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Abstract— With the worldwide adoption of electric vehicles
(EVs), charging stations are becoming the bottleneck in deliver-
ing high-quality charging service to EVs. Compared to conven-
tional fuel vehicles, EVs require more time to charge at charging
stations until their energy requirements are fulfilled. Fur-
thermore, the distribution network capacities frequently limit
charging resources at a charging station. As a result, charging
station operators must optimize EVs’ charging scheduling and
allocate the limited charging resources efficiently. Due to the
high uncertainty of future EVs’ arrival and charging demands,
station operators typically schedule the arrived EVs’ charging
solely based on the charging requirements of these EVs, while
disregarding future arrivals. Such a scheduling policy is simple
to implement, but it may result in high service drop rate,
particularly for charging stations with high occupancy levels.
To that end, we develop an EV charging schedule model that
includes a reserved charging rate, as well as a robust sample-
based approach that incorporates the concept of statistical
feasibility to help minimize the service drop rate. Numerical
studies further verify the effectiveness of our suggested method.

Index Terms— Smart grid; Robust adaptive control; Data
driven control

I. INTRODUCTION

Electric vehicles (EVs) are becoming an eco-friendly and
cost-effective alternative to fossil-fuel-powered vehicles for
reducing carbon emissions. As such, EVs are reshaping
the automotive industry. Due to the limited cruising range,
EVs must be recharged frequently, making charging stations
essential for the increasing adoption of EVs. In contrast to
traditional vehicles that can refuel quickly, EVs charging sys-
tems require vehicles to stay at the charging station until their
charging demands are completed, posing unique challenges
for charging station operators (CSO). Furthermore, the distri-
bution network capacities of charging stations often result in
limited charging resources, such as maximum charging rate
capacity or equivalently the maximum number of charging
ports. Consequently, effective EV charging scheduling has
received much attention.

CSO often seeks to devise an optimal charging schedule
that minimizes charging costs upon the arrival of new EVs.
Due to the high uncertainty associated with future EVs’
arrival and charging requirements, most existing scheduling
strategies only consider the requirements of all EVs that have
arrived at the charging station, which are straightforward to
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implement. However, scheduling plans that disregard future
EVs’ may increase the probability of rejection of future EV
arrivals, compromising the charging station’s service quality,
which is termed as the high service drop rate. Additionally,
stochastic spot market prices coupled with a high service
drop rate may further lead to reduced utilization rates and
charging profitability, thus negatively affecting charging sta-
tions’ operation.

The key to controlling the service drop rate is strategically
reserving the charging rate in advance, fully utilizing the
charging flexibility of the arrived EVs. Nevertheless, ex-
cessive reserve rates will result in high charging costs for
the arrived EVs, while insufficient reserve capacity cannot
effectively prevent rejection of future coming EVs. To this
end, we introduce an online scheduling framework for EV
charging that considers the reserved charging rate for future
arrivals and design a robust sample-based solution to help
minimize the service drop rate.

A. Related Works

As mentioned, our goal is to determine the optimal EV
charging schedule while considering the reserved charging
rate for future arrivals at the minimum charging cost. The key
is appropriately characterizing the future arrivals uncertainty.
Accordingly, we identify two major related works for man-
aging EV charging. The first one focuses on characterizing
various stochastic factors in EV charging management, while
the second introduces classic methods to handling these
uncertainties.

While linear or dynamic programming techniques have
been applied to implement EV management in determin-
istic scenarios [1], CSOs inevitably encounter scheduling
challenges fraught with uncertainty, e.g., the uncertainty of
future EV arrivals and charging requirements, electricity
prices, etc. Therefore, the charging scheduling considering
various stochastic factors has been investigated. Mouli et
al. leverage dynamic EV charging profiles to minimize grid
dependence and optimize solar power utilization for the
direct charging of EVs in [2]. Sánchez-Martı́n et al. propose a
model for managing EV charging that takes into account the
stochastic nature of vehicle staying patterns in [3]. Sarker et
al. put forward an optimization framework for the operating
model of battery swapping stations that accounts for both
battery demand uncertainty and electricity price uncertainty
in [4]. In our paper, we seek to obtain the optimal schedule
for minimizing the service drop rate by considering the
uncertain future EV arrivals and their charging requirements.
Specifically, our work focuses on dealing with the stochastic
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impact of future arrivals on the optimal charging scheduling
by introducing the reserved charging rate.

