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Abstract— We consider the feedback linearization problem,
and contribute with a new method that can learn the linearizing
controller from a library (a dictionary) of candidate functions.
When the dynamics of the system are known, the method boils
down to solving a set of linear equations. Remarkably, the same
idea extends to the case in which the dynamics of the system
are unknown and a linearizing controller must be found using
experimental data. In particular, we derive a simple condition
(checkable from data) to assess when the linearization property
holds over the entire state space of interest and not just on
the dataset used to determine the solution. We also discuss
important research directions on this topic.

I. INTRODUCTION

Data-driven control is becoming more and more central
to control engineering. The motivation is to automate the
control design process when the system of interest is poorly
modeled (first-principles laws might be difficult to obtain)
or when accurate models are too complex to be used for
controller design. Data-driven control has been applied in
almost every area of control theory, among which we can
mention optimal [1], [2], [3], [4], robust [3], [5], [6], [7], and
predictive control [8], [9], [10], [11]. Further applications
include networked and distributed control [12], [13], [14],
[15]. Also the techniques are quite varied, ranging from
dynamical programming and behavioral theory to techniques
typical of machine learning. The majority of the results
consider linear systems. Unsurprisingly, deriving solutions
for nonlinear systems is harder. The objective of this paper
is to explore data-driven control for nonlinear systems, in
particular data-driven feedback linearization.

Related work. Data-driven control for nonlinear systems
is still largely unexplored. A way to deal with nonlinear
systems is to exploit some structure, when it is a priori
known the class to which the system belongs, for instance
bilinear [16], [17], and polynomial (or rational) systems [7],
[18], [19], [20], [21]. Methods for general nonlinear systems
include linearly parametrized models with basis functions
[22], [23], [24], Gaussian process models [25], [26], linear
[3], [27], [28], [29] and polynomial approximations [30],
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[31], and the feedback linearization [24], [26], [32], [33],
which is the focus of this work.

As well known, the feedback linearization method aims at
finding a coordinate transformation where the dynamics can
be linearized via feedback (i.e., where all the nonlinearities
can be canceled out with a feedback controller). Lineariza-
tion is clearly appealing as it allows us to exploit all the
concepts and tools that are available for linear systems, thus
simplifying problems that would otherwise be difficult to
address. In the context of data-driven control, recent exam-
ples are sampled-data stabilization [27] and output-matching
control [34]. We remark that also the problem of lifting a
nonlinear system to a linear system of a higher dimension
has been studied, famous methods are immersion [35] and the
Koopman operator theory [36], [37]. In this respect, feedback
linearization can be viewed as the natural starting point for
techniques of this kind because it searches for a mapping that
preserves the state dimension. We refer the interested reader
to [33] for a recent discussion on the connections between
feedback linearization and the Koopman operator theory.

Contribution. In this paper, we address the problem of
solving the feedback linearization problem from data. We
approach this problem in the simplest possible setting that
we can think of, namely full-state linearization and noise-free
data. While this is a favorable setting, the problem remains
far from straightforward. In fact, most of the existing works
on this topic assume that the state transformation is given in
the sense that they assume that we know the state coordinates
that render the system linearizable (usually, that we know the
function for which the system has relative degree equal to the
state dimension) [24], [26], [27], [32], [34], and the problem
essentially becomes that of finding a feedback that linearizes
(and stabilizes) the closed loop.

In our method, we learn the state and control transfor-
mations from a library of basis functions. Approaches of
this type have been widely used in the context of system
identification, see for example [38], and recently also in the
context of direct data-driven control [22], [24], [34]. We
start by considering a model-based solution, that is, assuming
that we know the dynamics of the systems (Section III-A).
The model-based solution inspires the solution in case the
dynamics are unknown and the feedback linearization must
be solved using data alone. (Section III-B). Our approach
shows some interesting features. From a theoretical point of
view, we provide conditions under which the solution, which
is determined from a finite number of datapoints, defines a
coordinate transformation that is valid on the whole space of
interest. Finally, from a practical point of view, the solution
is obtained by determining the null space of a matrix,
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which is computationally fast even for big matrices. Further,
numerical derivatives are not necessary for computing the
data matrices [39] but it simplifies exposition.

