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Abstract— With the electrification of ride-hailing fleets, there
will be a need to incentivize where and when the ride-hailing
vehicles should charge. In this work, we assume that a central
authority wants to control the distribution of the vehicles and
can do so by selecting charging prices. Since there will likely be
more than one ride-hailing company in the market, we model
the problem as a single-leader multiple-follower Stackelberg
game. The followers, i.e., the companies, compete about the
charging resources under given prices provided by the leader.
We present a learning algorithm based on the concept of
contextual bandits that allows the central authority to find an
efficient pricing strategy. We also show how the exploratory
phase of the learning can be improved if the leader has some
partial knowledge about the companies’ objective functions.
The efficiency of the proposed algorithm is demonstrated in a
simulated case study for the city of Shenzhen, China.

I. INTRODUCTION

With the widespread adoption of electric vehicles (EVs)
as an eco-friendly mode of transportation, the need for
reliable and efficient charging infrastructure has emerged
as a crucial factor dictating their overall usability [1]. To
profitably manage large electric fleets in the near future,
big ride-hailing companies such as Uber, Lyft, etc., would
likely have to devise intelligent charging strategies dictated
by the spatio-temporal distribution of the power supply. On
the other hand, due to the ever-increasing electricity demand,
coordinated charging of large fleets could have a strong
positive impact on preventing imbalances and overloads in
the power network. From the perspective of the local au-
thorities, the interplay between the energy stakeholders, the
ride-hailing service providers, and the heterogeneous demand
opens the door for trading different services to achieve
a societal optimum in terms of energy management and
congestion levels in the region. As the company operators
strive to reduce their operational expenses, which among
others include charging costs, there is an inherent need to
minimize queuing at charging stations due to the limited
capacity of the shared infrastructure. In return, this creates
a competitive environment between companies as stations in
high-demand areas could be more prone to overcrowding.

We envision that the central authority acts as a regional en-
tity of sufficient regulative power. As illustrated in Figure 1,
we assume the central authority is in charge of determining
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Fig. 1. Schematic sketch of the bi-level problem setting. The |C| = N
ride-hailing companies form the market M(C), parametrized by the vector
of charging prices determined by the central authority.

the charging price at each charging station. Regardless of
whether the central authority is the government, the power
grid operator, etc., we assume it aims to steer the outcome of
the competition between the ride-hailing companies towards
the system optimum by offering discounted charging at cer-
tain stations. Consequently, through smartly designed prices,
the central authority would hope to motivate the management
of the ride-hailing companies to also charge their fleets in the
more distant areas. As a result, the central authority would
reduce the burden both on the power grid and the traffic
network in the demand-attractive areas. In any case, with
such a pricing-oriented structure, the interactions between
the central authority and the ride-hailing market align well
with the concept of Stackelberg games.

We aim to extend the analysis of the bi-level pricing
game previously introduced in [2]–[4], where the system
optimum is introduced by a predefined vehicle distribu-
tion profile. By adopting the operational cost model based
on [5]–[7], the ride-hailing market becomes governed by
a quadratic aggregative game. Upon the announcement of
the charging prices, we assume that the rational company
operators choose a no-regret strategy given by the Nash
equilibrium (NE). Previous studies [2]–[4] show what can
be achieved by means of collaborative information exchange
between the agents on different hierarchy levels. Here, we
analyze the pricing problem from the perspective of the
leader and start by treating the ride-hailing market as a
’grey box’ environment that provides little knowledge about
the lower-level game. To begin with, we assume the central
authority has no information about the functional form of
the costs and constraints governing the operation of the
companies. For such a scenario, we propose a contextual
bandit (CB) algorithm [8] that learns how to price charging
based on some intermediate aggregate information about
the charging demand of the companies. In essence, the
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environment encapsulates the pricing-induced interactions
within the ride-hailing market and outputs just the attained
NE. The algorithm then trains the parameters of the pricing
module by observing the pairs of applied prices and observed
NE. The problem of learning Stackelberg equilibria, under
certain assumptions on the game structure, has already been
studied in the literature [9]. In the context of pricing, there is
a large body of research applying the multi-step counterpart
of the contextual bandits, i.e., the reinforcement learning
(RL) algorithm [10]–[12]. However, the setup of our problem
does not facilitate a Markov decision process (MDP) based
state transition as the prices applied at a particular instant of
time have no influence on the future state of the environment
described mainly by the charging demand of the vehicles. As
such, our setup is not compatible with the RL-based methods.

