvvTvvv+V

)
dt

]
. (27)

γ is a given positive constant that determines the level of
disturbance attenuation. Theorem 3 provides an upper bound
on the system’s control performance (in the presence of a
bounded disturbance v) that can be obtained by solving the
game (27).

Theorem 3: Suppose (u∗γ , v
∗
γ) represent the saddle-point

policies of the SDG (27) for any γ, and let

δγ := Eu∗
γ ,v

∗
γ

x0,t0

[∫ tttf

t0

vvv⊤vvv dt

]
(28)

where the superscript on E denotes the policies under which
the expectation is computed. Then, for all adversarial policies
v such that Eu∗

γ ,v

x0,t0

[∫ tttf
t0
vvv⊤vvv dt

]
≤ δ (for any δ > 0),

we get the following upper bound on the system’s control
performance in the presence of disturbance v:

Eu∗
γ ,v

∗
γ

x0,t0

[
ϕ (xxx(tttf ))+

∫ tttf

t0

(
1

2
uuu⊤uuu+V

)
dt

]
+
γ2

2
(δ − δγ)

≥ Eu∗
γ ,v

x0,t0

[
ϕ (xxx(tttf ))+

∫ tttf

t0

(
1

2
uuu⊤uuu+V

)
dt

]
.

(29)

Proof: Please refer to the supplementary material [17,
Appendix B]

In order to solve the HJI PDE associated with the game (27)
via the path integral framework described in Section III-B, it
is necessary to find a constant λ > 0 (by Assumption 1) such
that λ

(
1− 1

γ2

)
= 1. Therefore, for all γ > 1, Assumption

1 is satisfied and as a consequence, the zero-sum SDG (27)
admits a unique saddle-point solution.

We now present a simulation study of the disturbance
attenuation problem using a unicycle navigation example.
Consider the following unicycle dynamics model:
dpppx
dpppy
dsss
dθθθ

=− k


pppx
pppy
sss
θθθ

 dt+

sss cosθθθ
sss sinθθθ

0
0

dt

+


0 0
0 0
1 0
0 1

([aω
]
dt+

[
∆a
∆ω

]
dt+

[
σ 0
0 ν

]
dwww

)
,

(30)

where (pppx, pppy), sss and θθθ denote the position, speed, and
the heading angle of the unicycle, respectively. The control
input u :=

[
a ω

]⊤
consists of acceleration a and angular

speed ω. v :=
[
∆a ∆ω

]⊤
is the bounded disturbance

acting on the system’s control input, and dwww ∈ R2 is the
white noise with σ and ν being the noise level parameters.
As illustrated in Figure 1, the unicycle aims to navigate
in a two-dimensional space from its initial position (rep-
resented by the yellow star) to the origin (represented by
the magenta star), in finite time, while avoiding the red
obstacles and the outer boundary. The white region that
lies between the outer boundary and the obstacles is the
safe region Xs. This is a disturbance attenuation problem
since the unicycle aims to design its control policy u in
order to minimize the control performance and risk of failure
(collision with the obstacles or the outer boundary) under
worst-case disturbance v. Therefore, we can formulate this
problem as the risk-minimizing zero-sum SDG (27). In the
simulation, we set σ = ν = 0.1, k = 0.2, t0 = 0,
T = 10, x0 =

[
−0.4 −0.4 0 0

]⊤
, V (xxx) = ppp2x + ppp2y

and ψ (xxx(T )) = ppp2x(T ) + ppp2y(T ). In order to evaluate the
optimal policies (24) and (25) via Monte Carlo sampling,
104 trajectories and a step size equal to 0.01 are used. We
demonstrate two experiments.

1) Experiment 1: In this experiment, we set η = 0.67
and plot in Figure 1 100 sample trajectories generated using
synthesized saddle-point policies (u∗, v∗) for two values of
γ. The trajectories are color-coded; the blue paths collide
with the obstacles, while the green paths converge in the
neighborhood of the origin (the target position). The figure
shows that for a higher value of γ i.e. when the adversary
becomes less powerful, the failure probability of the agent
P ag
fail reduces.
2) Experiment 2: In this experiment, we set γ2 = 3,

η = 1, and study the effect of ignoring the adversary.
First, we compute saddle-point policies (u∗, v∗) for the game
(27) same as Experiment 1 and plot in Figure 2-(a) 100
sample trajectories generated using (u∗, v∗). In this case, the
agent is aware of the adversary and designs its policy u∗

cautiously. The probability of failure is 23%. In the second
case, the agent is not aware of the presence of the adversary
and computes its policy (say) ũ∗ by solving a single agent
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(a) γ2 = 2, P ag
fail = 0.9 (b) γ2 = 7, P ag

fail = 0.64

Fig. 1. Unicycle navigation in the presence of bounded and stochastic
disturbances. The start position is shown by a yellow star and the target
position (the origin) by a magenta star. 100 sample trajectories generated
using saddle-point policies (u∗, v∗) for two values of γ are shown. The
trajectories are color-coded; blue paths collide with the red obstacles or the
outer boundary, while the green paths converge in the neighborhood of the
magenta star. The failure probabilities of the agent P ag

fail are noted.
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(a) Agent is aware of the (b) Agent is not aware of
adversary, P ag

fail = 0.23 the adversary, P ag
fail = 0.65

Fig. 2. Unicycle navigation in the presence of bounded and stochastic
disturbances. (a) The agent is aware of the presence of an adversary. 100
sample trajectories generated using saddle-point policies (u∗, v∗). (b) The
agent is not aware of the presence of an adversary. 100 sample trajectories
generated using (ũ∗, v∗). The failure probabilities of the agent P ag

fail are
noted for each case.