The optimal uncertainty management for EVs has been
well investigated. Just name a few, Wang et al. propose a
real-time EV charging scheduling model that considers un-
certainties in EV availability using a scenario-based method
in [5]. Sun et al. develop a robust cost-minimizing day-
ahead scheduling approach for EV charging in low voltage
networks given uncertain individual EV-users’ behavior, vari-
able renewable generation, and spot market prices in [6].
Zhang et al. design an optimal pricing scheme to minimize
the service drop rate of charging stations with dual charging
modes based on the queue theory in [7]. Wu et al. address
the challenges of energy scheduling in office buildings in-
tegrated with photovoltaic systems and uncertain workplace
EV charging by stochastic programming in [8]. In contrast,
our work adopts the notion of statistical feasibility and aims
to achieving an effective robust sample-based solution.

B. Our Contributions

By adopting the notion of statistical feasibility, we propose
an effective sample-based solution to the online EV charging
scheduling problem that considers the uncertain reserved
charging rate for future EV arrivals. Our major contributions
can be summarized as follows:

• Online EV Charging Scheduling with Reserved Charg-
ing Rates: We develop an EV charging scheduling
model that accounts for the reserved charging rate to
minimize the risk of charging unavailability for future
EV arrivals.

• EV Charging Scheduling with Statistical Feasibility:
We incorporate the notion of statistical feasibility and
customize an EV charging scheduling problem with
statistical feasibility.

• Robust Sample-based Solution: We propose a robust
sample-based approach, in seek of jointly mitigating the
reliance on the distribution information and solutions’
conservation.

II. DETERMINISTIC EV CHARGING SCHEDULING AND
CHANCE-CONSTRAINED FORMULATION

This section first revisits the classic EV charging schedul-
ing problem and recasts a light-weight formulation to focus
on the charging plan for the newly arrived EVs. To address
the uncertainty associated with future EV arrivals and their
charging requirements, we introduce the reserved charging
rate and provide a chance-constrained formulation.

A. Deterministic EV Charging Scheduling Model

We focus on an online EV charging management for single
EV charging station. Specifically, a series of EVs arrive at
the station for charging, and a CSO manages the charging
station with a fixed overall charging rate capacity C and
faces a time-varying electricity price. CSO aims to effectively
manage the station when new EVs arrive by solving the

following optimization problem to fully exploit the flexibility
from all the arrived EVs in the station:

min
vn,t

∑N

n=1

∑T

t=1
vn,tpt∆t (1)

s.t.
∑Td

n

t=Ta
n

vn,t ≥ En, ∀n, (1a)

0 ≤ vn,t ≤ Vn, ∀t, ∀n, (1b)

vn,t = 0, ∀t /∈ [T a
n , T

d
n ], ∀n, (1c)∑N

n=1
vn,t ≤ C, ∀t, (1d)

where vn,t is the decision variable, representing the charging
rate of the EV n at time t; N is the number of EVs in the
charging station; T is the length of scheduling interval; pt
is the electricity price at time t1; ∆t is the simulation step2;
T a
n and T d

n represent the arrival and departure time of the
EV n, respectively, which are deterministic for each EV in
our model3; En is the EV n’s charging demand; Vn is the
EV n’s maximum charging rate.