To the best of our knowledge, there are no works directly
applicable to our problem of learning the central authority’s
pricing strategy in a Stackelberg game with limited infor-
mation about the lower-level ride-hailing market. Naturally,
we complement the proposed CB-based algorithm with an
analysis of the pricing procedure with respect to different
levels of information available to the leader. Namely, if the
central authority has access to the cost functions but not to
the constraints governing the ride-hailing market, we propose
how to construct an initial exploration space for gathering
high-quality training data when there is no previous domain-
based knowledge. Finally, if the central authority also has
information about the constraints in the ride-hailing market,
we show that there is no need to formulate a learning
problem since the bi-level Stackelberg pricing game reduces
to a mathematical program with complementarity constraints
(MPCC) [13] that can be recast into an instance of a mixed
integer linear or quadratic problem (MILP/MIQP) [14] using
the big-M reformulation [15].

The paper is outlined as follows: the rest of this section
is devoted to introducing the basic notation. In Section II,
we introduce the general problem setup before defining the
structure of the electric ride-hailing market in Section III.
In Section IV, we then present our main methodological
and theoretical results. Finally, we conclude the paper with
Sections V and VI, where we test our method in a numerical
case study and propose ideas for future research.

Notation: Let R denote the set of real numbers, R+ the set
of non-negative reals, and Z>0 the set of positive integers.
Let 0m and 1m denote the all zero and all one vectors of
length m respectively, and Im the identity matrix of size
m×m. For a finite set A, we let RA

(+) denote the set of (non-
negative) real vectors indexed by the elements of A and |A|
the cardinality of A. Furthermore, for finite sets A, B and a
set of |B| vectors xi ∈ RA

(+), we define x := col
(
(xi)i∈B

)
∈

R|A||B| to be their concatenation. For A ∈ Rn×n, A ≻ 0(⪰
0) is equivalent to xTAx > 0(≥ 0) for all x ∈ Rn×n.
We let A ⊗ B denote the Kronecker product between two
matrices and for a vector x ∈ Rn, we let diag(x) ∈ Rn×n

denote a diagonal matrix whose elements on the diagonal
correspond to vector x. For matrices Mi, such that i ∈ A,

we let Diag(Mi)i∈A denote their concatenation into a block-
diagonal matrix. For a matrix P , let tr(P ) denote its trace.

II. PROBLEM STATEMENT

We consider a Stackelberg pricing game where the central
authority, denoted as the leading agent L, wants to steer
the decisions made by the agents in the ride-hailing market
M(C). The market is defined by the operational management
of a set of ride-hailing companies i ∈ C operating in a region
where access to a set of shared charging stations H for
electric vehicles is offered, with |C| = N and |H| = M .
We analyze the problem from the short-term perspective,
i.e., for one snapshot of the day in which multiple drivers
from the ride-hailing companies would like to recharge. We
assume that the operator of each company is responsible
for coordinating the charging of the respective electric fleet,
and aims to do so in an attempt to minimize the one-step-
ahead operational cost. Namely, each operator aims to match
the vehicles that want to recharge with the stations so as to
optimize a cost that encompasses the cost of charging, the
monetary equivalent of the time spent queuing at the charging
stations, and the expected revenue induced by a particular
coordinated charging strategy. The central authority, on the
other hand, parametrizes the optimization problem of each
company by choosing the charging prices π ∈ P ⊆ RM

for the stations in the region. For each i ∈ C, let Ni be
the number of vehicles that want to recharge and n =
col((Ni)i∈C). Then, the decision variable of company i ∈ C
is given by xi ∈ Xi ⊆ RM , with ∥xi∥1 = Ni and xi

j ≥ 0
representing the number of vehicles assigned to station j. We
let the sets Xi encode the constraints of each company. Since
xi is chosen as a real vector, and the number of vehicles that
can be sent to each station is an integer, for a perfect match
to exist between the vehicles and the stations, it suffices to
choose polytopic constraints as previously discussed in [2].
Therefore, we assume the sets Xi are given by:

Xi :=
{
xi ∈ RM | Aix

i = bi ∧Gix
i ≤ hi

}
, (1)

with Ai = 1T
M , bi = Ni, Gi ∈ Rmineq

i ×M and hi ∈ Rmineq
i ,

for properly chosen mineq
i ∈ Z>0. If we define sets X :=∏

i∈C Xi and X−i :=
∏

j∈C\i Xj , then the joint strategy of
all followers can be denoted as x := col

(
(xi)i∈C

)
∈ X and

for every i ∈ C, we can define x−i := col
(
(xj)j∈C\i

)
∈ X−i.

