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Abstract— For identification of a single module in a linear
dynamic network with correlated disturbances different meth-
ods are available in a prediction error setting. While indirect
methods fully rely on the presence of a sufficient number of
external excitation signals for achieving data-informativity, the
local direct method with a MIMO predictor model can exploit
also non-measured disturbance signals for data-informativity.
However, a simple two-node example shows that this local direct
method can also be conservative in terms of the number of ex-
ternal excitation signals that is required. Inspired by a recently
introduced multi-step method for full network identification,
we present a multi-step least squares method for single module
identification. In a first indirect step a model is estimated that
is used to reconstruct the innovation on a set of output signals,
which in a second step is used to directly estimate the module
dynamics with a MISO predictor model. The resulting path-
based conditions for data-informativity show that the multi-
step method requires a smaller number of excitation signals
for data-informativity than the local direct method.

I. INTRODUCTION

Modern day dynamic systems consist of interconnected
subsystems that can be represented as large-scale networks.
In the domain of system identification, data-driven modeling
suitable for these dynamic networks has been the subject of
many studies, in among others [1], [2], [3], [4], [5], [6].

In the problem of local identification the objective is to
consistently identify a single module using local measured
data within a network of which the interconnection structure
is given. Currently available local identification methods in
a prediction error setting are typically categorized under
indirect methods and direct methods.

Indirect methods [7], [3], [8] typically estimate the tranfer
functions from measured (user manipulated) external signals
to the internal variables which are the nodes w. These meth-
ods therefore rely on the presences of a sufficient number
of measured excitation signals to achieve data-informativity.
Additionally, indirect methods require post-processing to ob-
tain the estimates of the target module. Local direct methods
[9], [10] directly estimate the transfer functions between the
node signals, where the node signals can receive excitation
from either measured (user manipulated) or unmeasured
(disturbances) external signals to achieve data-informativity.
The local direct method achieves a consistent estimate with
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maximum likelihood properties under the condition that an
appropriate disturbance model is estimated. In the presence
of correlated disturbances the local direct method might
require the use of a multiple-input-multiple-output (MIMO)
predictor model and thus a multivariate noise model. This
is opposed to the indirect methods that achieve consistency,
but do not require accurate modeling of the disturbances.

Fig. 1. 2-node example for local identification of target module G21.

Consider the 2-node example shown in Figure 1, with
target module G21 that represents the interconnecting dy-
namics from node signal w1 to w2. The node signals are
additively driven by unmeasured disturbance signals v and
external excitation signals u1 and u2. If v1 and v2 are
uncorrelated, the example is a classic closed-loop problem
for which we can use classic identification methods [11].
If v1 and v2 are correlated the single module identifiability
check [12], which is a method independent check, indicates
that G21 is identifiable when either u1 or u2 is present. This
is confirmed by the indirect method that can estimate G21

by identifying the mappings from u1 → w1 and u1 → w2

and taking the quotient of these estimates, while relying on
the presence of u1 only, and irrespective of any correlation
between v1 and v2. The local direct method [9] requires a
MIMO predictor model with both w1 and w2 as outputs to
appropriately model the disturbances. However, as shown in
[13], [14], [15] this predictor model requires both u1 and
u2 to be present to achieve data-informativity. Apparently in
this example the data-informativity conditions for the local
direct method are conservative when compared to the single
module identifiability results and the indirect method.

In this paper, our aim is to develop a local identification
method that has the key advantages of the local direct method
but requires less external excitation signals u compared to
the local direct method.

The multi-step least squares method [16], developed for
full network identification, relies on accurate modeling of the
disturbances. When applied to the 2-node example it shows
that both G21 and G12 can be estimated while requiring the
presence of either u1 or u2 to achieve data-informativity.
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However, there is no local identification version of this multi-
step method available. In this paper we will develop such a
local identification method, and show that it indeed allows
for a smaller number of excitation signals compared to the
local direct method.