Constraints (1a) and (1c) require the charging station to
fully charge all EVs up to their demands in the required
charging time windows. Constraint (1b) ensures that EVs’
charging rates cannot exceed their maximal. Constraint (1d)
guarantees that the total charging rate at each time t is within
the charging station capacity.
Remark: Note that Model (1) may result in frequent
rescheduling of the arrived EVs when new EVs arrive, which
may lead to fluctuations in the charging completion times and
costs for historically arrived EVs. However, EV owners typi-
cally expect relatively accurate estimates of the charging cost
and time. For example, Uber provides estimated prices and
arrival times based on the current distance to the destination
before passengers place their orders. Therefore, we propose
a light-weight version of Model (1) that only focuses on the
charging schedule for newly arrived EVs given the charging
schedules of all historically arrived EVs.

B. Light-Weight Reformulation
Mathematically, upon the arrival of new EVs, CSO sched-

ules their charging by solving the following problem:

min
vn,t

∑Ñ

n=1

∑T

t=1
ptvn,t (2)

s.t. ht +
∑Ñ

n=1
vn,t ≤ C, ∀t, (2a)

Constraints (1a)− (1c),

where Ñ is the number of newly arrived EVs; ht is the aggre-
gated historical charging rate (calculated by the historically
arrived EVs) at time t, which is known and fixed.

1We assume the electricity price pt is known to CSO in advance, e.g.,
based on the prediction from the historical data.

2Note that ∆t is constant and hence will not affect the solution to Model
(1). In the subsequent analysis, we will ignore ∆t in all the modeling and
decision-making processes.

3Clearly, for each EV, the arrival time Ta
n is deterministic. It is reasonable

to assume that the available window of EV charging is bounded, i.e., T d
n −

Ta
n ∈ [Tmin

n , Tmax
n ]. In our paper, we only focus on the deterministic

departure case, i.e., T d
n = Ta

n + Tmin
n or T d

n = Ta
n + Tmax to provide

reference for the maximum or minimum charging cost.
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Remark: Fixing ht makes the charging schedule for his-
torical arrived EVs deterministic. Although we give up fully
utilizing the historically arrived EVs’ flexibility, the schedule
performance may not be significantly affected, which will
be further verified in numerical study. Nevertheless, Model
(2) only focuses on the schedule for newly arrived EVs, but
completely ignores the future arrivals, making it likely for the
future arrivals to wait or even to be rejected due to the limit
charging rate capacity C. This observation motivates us to
reserve some charging rate in advance. Next, we introduce
the reserved charging rate st to help reduce the charging
rejection in the future.

C. Involving Stochastic Consideration

After involving a consideration for future EV arrivals and
their charging requirements, we consider the EV charging
scheduling problem with a reserved charging rate as follows,

min
vn,t

∑Ñ

n=1

∑T

t=1
ptvn,t (3)

s.t. ht +
∑Ñ

n=1
vn,t ≤ C − st, ∀t, (3a)

Constraints (1a)− (1c).

Remark: Note that we consider st in constraint (3a) to
characterize the future EV arrivals’ uncertainty aggregately,
including their arrival times, departure times, and charging
demands. By introducing st, we want to fully utilize the
newly arrived EVs’ flexibility and reduce charging rejections
for future arrivals.

In Model (3), the predicted st can be directly utilized
to help obtain the optimal charging scheduling for newly
arrived EVs4. However, in practice, accurate prediction for
st is challenging, as these parameters are often highly volatile
and time-dependent (which is related to future EV arrivals
and their charging requirements). Hence, in most cases, the
uncertainty in st is often characterized by an error term ωt

on top of the prediction ŝt, i.e.,

st = ŝt + ωt. (4)

Considering the future EV arrivals’ uncertainty, our
scheduling problem turns into

min
vn,t

∑Ñ

n=1

∑T

t=1
ptvn,t (5)

s.t. h1 +
∑Ñ

n=1
vn,1 ≤ C, (5a)

ht +
∑Ñ

n=1
vn,t ≤ C − (ŝt + ωt), ∀t ∈ [2, T ], (5b)

Constraints (1a)− (1c),

where there is no uncertainty at t = 1 as shown in constraint
(5a) (the arrived EVs at t = 1 is deterministic).