The objective of each company is to minimize the cost

J i
(
xi, x−i;π

)
:= Ĵ i

(
xi, x−i

)
+

(
xi
)T

Siπ , (2)

where the first term Ĵ i
(
xi, x−i

)
encapsulates the influence

of other companies on the perceived cost, such as queuing at
the station and lost income from passengers, and the second
term describes the total charging price to be paid. Here, the
matrix Si ∈ RM×M is diagonal, i.e., Si = diag

(
di
)
⪰ 0,

and every element dij ∈ R+ of the vector di ∈ RM
+ can

be interpreted as the expected average charging demand per
one vehicle of the i-th company when choosing the station
j ∈ H. The π-parametetrized ride-hailing market can now
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be described as a set of N optimization problems given by:

M (C;π) :=
{

min
xi∈Xi

J i
(
xi, x−i;π

)
,∀i ∈ C

}
. (3)

We assume the companies in the market M (C;π) col-
laborate to play a no-regret strategy according to a Nash
equilibrium (NE) given in the following definition.

Definition 1: For any π ∈ P , a joint strategy x∗ ∈ X is a
NE of the game played in M (C;π), if for all i ∈ C and all
xi ∈ Xi it holds that J i

(
xi∗, x−i∗;π

)
≤ J i

(
xi, x−i∗;π

)
Specifically, we focus on a subset of NE given by Defini-
tion 1, known as the variational Nash equilibria (v-NE).

Assumption 1: For any π ∈ P , the companies in M (C;π)
play a joint v-NE x ∈ Vπ(M) described by the set
Vπ(M) := {x ∈ X |(y − x)TF (x, π) ≥ 0, ∀y ∈ X}, where
F (x, π) := col((∇xiJ i(xi, x−i;π))i∈C).

In this paper, we assume the central authority is interested
in controlling vehicle distribution among charging stations.
The central authority chooses the prices π ∈ P in an at-
tempt to force the company operators to coordinate charging
such that the resulting total vehicle distribution matches a
predefined one given by vector Z ∈ [0, 1]

M with 1TZ = 1.
For every i ∈ C, let Λi ∈ RM×NM be a selection matrix

Λi :=
[
0M×(i−1)M | IM×M | 0M×(N−i)M

]
, Λ :=

∑
i∈C Λi,

Λ−i := Λ − Λi and Λ := 1TN−1 ⊗ IM . Then, the central
authority’s optimization problem can be cast as

GL :=

 min
π∈P

JL (x∗, π) =
1

2

∥∥∥Λx∗ − 1TnZ
∥∥∥2
2

s.t. x∗ ∈ Vπ (M)

 . (4)

If K denotes the space of available partial observations
of the market state, then the central authority would like
to obtain a functional π : K → P that would map
each observation into properly chosen charging prices at
stations H. It is evident that the amount of shared information
about the structure of the market, i.e., the cost functions
Ĵ i

(
xi, x−i

)
and constraint sets Xi, directly dictates to what

extent the problem (4) can be analytically solved. In cases
when knowledge about the model is scarce, the central
authority would try to learn the market behavior and how to
price better through interactions with the ride-hailing market.

In the following section, we will define the elements of the
underlying operational cost model of ride-hailing companies.
However, in Section IV, we will start by treating this model
as a black box and show that it is possible to design a general
learning-based method capable of tackling such a market
structure. We will then show how the initial exploration
space P for the learning-based method can be designed
should the companies be willing to disclose the information
about the costs Ĵ i

(
xi, x−i

)
and how the complete learning

procedure collapses to an instance of a mixed integer linear
program (MILP) if Xi is available as well.