Throughout the paper we also discuss practical issues, the
choice of the library of functions, experiment design, and
numerical aspects; see in particular Section III-B.

Notation and definitions. Given a function h : D → E ,
its inverse function h−1 : E → D, provided it exists, is the
function such that h−1(h(x)) = x for all x ∈ D. Given a
function h : D → E taking on scalar (matrix) values, we
denote by h(x)−1 the reciprocal (inverse) of h(x) at x. By
coordinate transformation τ : D → E it is meant a local
diffeomorphism [40, p. 11], that is τ is a bijection and both
τ and τ−1 are smooth mappings. We will also consider the
notions of (vector) relative degree and Lie derivative. The
reader is referred to [40, p. 220, 496] for their definitions
and properties.

II. PROBLEM SETTING

A. Feedback linearization problem
Consider a continuous-time nonlinear system

ẋ = f(x) + g(x)u (1)

where x ∈ Rn is the state, u ∈ Rm is the input, f : Rn → Rn,
and g : Rn → Rm are smooth vector fields. The objective
is to stabilize the system at some x = x0 with the so-called
feedback linearization [40, Chapter 5], as we make precise in
the sequel, in the case in which the vector fields f(x), g(x)
are not known but some priors about them are available.

We begin by recalling the state space exact linearization
problem or linearization problem, for short [40, p. 228].
Given a state x0, find a neighborhood D of x0, functions
α : D → Rm, β : D → Rm×m, a coordinate transformation
τ : D → Rn and a controllable pair (A,B) such that, for
each x ∈ D,

∂τ

∂x
(f(x) + g(x)α(x)) = Aτ(x), (2a)

∂τ

∂x
g(x)β(x) = B. (2b)

We slightly reformulate the problem in a form that is more
convenient for our purposes.

Lemma 1: The linearization problem is solvable if there
exist a neighborhood D of x0, functions γ : D → Rm×m,
δ : D → Rm, with γ(x) nonsingular for all x ∈ D, and a
coordinate transformation τ : D → Rn such that, for each
x ∈ D and u ∈ Rm,

∂τ

∂x
(f(x) + g(x)u) = Acτ(x) +Bc(δ(x) + γ(x)u) (3)

where Ac = diag(A1, . . . , Am), Bc = diag(B1, . . . , Bm),

Ai =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ∈ Rri×ri , Bi =


0
0
...
0
1

 ∈ Rri×1,

(4)

with r1, . . . , rm nonnegative integers such that r1 + . . . +
rm = n.

Further, if g(x0) has rank m then (3) is also necessary. �
We refer the reader to [40, section 5.2] for the proof.
By Lemma 1, condition (3) implies condition (2) and is
equivalent to (2) whenever g(x0) has full column rank. The
latter requirement is in fact quite mild, in particular for
single-input systems it amounts to requiring that g(x0) is a
nonzero vector. It is convenient to focus on (3) as it expresses
the linearization condition through one single equation that
involves the flow dynamics f(x) + g(x)u. This turns out to
be useful when we want to solve the linearization problem
with data, as we can use data (trajectories) as a proxy for
f(x) + g(x)u. With this in mind, we will focus on (3).