4For example, we can utilize the historical data in a charging station to
make a prediction ŝt for st, which may be dependent on time t.

D. Chance-Constrained Solution

Given the distribution information of ωt or the estimated
distributions captured from the historical prediction errors,
the chance-constrained (CC) method can be utilized to
solve Model (5). Mathematically, the chance-constrained EV
charging scheduling model is formulated as follows,

min
vn,t

∑Ñ

n=1

∑T

t=1
ptvn,t (6)

s.t. P

(
ht +

∑Ñ

n=1
vn,t ≤ C − (ŝt + ωt)

)
≥ 1− δ,

∀t ∈ [2, T ], (6a)
Constraints (1a)− (1c), (5a).

Remark: Although CC methods have demonstrated their
effectiveness for dealing with optimizations with uncertain
parameters, standard CC algorithms frequently rely on trans-
forming the problem into an equivalent deterministic formu-
lation. Such approaches require the distribution information
of the random variables (ωt in our case), which can be
difficult to obtain precisely. To alleviate the reliant on the
distribution information, robust optimization (RO) is often
adopted.

III. ROBUST SAMPLE-BASED SCHEDULING FOR ONLINE
EV CHARGING

RO is a well-established approach to deal with uncertainty
in optimization problems. The key of such a method involves
constructing an uncertainty set from historical samples. How-
ever, RO methods ensure that the optimal solution is feasible
under worst-case scenarios (in terms of random variables).
In our problem, this means that CSO must ensure that
the maximum possible future EVs’ charging demands are
satisfied while scheduling the newly arrived EVs, which
may be unnecessary since the probability of such extreme
demand cases is often low and the obtained solutions may
be too conservative. Consequently, in this section, we design
a robust sample-based solution that addresses the dependence
on distribution capture in CC methods and the conservative
issue of classic RO methods.

A. Statistical Feasibility and Robust Sample-based Model

Before diving into the details, we first introduce the notion
of statistical feasibility.
Definition 1 (Statistical Feasibility) [9]: For a CC program,

min f(x), s.t. P(g(x;ϑ) ∈ V) ≥ α, (7)

where f(x) is the objective function, x is the decision
variable, ϑ is the random vector characterizing uncertainties
over a probability measure P, V is the feasible region, and
α is the probability requirement for the chance constraints.
Assume a dataset ϑ = {ϑ1, ϑ2, · · · , ϑn} is sampled from
P and χ(ϑ) is constructed based on ϑ. An algorithm is
statistically feasible if the resulting solution x∗ is feasible
for the chance constraint with confidence β, i.e.,

Pϑ(P(g(x∗;ϑ ∈ χ(ϑ)) ∈ V) ≥ α) ≥ β. (8)
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We directly adopt statistical feasibility in our setting.
That is, for the CC model (6), an algorithm is statistically
feasible means that the resulting solution v = {vn,t, ∀n ∈
[1, Ñ ], ∀t ∈ [1, T ]} is feasible for the chance constraint with
confidence 1− η:

Pvt

(
Pωt

(
ht +

∑Ñ

n=1
vn,t ≤ C − (ŝt + ωt)

)
≥ 1− δ

)
≥ 1− η, ∀t ∈ [2, T ]. (9)

Remark: Given any sample set, statistical feasibility implies
that the optimal solutions guarantee at least 1−η confidence
level for the chance constraints in the original CC problem.
Obviously, vt =

∑Ñ
n=1 vn,t is dependent on the historical

samples ωt. Thus, vt can also be treated as random variables,
and the randomness comes from ωt. Here, for simplicity, we
consider the same δ and η for all t.