III. ELECTRIC RIDE-HAILING MARKET

Having defined the optimization problem of every agent
in the system, we now proceed to define the elements of the

min
x1∈X1

min
xN∈XN

Ĵ1
(
x1, x−1

)

ĴN
(
xN , x−N

)
+

+

(
x1

)T
S1πt

(
xN

)T
SNπt

Unknown or partially known known

Environment M (C;πt)

πt

µ (st; θ
µ
t )

Σ
(
st; θ
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Fig. 2. Schematic sketch of the contextual bandit learning setup.

ride-hailing company’s cost in more detail. Every company
operator is interested in minimizing the one-step-ahead cost
under the feasibility constraints imposed by the battery
status of its vehicles. Inspired by the objective functions
analyzed in [2], [3], [5]–[7], in this paper we analyze a cost
J i

(
xi, x−i;π

)
= J i

1

(
xi, x−i

)
+ J i

2

(
xi
)
+ J i

3

(
xi, π

)
, where

J i
1

(
xi, x−i

)
denotes the expected queuing cost, J i

2

(
xi
)

is
the negative expected revenue and J i

3

(
xi, π

)
=

(
xi
)T

Siπ
is the charging cost introduced in (2).

The expected queuing cost model of the company
i ∈ C effectively depends on the total vehicle distribution
as J i

1

(
xi, x−i

)
=

(
xi
)T

C
(
xi + Λx−i − τ

)
, where C ∈

RM×M is a scaling matrix, i.e., C = diag
(
ci
)
⪰ 0, such

that the element cij ∈ R+ depicts how expensive it is for
a vehicle to queue in the region around the station j ∈ H
and τ ∈ RM is the vector of charging station capacities.
The more the capacity of the station is exceeded, the higher
the cost per vehicle should be. Hence, to calculate the total
queuing cost for the whole fleet, we take the inner product
between the vector describing the fleet’s distribution xi, and
the incurred cost per vehicle for choosing a particular station.

The negative expected revenue is modeled as J i
2

(
xi
)
=

(earr
i )

T
xi −

(
epro
i

)T
xi, where earr

i ∈ RM is the average cost
of a vehicle being unoccupied while traveling to a station and
the vector epro

i ∈ RM is the expected profit in regions around
charging stations estimated from historical data. Therefore,
the part Ĵ i

(
xi, x−i

)
of the total cost in (2) can be simplified

to a quadratic form given by

Ĵ i
(
xi, x−i

)
=

1

2

(
xi
)T

Pix
i +

(
xi
)T

Qix
−i + rTi x

i , (5)

where Pi := 2C, Qi := CΛ and ri := earr
i − epro

i . For such
a game structure, the following proposition guarantees the
existence and uniqueness of a Nash equilibrium.

Proposition 1: For any π ∈ P , let the π−parametrized
ride-hailing market M (C;π) be defined as in (3). Moreover,
for every i ∈ C let the constraint sets Xi be defined as
in (1) and the company operator’s objective be defined by (5).
Under Assumption 1, there is a unique v-NE joint strategy
x∗ ∈ X describing the interactions between the ride-hailing
companies in the market M (C;π).

The proof is given in the extended version of our paper.
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Given the aggregative structure of the game, several pric-
ing mechanisms and computational methods to find the Nash
and local Stackelberg equilibria have already been analyzed
in the literature [2]–[4]. However, the underlying assumption
in these works entails that all the agents are motivated to
work toward the societal optimal described by the central
authority’s objective. Both the central authority and the ride-
hailing companies work together to iteratively compute the
local Stackelberg equilibrium. In this paper, we focus on
the pricing problem just from the perspective of the central
authority. Namely, we aim to investigate what happens if
the central authority has no or partial access to Ĵ i

(
xi, x−i

)
and Xi and hence has to treat the market dynamics as a
black-box that outputs the attained v-NE for a particular
pricing vector. Therefore, we turn to learning-based methods
that involve interacting with the unknown environment and
proceed to introduce the framework in the following section.

IV. LEARNING THE CHARGING PRICES

At a particular time step t, let us assume that the central
authority has information about the average charging demand
per vehicle and the negative expected revenue, encoded by
the vectors sdt := col

(
(di)i∈C

)
and srt := col

(
(ri)i∈C

)
.

Then, the observed state vector of the central authority
can be described by st = col

(
{sdt , srt}

)
∈ K ⊆ R2NM .

Typical for learning-based optimization problems, in order
to encourage exploration of the space of prices, the central
authority chooses a pricing vector πt ∈ P ⊆ RM based on
the probabilistic pricing policy ρ (π|s). Because the central
authority is only focused on optimizing the one-step-ahead
cost JL (x∗(πt), πt), and there is no clear Markov Decision
Process governing the relation between the states st and
st+1, the optimization problem of the central authority falls
under the category of contextual bandits. Hence, we will now
present a framework that assumes no prior knowledge about
the structure of the electric ride-hailing market.