Section 2 presents the network setup and the results of
[9], [15] and [16]. Section 3 describes the layout of the
algorithm for local identification, where the 3 main steps
of the algorithm are elaborated in Sections 4 to 6. Section
7 provides the data-informativity conditions of the local
identification algorithm. A more extensive example is then
worked out in Section 8, and the results are concluded in
Section 9. Proofs of results are collected in an Appendix.

II. DYNAMIC NETWORK SETUP AND CURRENT
METHODS

A. Dynamic network setup

We follow the module framework setup in [2], and con-
sider dynamic networks represented by

w(t) = G(q)w(t)+v(t)+u(t), with v(t) = H(q)e(t), (1)

where q−1 is the delay operator, i.e. q−1w(t) = w(t − 1),
w is an L-dimensional vector, G(q) is a hollow and rational
transfer function matrix and H(q) is a monic and rational dis-
turbance model. Moreover, e(t) is an L-dimensional vector
containing white noise processes. The inputs signals u(t) =
R(q)r(t) are driven by the measured external excitation
signals r(t), with R(q) a known rational transfer function
matrix. We assume that the network is well-posed, and that
all elements in G(q) are strictly proper transfer functions.
The set of node indexes {1 · · ·L} is denoted by L.

B. Local direct method

The local direct method for single module identification
[9] is a prediction error method that is built on a represen-
tation of a subnetwork through a predictor model

wY = Ḡ(q)wD + H̄(q)ξY + uY (2)

focusing on identifying the target module Gji, with i ∈ D
and j ∈ Y . The sets Y,D ⊂ L are chosen in such a way
that the target module remains invariant in the predictor
model, i.e. Ḡji(q) = Gji(q), while confounding variables1

are treated in such a way that Ḡji(q) can be estimated con-
sistently. For a proper treatment of confounding variables, a
possibly multivariate noise model H̄(q) is exploited through
which correlations between disturbances on nodes in wY and
wD can be explicitly modelled, with ξY being a vector white
noise process. Note that it is allowed that Y ∩ D ̸= ∅.
While uY can be decomposed as uY = J̄(q)uK + S̄uP with
J̄(q) dynamic and S̄ a binary matrix [15], data informativity
is achieved if the vector signal κ := [wT

D ξTY uT
K ]T is

persistently exciting, typically achieved by requiring that
the spectral density Φκ(ω) ≻ 0 for almost all ω. The

1A confounding variable is an unmeasured variable that has paths to both
the input and the output of an estimation problem [17].

data-informativity condition can be satisfied generically by
satisfying path-based conditions on the graph of the network
[15].

C. Multi-step least squares

The full network identification method in [16] inspired
by among others the Sequential Linear Regressions method
[18], first models the mapping u → w on the basis of a high-
order Auto Regressive eXogenous (ARX) model. This ARX
model is then used to reconstruct the innovation signals in
vector e. We manipulate (1) according to

w = Gw + (H − I)e+ Ie+ u. (3)

Next the reconstructed innovation ê can be treated as a
measured input in the predictor

ŵ(t|t− 1) = Gw + (H − I)ê+ u, (4)

that now represents a network model with a noise model
equal to I , implying that there are no correlated disturbances
present. Identification of the full network can therefore be
done using multiple-input-single-output (MISO) predictors
for each row j ∈ L of (3). These MISO predictor models
directly estimate the inneighboring modules of output node
wj and the disturbances that have a direct path to wj .
In contrast to the local direct method, which models the
disturbance using unmeasured innovation signals, the multi-
step method treats the reconstructed innovation signals as
measured signals in the modeling procedure.

III. LAYOUT OF THE ALGORITHM

We will introduce the following stepwise algorithm that
is actually a local version of the network identification
algorithm presented in [16].