To provide a statistically feasible solution to Model (6),
we can solve the following robust sample-based optimization
problem,

min
vn,t

∑Ñ

n=1

∑Td

t=Ta
ptvn,t (10)

s.t. Constraints (1a)− (1c), (5a)− (5b), ω ∈ U .

where U is constructed to satisfy the statistical feasibility of
the chance constraint, i.e., constraint (9). Note that for any v
feasible to Model (10), ω ∈ U (ω = [ω2, · · · , ωT ]) implies
that all the constraints in Model (10) are satisfied. Intuitively,
by choosing U that covers 1− δ portion of historical sample
set Ω = [Ω2, · · · ,ΩT ] (i.e., U satisfies P(ω ∈ Ω) ≥ 1− δ),
any v feasible to Model (10) is also feasible to Model (6)
because

P

(
ht +

∑Ñ

n=1
vn,t ≤ C − (ŝt + ωt)

)
≥ P(ωt ∈ Ωt) ≥ 1− δ. (11)

B. Uncertainty Set Construction and Solution

The remaining hurdle is to construct a suitable U from Ω
that ensures statistically feasible solutions to Model (10).
If U encompasses the extreme cases and covers 1 − δ
portion of Ω, conservative solutions are likely to arise.
To overcome this issue, we design a two-stage strategy to
construct U . Specifically, we divide the dataset Ω into two
parts Ω1,Ω2 with size of m1 and m2. We leverage Ω1 for
shape approximation and uncertainty set localization, while
Ω2 is used for shape calibration.

Shape Localization: We utilize ellipsoids as an example to
help approximate the uncertainty set5 and fix the position for
the possibly uncertainty set. Specifically, we utilize the ellip-
soidal uncertainty set to approximate Ω1, i.e., {ωt| (ωt−µ)2

σt
≤

qt}, for some qt > 0. Parameters µt and σt can be directly
chosen as the sample mean and variance of Ω1, i.e., µt =

5Classical RO approach also uses polytypes to approximate the uncer-
tainty set. Such polyhedron uncertainty set can be constructed following the
similar routine as the construction procedure for the ellipsoid uncertainty
set.

Algorithm 1 Robust Sample-based Solution
Input {s, ŝ}, δ, η, m1, m2;
Output solution v with statistical feasible guarantee;

Uncertainty Set Construction:
1: Initialize t = 2;
2: Compute predicted error dataset Ωt = s− ŝ;
3: Divide Ωt into two groups, denoted by Ω1 and Ω2 with

sizes m1 and m2;
4: while t ≤ T do
5: Approximate the high-probability region of ωt using

Ω
(t)
1 and denote it by {ωt| (ωt−µt)

2

σt
≤ qt};

6: Reformulate the obtained geometric shape in step 5 in
the form of {ωt : r(ωt) ≤ qt};

7: Sort observations of {r(ωt)} for ωt ∈ Ω
(t)
2 , and obtain

r(ωt)(1) < r(ωt)(2) < · · · < r(ωt)(m2);
8: Calculate the index of calibration value of qt according

to Eq. (12);
9: Denote q̃t = r(ωt)(i∗), and calibrate the uncertainty

set as r(ωt) ≤ q̃t;
10: t = t+ 1;
11: end while
12: return {µt, σt, q̃t}.
Optimization:

1: For t ∈ [2, T ], transform Eq. (13) into Eq. (14) using
{µt, σt, q̃t};

2: Solve the equivalent problem to get the solution v of
Model (10).

1
m1

∑
ωt∈Ω

(t)
1

ωt, σt =
1

m1−1

∑
ωt∈Ω

(t)
1
(ωt − µt)

2 with Ω
(t)
1

representing the historical samples at time t.
Shape Calibration: After obtaining the approximated ellip-
soidal set, we need to guarantee the statistical feasibility
using Ω2. We set r(ωt) = (ωt−µt)

2

σt
. Then the ellipsoidal

set is r(ωt) ≤ qt. Sort the values of r(ωt) for ωt ∈ Ω
(t)
2 :

[r(ωt)(1), r(ωt)(2), · · · , r(ωt)(m2)]. We can find the critical
sample index i∗, which satisfies that,

i∗ = min

{
j :

j−1∑
k=0

(
m2

k

)
(1− δ)kδm2−k ≥ 1− η

}
(12)

for 1 ≤ j ≤ m2 if 1 − (1 − δ)m2 ≥ 1 − η. This allows
us to calibrate the ellipsoidal set with r(ωt) ≤ q̃t, where
q̃t = r(ωt)(i∗).