optimization problem. However, in reality, the adversary is
present and suppose it follows the policy v∗. Figure 2-(b)
shows 100 sample trajectories generated using (ũ∗, v∗). In
this case, the agent’s performance is poor, it fails 65% of the
time. The color-coding of the trajectories is the same as in
Experiment 1.

B. Pursuit-Evasion Game

Consider a two-player zero-sum SDG on a finite time
horizon [t0, T ], in which the adversary is chasing the agent
and the agent is trying to escape from the adversary. We will
call the adversary as a pursuer and the agent as an evader.
Suppose the evader and the pursuer are moving in a two-
dimensional plane according to

dpppEx = uxdt+ σE
x dwww

E
x , dpppPx = vxdt+ σP

x dwww
P
x ,

dpppEy = uydt+ σE
y dwww

E
y , dpppPy = vydt+ σP

y dwww
P
y ,

(31)

where xxxE :=
[
pppEx pppEy

]⊤
is the position and u :=[

ux uy
]⊤

is the control input of the evader. Similarly,
xxxP :=

[
pppPx pppPy

]⊤
and v :=

[
vx vy

]⊤
are the position

and control input of the pursuer. wwwE
x ,www

E
y ,www

P
x ,www

P
y are inde-

pendent one-dimensional standard Brownian motions. If at
any time t ∈ (t0, T ], the pursuer gets within a distance ρ of
the evader, then it catches the evader and the evader fails. On
the other hand, if the evader avoids getting within a distance
ρ of the pursuer for the entire time horizon [t0, T ], then
that’s a failure for the pursuer. The pursuer aims at designing
its control policy v in order to maximize the probability of
catching the evader, whereas the evader seeks the opposite
by designing u. For this two-player differential game, it
is the relative position of the pursuer and evader that is
important (and relevant), rather than their absolute positions.
Let xxx :=

[
pppx pppy

]
be the evader’s position with respect to

the pursuer where pppx = pppEx − pppPx , pppy = pppEy − pppPy and
the origin coincides with the pursuer’s position. Thus, the
coordinate system is attached to the pursuer and is not fixed
in space. The system xxx follows the SDE

dxxx =

[
dpppx
dpppy

]
=

[
ux
uy

]
dt−

[
vx
vy

]
dt+

[
σx 0
0 σy

]
dwww (32)

where σx =
√
(σE

x )
2 + (σP

x )
2, σy =

√
(σE

y )
2 + (σP

y )
2

and www is a two-dimensional standard Brownian motion.
In this game, the safe set Xs can be defined as Xs :={
x ∈ R2 : ∥x∥ > ρ

}
. Suppose the control cost matrix Ru

of the evader is unity and that of the pursuer Rv = rv
2,

where rv is a given positive scalar constant. Therefore, the
risk-minimizing zero-sum SDG takes the form:

min
u

max
v

Ex0,t0

[
ϕ (xxx(tttf))+

∫ tttf

t0

(
1

2
uuuTuuu− rv

2

2
vvvTvvv+V

)
dt

]
. (33)

In order to solve the associated HJI equation of this game via
the path integral framework, it is necessary to find a constant
λ > 0 (by Assumption 1) such that λ

(
1− 1

rv2

)
= 1.

Therefore, for all rv > 1, Assumption 1 is satisfied and
as a consequence, the zero-sum SDG (33) admits a unique
saddle-point solution.

In the simulation, we set σE
x = σE

y = σP
x = σP

y =√
0.1, ρ = 0.1, t0 = 0, T = 2, x0 =

[
0.3 0.3

]⊤
,

V (xxx) = ψ (xxx(T )) = 0, η = 0.2, rv2 = 2. Figure 3
shows a plot of two sample trajectories of the system (32)
generated using synthesized saddle-point policies (u∗, v∗).
The trajectories start from x0 shown by the yellow star.
The red disc of radius ρ = 0.1, centered at the origin
represents that the pursuer is within a distance ρ of the
evader. The green trajectory never enters the red disc in the
horizon [t0, T ], thus, it represents a case when the evader
escapes from the pursuer. The blue trajectory, on the other
hand, enters the red disc and thus represents a case when
the pursuer catches the evader. Figure 4 shows a plot of
failure probabilities of the agent (i.e., evader) as a function
of rv , when the players follow the saddle-point policies
(u∗, v∗). These values are computed using naı̈ve Monte Carlo
sampling, with 400 sample trajectories. The plot shows that
as the control cost weight rv of the adversary (i.e., pursuer)
increases, the chances of the evader getting caught reduces.
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Fig. 3. Two sample trajectories of the relative position of the players
in a pursuit-evasion game. The start position of the trajectories is shown
by a yellow star. The red disc of radius ρ = 0.1, centered at the origin
represents that the pursuer is within the distance ρ of the evader. The green
trajectory never enters the red disc in the horizon [t0, T ], thus, it represents
a case when the evader wins. The blue trajectory enters the red disc and
thus represents a case when the pursuer wins.
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Fig. 4. Failure probabilities of the agent (i.e., evader) as a function of rv ,
when the players follow the saddle-point policies (u∗, v∗).