A. Contextual bandit framework

To cast the central authority’s learning problem in the
standard form of the contextual bandits, we propose a
parametrized form of a Gaussian pricing policy given by

ρθ (π|s) := N
(
µ (s; θµ) ,Σ

(
s; θΣ

))
. (6)

With this in mind, the central authority now aims to
iteratively update Nθ ∈ Z>0 trainable parameters θ =[
θµ, θΣ

]
∈ Ω ⊆ RNθ through interactions with the ride-

hailing market in an attempt to maximize the instantaneous
reward Rt (π|s) ∈ [0, 1] that describes the quality of the
chosen prices. For a particular choice of θ, the objective of
the central authority is to maximize the objective J(θ) :=
Eρθ(π|s) [R (π|s)] via policy gradient method first introduced
in [16]. Namely, to update the parameters of the stochastic
policy ρθ (π|s) via gradient descent, we aim to utilize a well-
known identity concerning ∇θJ(θ) and given by

∇θEρθ(π|s) [R (π|s)] = Eρθ(π|s) [R (π|s)∇θ log ρθ (π|s)] .
(7)

The right-hand side of (7) is particularly useful if we
assume that at time t = T , the central authority has access
to the history buffer Dt of observed interactions described
by triplets zt := (st, πt, Rt(πt|st)), i.e., Dt := {zt}t≤T .
In that case, the gradient of the central authority’s objec-
tive, ∇θJ(θ) = ∇θEρθ(π|s) [R (π|s)], can be estimated by
approximating the expectation on the right-hand side of (7)
via sampling from Dt. To match the objective of the leader
introduced in (4), we set the reward function R (π|s) :=
1 − 1√

2
∥Z − x̂∗∥2 ∈ [0, 1] such that x∗ ∈ Vπ (M) and

x̂∗ = Λx∗/1Tn. By combining (6) and (7) at time step t,
the central authority updates the parameters θ according to

argmax
θ∈Ω

∑
zk∈Dt

Rk(·)
∑
j∈H

(
log

1

σj(·; θ)
− (πk,j − µj(·; θ))2

2σ2
j (·; θ)

)
,

where σj(·; θ) ∈ R+ represents the jth diagonal element
of Σ(s; θΣ), πk,j represents the jth element of the central
authority’s pricing vector and µj(·; θ) ∈ R+ is the jth
element of the mean vector µ(s; θµ).

The complete schematic overview of the learning setup is
presented in Figure 2. The ride-hailing EVs serve demand
based on the real taxi data from the city of Shenzhen [17]
and the ride-hailing simulator then provides the state of the
fleets st as an exogenous input to the central authority and the
environment. The green part of the environment encapsulates
the pricing part of the market that is inherently known to the
central authority. On the other hand, the knowledge about the
red part depends directly on the willingness of the companies
to share information about their operational management. To
start the training procedure, the buffer of the observed triplets
needs to be filled with some historical data. Needless to say,
the quality of the learned pricing policy depends directly on
the quality of the observed data. In this paper, we obtain
the historical data through initial random exploration of the
pricing space P . Generally speaking, if there is no prior
knowledge about the structure of the model, one would have
to explore the space P = RM as much as possible. However,
for the structure of the market described in Section III,
we will propose a method to construct a bounded search
space based on the structure of Ĵ i

(
xi, x−1

)
that guarantees

attainability of all the interior v-NE x∗, i.e., v-NE satisfying
Gix

i∗ < hi, that would be induced by exploring RM .

B. Characterizing the exploration space

For a set of pricing policies P ⊆ RM , let the set
of P-induced interior v-NE of the market game M (C;π)
be VP :=

{
x∗ ∈

⋃
π∈P Vπ (M) |Gix

i∗ < hi, ∀i ∈ C
}

. Let
c ∈ R>0 denote the largest diagonal element of C, N =
maxi∈C Ni, N = mini∈C Ni and Ntot =