We can reformulate Model (10) into the equivalent de-
terministic tractable problem by using the shape parameters
of the constructed uncertainty set. Mathematically, the con-
straint

ht+
∑Ñ

n=1
vn,t ≤ C−(ŝt+ωt), ωt ∈ Ut, ∀t ∈ [2, T ], (13)

with Ut characterized by {ωt| (ωt−µt)
2

σt
≤ q̃t}, can be trans-

formed into the equivalent linear constraint as follows,

ht+
∑Ñ

n=1
vn,t ≤ C−(ŝt+µt+

√
q̃tσt), ∀t ∈ [2, T ]. (14)
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By such a transformation, many existing optimization
packages, e.g., CVX [10], can be utilized to effectively
handle Model (10). The whole procedure is detailed in
Algorithm 1.

IV. NUMERICAL STUDIES

This section conducts extensive numerical studies aimed
at validating the efficiency of our proposed robust sample-
based approach. All the experiments are performed on a
laptop with an Intel ® i5 4.5GHz CPU and 16GB RAM.
The optimization model is implemented using MATLAB ®
2022a and solved by Gurobi 9.5.2 [11].

A. Dataset Description and Simulation Design

Due to the lack of real-world EV charging scheduling data,
synthetic datasets are generated by drawing upon Charge-
point’s EV charging session data from San Francisco, CA
[12]. The dataset furnishes pertinent information on EVs’
T a
n , T d

n , and En. In particular, the value of ht is derived by
consecutively solving Model (2) contingent upon the random
arrival of EVs (assuming the EVs’ arrival follows the Poisson
process), with pricing data obtained from [13].

We assume st is inversely proportional to electricity price
and is generated from a Gaussian distribution, i.e., st =
N (10/pt, 1). ωt is generated from a Gaussian distribution
or Weibull distribution, and ŝt is calculated by Eq. (4).
For simplicity, we utilize polytypes to approximate the
uncertainty set. We repeat the experiments to schedule EVs’
charging for 400 times and divide the generated dataset into
two parts with equal size: one is acted as a historical sample
set, and the other is utilized as a testing set. We focus on the
performance analysis on the testing set.

B. Benchmarks and Evaluation Metrics

We compare our proposed robust sample-based method,
denoted as RSO, with several benchmarks:
Chance-constrained Method (CC): We compare our pro-
posed method with the conventional stochastic programming
approach, CC method. We assume ωt is Gaussian distributed
and the parameters of the Gaussian distribution is estimated
from the historical sample set.
Classic Robust Optimization (CRO): The classic RO
method is also used for comparison and we obtain the
feasible solutions for the maximum reserved charging rate
in terms of ωt.
Deterministic methods (OPT and DM): The optimal base-
line solutions are obtained from the deterministic optimiza-
tion with perfect predictions for st (OPT). To provide a more
thorough experimental comparison, we additionally include a
deterministic case with predicted information ŝt, abbreviated
as DM.

To evaluate the performance of different methods, over
200 testing cases, we compare the total charging cost (TCC),
the average charging unit price (ACP), and the average
shortening period (ASP) for all solvable cases, as well as
the service drop rate (SDR). We define ASP as the mean

value of the shortening time comparing the EVs’ departure
time across different methods. SDR is calculated as follows

SDR = 1− the number of feasible solutions

200
, (15)

where the feasible solutions are required to satisfy Eq. (3a)
for ∀t ∈ [2, T ]. For example, if CC obtains 180 solvable
cases and only 104 feasible cases which succeed in handling
the future EVs’ demands, then TCC, ACP, and ASP is
calculated by 180 solvable cases while SDR = 1−104/200.