Step 1:
a. Select a subset of nodes S ⊂ L, with i, j ∈ S, on the

basis of which we are going to estimate the dynamics
of the single module Gji;

b. Remove all non-selected nodes from the network by
immersion [19], i.e. by adjusting the network represen-
tation such that the node signals wS remain invariant.

c. Decompose the set S in Y and U , with j ∈ Y , in
such a way that there are no confounding variables for
the estimation problem wU → wY [20], [9]. This can
always be done, if necessary by choosing U = ∅.

Step 2:
• In the resulting subnetwork description[

wY

wU

]
︸ ︷︷ ︸
wS

= ḠS(q)

[
wY

wU

]
+

[
H̄(q) 0
0 H̄U(q)

] [
ξY
ξU

]
+ uS

estimate a high order predictor model for the node
signals wY in the mapping uS → wS , and use that model
to estimate the innovation signal ξY .
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Step 3:
• Estimate a MISO model for the node signal wj , using

the estimated innovation signal ξ̂Y as a measured input,
next to the relevant input signals that are present in wS .

In the following Sections we will present and analyse the
separate steps in the Algorithm in more detail, and pay
particular attention to the data-informativity conditions.

IV. STEP 1: NETWORK EQUATIONS FOR A
SUBNETWORK

A. Subnetwork selection and immersion

In the problem of local identification we can use the
topology information to decide which node signals S ⊂ L
to select for the identification procedure. The subnetwork
with selected nodes is then obtained by a dynamic network
operation that appropriately removes the unselected nodes
while keeping the selected node signals invariant, referred to
as immersion [19]. The subnetwork is then represented by
the immersed network according to

wS = ḠSwS + H̄SξS + uS , (5)

where wS is invariant, ḠS represents the immersed module
dynamics, uS contains the immersed external excitation sig-
nals according uS = R̄(q)uL with R̄(q) ∈ R(z)dim(S)×L, and
where the disturbance process H̄SξS is the result of a spectral
factorization applied to the immersed disturbance model,
with ξS a vector of white noise processes. It is assumed that
the disturbance process H̄SξS is full rank.

The use of an immersed network allows local identification
methods to use local network measurements, where the
selected node signals should satisfy the following condition.

Condition 1. Consider a target module Gji. A subset of
node signals S ⊂ L with {wi, wj} ∈ wS is said to satisfy
the Parallel Path and Loop (PPL) condition, if every path
from wi to wj that does not pass through Gji, and every
loop around wj , pass through a node in S.

The condition stems from [19], where it has been shown
that it guarantees that after immersion of the nodes in
L\S, leading to the system representation (5), the module
dynamics of Gji remains invariant in the representation of
the immersed network.

Any subnetwork S that satisfies Condition 1 will allow
for the identification of a consistent estimate of the target
module. The particular choice of S will however affect
the conditions on data-informativity, that are intrinsically
present in the consistency results. For the continuation of
the algorithm we assume that the subset S has been selected
by the user.

B. Decomposition of the subnetwork

Inspired by the work in [20] and [9] we decompose set S
in subsets Y and U , for which there is no innovation signal
ξk, k ∈ S that has direct paths to both Y and U , meaning
there are no confounding variable for the estimation problem
wU → wY . Then the disturbance model of the subnetwork
adheres to a block diagonal structure written as

[
wY

wU

]
︸ ︷︷ ︸
wS

=

[
ḠYY ḠYU

ḠUY ḠUU

]
︸ ︷︷ ︸

ḠS

[
wY

wU

]
︸ ︷︷ ︸
wS

+

[
H̄ 0
0 H̄U

]
︸ ︷︷ ︸

H̄S

[
ξY
ξU

]
︸︷︷︸
ξS

+

[
uY
uU

]
︸︷︷︸
uS

, (6)

with ξS a vector of white noise processes, H̄ is monic,
stable and stably invertible, and ḠYY is hollow. The target
module Gji remains invariant during the decomposition, as
formulated in the following result.

Proposition 1. For every set S that satisfies the PPL condi-
tion in Condition 1 there exists a decomposition in sets Y and
U , with j ∈ Y , for which there exists a structured form (6)
that has no confounding variables for the estimation problem
wU → wY and that satisfies Ḡji = Gji.