The aim of the presented simulation studies is to validate
the proposed theoretical formulation of the risk-minimizing
zero-sum SDGs. Future work will emphasize scaling this
framework to higher dimensional and more complex game
dynamics.

V. CONCLUSION

The paper presented an HJI-PDE-based solution approach
for a risk-minimizing two-player zero-sum stochastic dif-
ferential game (SDG). This is a variable-end-time game in
which each player tries to balance the trade-off between
the probability of failure and the control cost. A sufficient
condition for a saddle-point solution of this game was derived
and it was shown that this game can be solved via an HJI
PDE with the Dirichlet boundary condition. We developed a
path integral framework to numerically solve a class of risk-
minimizing zero-sum SDGs whose associated HJI PDE can
be linearized and established the existence and uniqueness
of the saddle-point solution. The presented approach allows
the game to be solved online without the need for any offline
training or precomputations. Application of our approach
to two classes of risk-minimizing zero-sum SDGs: a dis-
turbance attenuation problem and a pursuit-evasion game
was presented and the framework was validated through
simulation studies. In the future, we plan to conduct sample
complexity analysis for path integral control in order to
investigate how the accuracy of Monte Carlo sampling affects
the solution of SDGs. The central challenge in using the
path integral framework is the particular requirement on

the relationship between the cost function and the noise
covariance. This requirement restricts the class of applicable
system models and cost functions. In future work, we plan
to find alternatives in order to get rid of this restrictive
requirement (one such solution is provided in [18]). Another
topic of future investigation could be chance-constrained
stochastic games in which each player would aim to satisfy
a hard bound on its failure probability.
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[1] T. Başar and G. J. Olsder, Dynamic noncooperative game theory.
SIAM, 1998.

[2] P. J. Nahin, “Chases and escapes,” in Chases and Escapes. Princeton
University Press, 2012.

[3] M. Falcone, “Numerical methods for differential games based on
partial differential equations,” International Game Theory Review,
vol. 8, no. 02, pp. 231–272, 2006.

[4] H. Huang, J. Ding, W. Zhang, and C. J. Tomlin, “Automation-assisted
capture-the-flag: A differential game approach,” IEEE Transactions on
Control Systems Technology, vol. 23, no. 3, pp. 1014–1028, 2014.

[5] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Transactions on automatic control, vol. 50, no. 7, pp.
947–957, 2005.

[6] D. Vrabie and F. Lewis, “Adaptive dynamic programming for online
solution of a zero-sum differential game,” Journal of Control Theory
and Applications, vol. 9, no. 3, pp. 353–360, 2011.

[7] M. Prajapat, K. Azizzadenesheli, A. Liniger, Y. Yue, and A. Anand-
kumar, “Competitive policy optimization,” in Uncertainty in Artificial
Intelligence. PMLR, 2021, pp. 64–74.

[8] M. Liu, Y. Wan, F. L. Lewis, and V. G. Lopez, “Adaptive optimal
control for stochastic multiplayer differential games using on-policy
and off-policy reinforcement learning,” IEEE transactions on neural
networks and learning systems, vol. 31, no. 12, pp. 5522–5533, 2020.

[9] X. Lin, P. A. Beling, and R. Cogill, “Multiagent inverse reinforcement
learning for two-person zero-sum games,” IEEE Transactions on
Games, vol. 10, no. 1, pp. 56–68, 2017.

[10] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Coherent measures
of risk,” Mathematical finance, vol. 9, no. 3, pp. 203–228, 1999.

[11] A. Dixit, M. Ahmadi, and J. W. Burdick, “Risk-averse receding
horizon motion planning,” arXiv preprint arXiv:2204.09596, 2022.

[12] B. Oksendal, Stochastic differential equations: an introduction with
applications. Springer Science & Business Media, 2013.

[13] H. J. Kappen, “Path integrals and symmetry breaking for optimal con-
trol theory,” Journal of statistical mechanics: theory and experiment,
vol. 2005, no. 11, p. P11011, 2005.

[14] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal
of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357,
2017.

[15] D. Vrushabh, P. Akshay, K. Sonam, S. Wagh, and N. M. Singh,
“Robust path integral control on stochastic differential games,” in 2020
28th Mediterranean Conference on Control and Automation (MED).
IEEE, 2020, pp. 665–670.
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