C. Performance Evaluation

1) Effect of Using Light-Weight Reformulation: We start
by evaluating the effect of using the light-weight Model
(2) as opposed to the classic Model (1) on the solutions.
Table I presents the results. The values in brackets under
the column labeled “No Solutions” indicate the number of
cases that yield infeasible solutions. As depicted in Table I,
fixing ht in the light-weight model increases the possibility
of the failure case and decreases the charging profit (from the
CSO’s perspective), which is reasonable because the arrived
EVs’ charging flexibility is not fully utilized in Model (2).
Nevertheless, from the perspective of EVs’ owner, ACP is
lower and ASP is higher, corresponding to a lower unit
charging cost and enhanced departure flexibility.

2) Effect of Introducing the Reserved Charging Rate:
Table II presents a comparison of the performance between
Model (2) and Model (3) under the conditions of complete
information st (OPT) or predicted information ŝt (DM).
It is evident that by incorporating the reserved charging
rate in advance and utilizing perfect prediction for st, SDR
experiences a decrease, which means reserving charging rate
in advance has a positive effect on SDR. Additionally, due to
the imprecise characterization of the future EV arrivals, there
exists a high possibility (32.92%) that solvable cases may fail
to offer charging services in the future because of the limited
C, implying that the performance of DM is quite unstable.
Hence, in the subsequent analysis, we will concentrate on
the performance comparison between CC, CRO, and RSO.

3) Performance Comparison between Different Methods:
We adopt Gaussian and Weibull noises for ωt to model
the uncertainty and employ the standard deviation value
(shape parameter for the Weibull distribution) to quantify the
uncertainty magnitude. To enable more effective comparison,
we consider the savings in TCC and ACP (in percentage)
compared to the optimal benchmark OPT. We term this gap
the regret percentage, denoted by REP (the lower absolute
REP means the better performance). We set m1+m2 = 200,
δ = η = 0.9 and the comparison results for different methods
are presented in Fig. 1.

TABLE I
COMPARISON BETWEEN LIGHT-WEIGHT REFORMULATION MODEL (2)

AND CLASSIC MODEL (1).

Model TCC ACP No Solutions ASP
Model (1) 15130.71 6.703 4.5% (191/200) 0.6755
Model (2) 14742.76 6.695 6.0% (188/200) 0.7128
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TABLE II
PERFORMANCE COMPARISON BETWEEN MODELS (3) AND (2).

Model TCC ACP SDR ASP
Model (2) 14742.76 6.695 48.0% 0.7128

Model (3) - OPT 12553.17 6.801 19.5% 0.6584
Model (3) - DM 12360.56 6.748 46.0% 0.7019
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Fig. 1. Performance Comparison using Different Methods (left: Gaussian
case, right: Weibull case). SDR of OPT is 4.5%.

From Fig.1, we conclude that our proposed RSO achieves
lower SDR (see Fig. 1(e)(f)), higher charging profit (see Fig.
1(a)(b)) for CSO, and lower charging unit price (see Fig.
1(c)(d)) for EV owners than the other two methods. Besides,
RSO changes slower with increasing uncertainty magnitudes,
which means RSO provides more stable control performance
than CC and CRO. For ASP, all the three methods do not
show apparent improvement.

V. CONCLUDING REMARKS

This paper formulates an online EV charging scheduling
framework from the perspective of CSO. The proposed
framework incorporates a reserved charging rate to ensure
sufficient power supply for future EV arrivals and maintain
service quality for the arrived EVs. We adopt the notion
of statistical feasibility to design an effective sample-based
solution that both reduces reliance on the distribution knowl-
edge and relaxes the solutions’ conservative issue of classic
RO. Numerical experiments demonstrate the superiority of
our proposed method.

We want to emphasize that our work can be extended by
considering more practical factors, e.g., renewable energy
[14], [15], energy storage [16], [17], stochastic electricity
prices [18], [19]. Moreover, for the uncertainty set con-
struction procedure of our proposed robust solution, more
improvements can be explored, e.g., integrating the domain
knowledge related to the EV scheduling problem into uncer-
tainty set reconstruction [20], [21].
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