Proof: The Proposition is a special case of Theorem 1
in [9], for the situation Q = Y , O = B = ∅, where the work
in [9] shows that a decomposition in a structured form (6)
can always be found for a selected subnetwork.

As an immediate result of Proposition 1 the expression for
nodes wY equals the first block row of (6), which includes
the target output wj . The external excitation signals uY that
enter nodes wY require further specification.

Depending on the selected nodes in the subnetwork wS , the
immersion operation leads to unknown dynamics appearing,
for example for the path from uk, k ∈ L\S to wY . Then
the external excitation signals enter the nodes wY with either
an unknown dynamic term or a known constant term, as
formulated next.

Proposition 2. The signals uY in (6), can be written as

uY = J̄(q)uK + S̄uP , (7)

with J̄(q) a dynamic transfer function and S̄ a binary
constant matrix and where uK and uP are defined as follows.

1) P ⊂ Y and for ℓ ∈ Y , uℓ ∈ uP if all loops around wℓ

pass through a node in Y ∪ U .
2) The set of excitation signals uK is composed of

• all signals uY that are not in uP , and
• all signals uL\S of which the effect on wY is not

covered by the inputs wU .

Proof: The Proposition is a special case of Proposition
3 in [15], for the situation Q = Y , O = B = ∅.

Using the results in Proposition 1 and 2 we arrive at an
expression for the nodes wY

wY = Ḡ(q)

[
wY

wU

]
+ H̄(q)ξY + J̄(q)uK + S̄uP , (8)

where in the algorithm’s next step we show how we use
predictor models of node signals wY to reconstruct the
innovation signals ξY .

V. STEP 2: HIGH ORDER ARX MODEL TO RECONSTRUCT
THE INNOVATION SIGNAL ξY

For obtaining a reconstruction of the innovation signals
we model the dynamics present in the mapping uS → wS

and use this model to reconstruct the innovation signal ξY .
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Analogous to the full network identification method in
Section 2, we first consider the closed-loop network equa-
tions that represent the mapping from uS → wS based on the
subnetwork equation (5)

wS =
(
I − H̄−1

S (q)
(
I − ḠS(q)

))
wS + H̄−1

S (q)uS + ξS . (9)

Based on the mapping (9) we construct an expression for
the one step ahead predictor

ŵS(t|t− 1) =
(
I − H̄−1

S (q)
(
I − ḠS(q)

))
wS + H̄−1

S (q)uS .

(10)
Then due to the block-diagonal structure in H̄S (6), we can

isolate the ŵY(t|t− 1) part of the predictor (10), omitting q
for convenience
ŵY(t|t− 1) =( [

I 0
]
−
[
H̄−1 0

]
(I − ḠS)︸ ︷︷ ︸

A(q)

)
wS + H̄−1

[
S̄ J̄

]︸ ︷︷ ︸
B(q)

[
uP
uK

]
,

(11)
where the decomposition of uY according to (7) has been
substituted. We use a high order ARX model, where the
parametrization of the filters A(q) and B(q) is chosen
according

A(q, ζ) = I +A1q
−1 + · · ·+Anq

−n,

B(q, ζ) = B0 +B1q
−1 + · · ·+Bn−1q

−(n−1),
(12)

where the model order n is chosen sufficiently high [21] so as
to accurately approximate the rational filters A(q) and B(q)
with polynomial functions. The ARX model is estimated
according to ζ̂nN = argminζ

1
N

∑N
t−1 ε

⊤
Y (t, ζ)εY(t, ζ), with

data length N and

εY(t, ζ) = wY(t)− ŵY(t|t− 1, ζ) = wY(t)− φ⊤(t)ζ (13)

and φ(t) composed of the appropriate terms in wS , uP and
uK, which leads to the analytical solution

ζ̂nN =
[ 1

N

N∑
t=1

φ(t)φ⊤(t)
]−1 1

N

N∑
t=1

φ(t)wY(t). (14)

We will show that estimates ζ̂nN are consistent.