∑
i∈C Ni. Accord-

ing to the definition of Pi in (5), we can drop the subscript i
and write Pi := P for every i ∈ C. Furthermore, let α ∈ R>0

be defined via α−1 = tr(P−1) and let Ψ ∈ RM×M be
Ψ := IM − α1M1TMP−1. For every i ∈ C, let ri := Ψri
and ri,j ∈ R be its jth element. Let rmax = max

i∈C,j∈H
ri,j ,

rmin = min
i∈C,j∈H

ri,j , z :=
(
c− α

2

)
Ntot +

(
c+ α

2

)
N and

z := α
2 (N −Ntot). Then the following theorem provides

a way to construct a polytopic exploration space P .
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Theorem 1 (Relaxed exploration space): Let the market
M (C;π) be defined as in (3). Moreover, for every i ∈ C, let
the sets Xi be defined as in (1) and the company operator’s
objective be defined by (5). If P1 = RM , then choosing
a polytopic set P2 :=

{
π ∈ RM | γ1MN ≤ Gππ ≤ Γ1MN

}
with γ := αN − rmax − z ∈ R, Γ := αN − rmin − z ∈ R and
GT

π := [ST
1 Ψ

T | . . . | ST
NΨT ], yields VP1

= VP2
.

The proof is given in the extended version of our paper.

Uniform sampling from a polytopic constraint is, in gen-
eral, a hard problem. However, we show in the extended
version how P2 can be extended to a box superset. Finally, if
the central authority also has knowledge about the inequality
constraints of the ride-hailing companies, we can show that
the learning process can be completely reduced to an instance
of a mixed integer program.

C. Complete knowledge about the market

If the central authority has full knowledge about the cost
functions and constraint sets in M(C), then the complete
learning procedure can be avoided by solving an MPCC.

Theorem 2 (Global optimum feasibility check): Let the
π−parametrized ride-hailing market M (C;π) be defined as
in (3). Moreover, for every i ∈ C, let the constraint sets Xi

be defined as in (1) and the company operator’s objective
be defined by (5). There exists a vector π ∈ RM such that
JL∗ (·, π) = 0 if and only if there exists β > 0 such that
following feasibility MILP has a solution

minimize
x∗, λ∗, ν∗, π,m

1

subject to P1x
∗ + P2ν

∗ + P3λ
∗ = r + Sπ ,

Ax∗ = b ,

Λx∗ = 1TMnZ , (8a)
0L ≤ λ∗ ≤ βm ,

0L ≤ −
(
Gx∗ − h

)
≤ β(1L − m),

m ∈ {0, 1}L

where L =
∑

i∈C m
ineq
i , P1 = IN ⊗ C + 1N1T

N ⊗ C, P2 =
Diag(1M )i∈C , P3 = Diag(GT

i )i∈C , r = col((ri)i∈C), A =
Diag(1TM )i∈C , b = col((Ni)i∈C), G = Diag(Gi)i∈C , h =

col((hi)i∈C), ST
= [S1 | . . . | SM ].

The proof is given in the extended version of our paper.

However, if the exact minimization of the leader’s objec-
tive JL(·, π) is not possible, i.e., the feasibility MILP in
Theorem 2 does not have a solution, one can search for the
optimal pricing vector π ∈ P by solving a MIQP obtained by
removing the constraint (8a) and changing the objective in
the feasibility MILP to ∥Λx∗−1TnZ∥22. Generally speaking,
in the case of full knowledge about the structure of the
market M(C), avoiding the learning process is done at the
expense of having to find a proper parameter β > 0 for
the big-M reformulation. This is an NP-hard problem [18],
tackled in reality via different heuristics [14]. However, for
a dynamic scenario in which the parameters describing the
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Fig. 3. Evolution of the reward signal. The solid blue line represents the
moving average of the last 100 iterations.

cost functions J i of the ride-hailing companies change in
each iteration based on the state of the respective ride-hailing
fleet, applying such a method might be less favorable than
having a trained pricing agent.

In the next section, we will present the results obtained in a
simulated case study based on real taxi data from Shenzhen.