Proposition 3. Consider a subnetwork (6) that satisfies
Condition 1, and consider predictor model (11). Then, with
analytical solution (14), the estimates A(ζ̂nN ) and B(ζ̂nN ) are
consistent if the following conditions hold

1) The external excitation uP∪K is uncorrelated to the
noise ξY

2) The spectral density Φκ(ω) ≻ 0 for almost all ω, with

κ =

[
wS

uP∪K

]
(data-informativity condition)

3) A(q, ζ) and B(q, ζ) are of high-order n, with n → ∞
4) There exists a parameter ζ0 such that

(
A(ζ0), B(ζ0)

)
represents the dynamics in the closed-loop mapping
uS → wS in (9).

Proof: The Proposition is a special case of Proposition
1 in [16], for the situation that wS has full rank disturbances.

The consistency property of estimate ζ̂nN implies that

εY(t, ζ̂
n
N ) → ξY(t) w.p. 1 as N → ∞ ∀ t. (15)

Therefore, the reconstructed innovation εY(t, ζ̂
n
N ) = wY −

ŵY(t|t − 1, ζ̂nN ) is a consistent estimate of ξY(t). Note that
the consistency of estimates ζ̂nN is a sufficient condition for
a consistent estimate of ξY and might be conservative, as
shown in [16] for the reduced rank noise situation.

VI. STEP 3: PARAMETRIC TARGET MODULE ESTIMATE

Similar to the full network situation in Section II.C, we
manipulate the term H̄(q)ξY in (8) as

H̄(q)ξY = (H̄(q)− I)ξY + IξY ,

and use (H̄(q) − I)ε̂Y in the network model, with ε̂Y :=
εY(t, ζ̂

n
N ) being the reconstructed innovation signal that acts

as a measured input. Therefore, for the identification of the
target module we only consider the MISO predictor model
for the j − th row of (8)

ŵj(t|t− 1) =
∑
k∈N−

j

Ḡjk(η)wk +
∑
ℓ∈Y

Ȟjℓ(η)ε̂ℓ

+
∑
γ∈Kj

J̄jγ(η)uγ +
∑
β∈Pj

S̄jβuβ ,
(16)

with Ȟjℓ an element of Ȟ = H̄−I , N−
j are the inneighbors

of wj where N−
j is a subset of U ∪ Y\j, and uPj

= uj if
present and uKj

are the u signals on unselected nodes L\S
that have a direct path or a path through unselected nodes to
the target output wj .

The model is estimated according to

η̂nN = argminη
1

N

N∑
t−1

ε⊤j (t, η)εj(t, η), (17)

with εj(t, η) = wj(t) − ŵj(t|t − 1, η). The conditions for
consistency of estimates η̂nN are formulated next.

Proposition 4. Consider a dynamic network that satisfies
Condition 1 and the one-step ahead predictor (16), for
which a consistent estimate ε̂Y is available and the external
excitation signals are defined below equation (16). Then,
with criterion (17) the estimates Ḡjk(η̂

n
N ), H̄jℓ(η̂

n
N ) and

J̄jγ(η̂
n
N ) are consistent if the following conditions hold

1) The spectral density Φκ̄(ω) ≻ 0 for almost all ω, with

κ̄ =

wN−
j

uKj

ξY

 (data-informativity condition).

2) The data generating system is in the model set, i.e.
there exists a η0 such that Ḡjk(q, η

0) = Ḡjk(q),
Ȟjℓ(q, η

0) = H̄jℓ(q)− Ijj and J̄jγ(q, η
0) = J̄jγ(q).

Proof: The Proposition is a special case of Proposition
2 in [16], for the situation that wS has full rank disturbances.
The proof is structured similarly to the proof in [16] with
some slight adaptations as given in the Appendix.