V. CASE STUDY

Let us assume there exist three ride-hailing companies
C = {C1, C2, C3} with fleet sizes Nfleet = [450, 400, 350]

T

that serve the ride-hailing demand in the Shenzhen region
with four public charging stations H = {H1,H2,H3,H4}.
The stations are located in parts of Shenzhen with different
demands for ride-hailing services and are described by the
vector of capacities τ = [15, 60, 35, 50]

T . After a 3-hour long
simulation, representing one of the two peak-hour periods
during the day when the companies serve the real taxi
demand obtained from [17], the vehicles whose battery level
is lower than 55% are considered interested in charging. To
prevent the ride-hailing vehicles from flocking in the most
demand-attractive parts of Shenzhen, the desired distribution
of the ride-hailing vehicles Z is formed so as to match the
spatial distribution of the ride-hailing service requests. To
approximate this distribution, the city is divided into four
cells according to the Voronoi [19] partitioning of the map,
with the stations chosen as the centroids of the Voronoi
cells. The distribution Z is chosen to correspond to the
total number of requests in each cell which results in Z =
[0.37, 0.19, 0.27, 0.17]

T . We run the contextual bandit for a
total of Niter = 1000 iterations, with the first Nexp = 250
used for random exploration. In the t-th iteration, the central
authority samples a batch Bt of |Bt| = 32 triplets from the
observations in the current buffer Dt and uses them to per-
form Nepoch = 20 epochs of the parameter update procedure.
After the update has been completed, for the exogenously
given state st, the agent performs the forward propagation to
obtain µ(st; θ

µ
t ) and Σ(st; θ

Σ
t ), and then samples the pricing

policy πt ∼ N (µ(st; θ
µ
t ),Σ(st; θ

Σ
t )) for the current iteration.

The pricing is then applied in the market M(C), the resulting
distribution of vehicles x̂∗ among the stations is observed,
the reward Rt(πt|st) is calculated and the resulting triplet is

3140



TABLE I
CHARGING PRICES AND ATTAINED VEHICLE DISTRIBUTIONS

Station H Z Contextual Bandit Feasibility MILP
πj x̂∗

j πj x̂∗
j

H1 0.37 3.69 0.35 3.39 0.37
H2 0.19 2.37 0.20 2.20 0.19
H3 0.27 2.87 0.26 2.83 0.27
H4 0.17 1.34 0.19 1.58 0.17

stored. The performance of the contextual bandit is depicted
in Figure 3, where the blue line shows how the moving
average of 100 samples of the reward signal evolves with
respect to the iteration number. The black marks on the left-
hand side of the dashed line denoting the 250-th iteration
show the attained rewards during the training data collection
phase. It is important to note here that the exogenous state
of the system sk is different at every iteration meaning that
the system aims to map a whole distribution of ride-hailing
market states into reasonably good pricing vectors. When
learning begins, we can observe that the moving average
curve seemingly converges after approximately 150 iterations
to a value that yields good matching between the desired
and attained vehicle distribution. We further support this by
plotting the evolution of attained vehicle distributions in the
extended version of the paper. Regarding the collection of
the training data during the initial exploration phase, based
on the results from [3], [4], we a priori chose P = [0.0, 5.0]4.
Since the exogenously generated state sk determines the
parameters of the cost functions in the market for every
iteration, one should verify that the sampled π ∈ P also
belongs to the set P2 given by Theorem 1. We observed
that for the parameters of our case study, there was a
significant gap between P2 and P = [0.0, 5.0]4, which
stresses the fact that the bounds derived in Theorem 1 are not
tight. In the future, we aim to investigate how and if these
bounds can be improved. Finally, for a particular state s for
which the feasibility MILP in Theorem 2 was feasible, we
compare the performance of the pricing policy obtained by
the feasibility MILP and the fully trained contextual bandit.
The comparison of the charging prices and attained vehicle
distributions is displayed in Table I. The illustrated numerical
values are obtained for π = µ(s; θµ). Clearly, the MILP
algorithm achieves RMILP = 1.0. The CB-agent, on the
other hand, achieves RCB = 0.974, which represents a minor
discrepancy between the desired and attained distributions.

VI. CONCLUSIONS

In this paper, we present a learning algorithm based on
the concept of contextual bandits. It is capable of learning
how to map an exogenously given distribution of the ride-
hailing fleet states into an adequate charging price vector for
a ride-hailing market described by a quadratic aggregative
game. For the case when no domain knowledge is available,
but the central authority has access to the form of the cost
functions in the market, we propose a polytopic search space
for generating the training data in the initial phase of the

process. If the central authority has full knowledge of the
market structure, we show that it suffices to solve an instance
of a MILP/MIQP in order to find the optimal pricing.

In the future, we aim to investigate if the bounds on the
search space in Theorem 1 can be tightened and if more
complex instances of the pricing games could be solved.
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