Note that Proposition 4 holds for all model structures that
satisfy the system in the model set condition.
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It appears that the local multi-step least squares method
results in a MISO predictor model of the j − th row
to consistently estimate the target module, given that the
required reconstructed innovation signals are consistently
estimated in the previous step.

Solution (17) leads to a convex optimization problem if
we first model the rational components in (16) as polynomial
functions and continue with the Weighted Null Space Fitting
method [22], [23] to estimate the rational transfer functions
in (16) as was done in [16]. Alternatively one can use
a kernel-based identification method [24] to identify the
dynamics in the predictor model (16). In the next Section we
will further analyse the spectral data-informativity conditions
in Propositions 3 and 4.

VII. PATH-BASED CONDITIONS FOR
DATA-INFORMATIVITY

The spectral conditions in Proposition 3 and 4 that reflect
data-informativity, can generically be satisfied by verifying
path-based conditions on the graph of the network. This
has been shown in [14], [15], based on the graph-based
results in [3]. The resulting path-based conditions for the
two Propositions are formulated next, for the mapping from
persistently excited external signals to vectors κ and κ̄.

Proposition 5. The spectrum condition in Proposition 3
is generically satisfied if there are dim(wS) vertex-disjoint
paths from (ξS , uL\P∪K) → wS , and the external signals on
the starting nodes of the vertex disjoint paths are persistently
exciting.

Proposition 6. Let ēU\N−
j

be defined as all signals e that have
a direct or unmeasured path to wU\N−

j
. Then the spectrum

condition in Proposition 4 is generically satisfied if there
are dim(wN−

j \U) vertex disjoint paths from (uL\Kj
, ēU\N−

j
) →

wN−
j \U that do not pass through wN−

j ∩U , and the external
signals on the starting nodes of the vertex disjoint paths are
persistently exciting.

The results in Propositions 3 and 5 show that due to full
rank disturbances on wS , there will always be dim(wS) vertex
disjoint paths from ξS to wS , and so the data-informativity
conditions for Step 2 of the algorithm are always generically
satisfied. The question whether we need additional external
excitation signals uL\Kj

therefore depends on whether these
are needed to satisfy the data-informativity conditions in
Proposition 4 and 6.

When comparing the spectral conditions for generic data-
informativity: Φκ(ω) ≻ 0 for the local direct method [15]
and Φκ̄(ω) ≻ 0 for the multistep method (Proposition 4)
with

κ =

wD

uK
ξY

 , κ̄ =

wN−
j

uKj

ξY

 (18)

it can be observed that κ̄ has fewer elements than κ, since wD

typically contains all in-neighbors (after immersion) of the
outputs in the possibly MIMO predictor model, while wN−

j

just contains the in-neighbors (after immersion) of the scalar

target module output. At the same time, since dim(uKj ) will
typically be smaller than dim(uK) this shows that we can
expect less restrictive generic data-informativity conditions
for the multi-step method when compared to the local direct
method. This will be illustrated in a more extensive Example
in the next Section.

VIII. EXAMPLE

We consider the 4-node example in Figure 2 with target
module G12, that has correlated disturbances v1 and v3.
We select S = {1, 2, 3} as our selected subnetwork for the
local identification method, where node w4 is immersed to
obtain the network equation (5). Through this choice the PPL
condition (Condition 1) is satisfied. Due to the correlated
disturbances on w1 and w3, with j = 1, we select Y = {1, 3}
and U = {2}. We reconstruct the innovation signals ξ1 and
ξ3, and use them as measured inputs in the MISO predictor
model (16) which results in

ŵ1(t|t− 1, η) =
∑

k∈{2,3}

Ḡ1k(η)wk +
∑

ℓ∈{1,3}

Ȟ1ℓ(η)ε̂ℓ + u1

(19)
where Ȟ11 = H̄11 − 1, and ε̂ = ε(t, ζ̂nN ). Since u1 has a
known path to the output node wj , u1 ∈ uPj . The effect of
external excitation signal u3 is incorporated in input w3 and
therefore does not appear in (19), which implies that Kj =
∅. Note that if u4 would have been present on unselected
node w4 then u4 ∈ uKj . Considering the data-informativity
condition in Proposition 6, we have that N−

j \U = {w3},
U\N−

j = {∅} and N−
j ∩ U = {w2}. This implies that

there should be one path from external signals u to w3, and
this is true for u1 and u3 since these have paths that do
not pass through w2 ∈ wN−

j ∩ U . As a result the example
can be solved by having either u1 or u3 present to obtain a
consistent estimate of G12.

The 2-node example in Figure 1 with correlated distur-
bances v1 and v2 follows a similar reasoning, where we have
sets Y = S = L = {1, 2} and U = ∅ and external excitation
signal u2 ∈ uPj

and Kj = ∅. As a result the 2-node example
can be solved by having either u1 or u2 present, whereas
the local direct method [9], [14], [15] requires both u1 and
u2 to be present to obtain a consistent estimate of the target
module G21.

Fig. 2. 4-node example for local identification of target module G12, where
node w4 is not selected and disturbances v1 and v3 are correlated

IX. CONCLUSIONS

We have introduced a multi-step least squares method
for single module identification that uses a MISO predictor
model to directly and consistently estimate the target module,
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in the presence of correlated disturbances. We have shown
that, when compared to current local direct methods, the
data-informativity conditions for the local multi-step least
squares method are relaxed while keeping key advantages of
current local direct methods. A follow up question involves
investigating the role of the particular choice of S, i.e. the
set of selected nodes, on the performance of the method.
Construction of predictor models with the new multi-step
method has been implemented in the MATLAB app and
toolbox SYSDYNET [25].

APPENDIX
Proof of Proposition 4. From Proposition 3 we know

that ζ̂nN is consistent and therefore εY(t, ζ̂
n
N ) is a consistent

estimate of ξY . The prediction error is then written as

εj(t, η) = wj − ŵj(t|t− 1, η) =
∑
k∈N−

j

∆Ḡjk(η)wk+

∑
ℓ∈Y

∆Ȟjℓ(η)ξℓ + ξj +
∑
γ∈Kj

∆J̄jγ(η)uγ ,
(20)

with ∆Ḡjk = Ḡ0
jk − Ḡjk(η), ∆Ȟjℓ(η) = (H̄0

jk − Ijj) −
Ȟjℓ(η), ∆J̄jγ = J̄0

jγ − J̄jγ(η). From here on we can follow
the proof of Proposition 2 in [16].

Proof of Proposition 5. The generic data-informativity
conditions are satisfied if there are dim(κ) vertex disjoint
paths in the mapping (ξS , uL) → (wS , uP∪K). We can
remove the external excitation signals that have the same
components on the right and left hand side, which results in
(ξS , uL\P∪K) → wS .

Proof of Proposition 6. The generic data-informativity
conditions are satisfied if there are dim(κ̄) vertex dis-
joint paths (uL, ξS) → (wN−

j
, ξY , uKj

), or equivalently
(uL, ξY , ξU) → (wN−

j
, ξY , uKj

). The external signals that have
similar components on both the left hand side and right
hand side of the mapping can be removed, leading to
(uL\Kj

, ξU) → wN−
j

, or equivalently (uL\Kj
, ξU\N−

j
, ξN−

j ∩U) →
(wN−

j \U , wN−
j ∩U). Under the full rank noise assumption we

know that ξN−
j ∩U has dim(wN−

j ∩U) vertex disjoint paths to
wN−

j ∩U . Therefore we can remove wN−
j ∩U and ξN−

j ∩U under
the condition that the paths do not pass through wN−

j ∩U . This
results in (uL\Kj

, ξU\N−
j
) → wN−

j \U , where the vertex disjoint
paths are not allowed to pass through wN−

j ∩U . Relating the
signals ξU\N−

j
to the noise signals in the original network

then leads to the result.
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