B. Objective of the paper and assumptions

Our objective is to discuss how to solve the linearization
problem, i.e. how we can find functions τ, δ and γ satisfying
(3). We will first discuss in Section III-A the case where
the dynamics of the system are known. Then, in Section
III-B, we will discuss how we can approach the problem
when the dynamics of the system are unknown. Clearly,
if the dynamics of the system are known, we can deal
with the linearization problem using classical results [40,
Theorem 5.2.3]. The motivation to consider the case of
known dynamics in Section III-A is that it introduces the
line of thought that will be also used in Section III-B when
the dynamics are unknown. The main assumptions in this
work are:

Assumption 1: The linearization problem is solvable. �
Assumption 2: We know functions Z : D → Rs, Y : D →

Rp, and W : D → Rr×m, such that

τ(x) = TZ(x), δ(x) = NY (x), γ(x) =MW (x) (5)

for some (unknown) matrices T , N , M . �
Assumption 2 can be expressed by saying that we know

a library of functions that includes the real system in the
τ -coordinates. We thus require that some prior knowledge
about the system is available, as is the case with mechanical
and electrical systems where some information about the
dynamics can be derived from first principles. Assumptions
of this type have been widely adopted in the context of
system identification, see for example [38], and recently also
in the context of direct data-driven control, see [22], [24].
We allow Z,W, Y to contain terms not present in τ, γ, α,
which accounts for an imprecise knowledge of the dynamics
of interest (in fact, we may well have s� n and p, r � m).
Thus, the goal is to discover the elements of the functions
Z,W, Y to obtain the identity (3).

Before proceeding we make one final remark. When (3)
holds, a linearizing control law is u = γ(x)−1(v − δ(x)),
with v a signal. This returns η̇ = Acη + Bcv, where
η = τ(x). Since (Ac, Bc) is controllable, we can thus
select v = Kτ(x) with K a state-feedback matrix that
renders Ac +BcK Hurwitz. As τ has a continuous inverse,
under the extra property τ(x0) = 0 we will then have that
u = γ(x)−1(Kτ(x)− δ(x)) stabilizes the nonlinear system
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at x0. While the design of u is the obvious ultimate goal,
it is important to stress that (3) does not involve the design
of K; it rather defines an intermediate step after which K,
and thus u, can be readily designed. This point is crucial
for the approach considered in the paper in the sense that
by looking at (3) –without K– we can obtain a numerically
efficient method, as detailed next.

III. MAIN RESULTS

We begin by expressing condition (3) in a convenient form.
Under Assumption 2, condition (3) can be written as

T
∂Z

∂x
(f(x)+g(x)u) = AcTZ(x)+Bc(NY (x)+MW (x)u).

(6)
Defining

`1(x, ẋ) := Z(x)> ⊗Ac −
(
∂Z

∂x
ẋ

)>
⊗ In (7a)

`2(x) := Y (x)> ⊗Bc (7b)

`3(x, u) := (W (x)u)> ⊗Bc (7c)

and recalling the properties of the vectorization operator, (6)
can be thus given the equivalent form

F (x, u, ẋ)v = 0 (8)

where,

F (x, u, ẋ) =
[
`1(x, ẋ) `2(x) `3(x, u)

]
(9a)

v =

 vec(T )
vec(N)
vec(M)

 (9b)

By Assumptions 1 and 2, there exists v 6= 0 such that
(8) holds for all x ∈ D and all u ∈ Rm. The property
v 6= 0 holds because otherwise τ(x) would not be a change
of coordinates and γ(x) would not be nonsingular. Having
assumed that the linearization problem is feasible and bearing
in mind that its solution takes the form (8), we thus focus
on the problem of finding one solution of such a form, i.e.,
v 6= 0 such that

F (x, u, ẋ)v = 0,

for all x ∈ D, u ∈ Rm, and ẋ such that ẋ = f(x) + g(x)u.
(10)

A. Model-based solution

We first derive a solution to the linearization problem
assuming that the dynamics of the system is known. This
we will serve as a basis for the case where the dynamics
is unknown and we only have access to input-state data
collected from the system.

We approach this problem in the following way. Since f, g
are known, the matrix of functions F (x, u, f(x) + g(x)u))
is also known. Let Fij denote the (i, j)-th entry of the
matrix F . Knowing the functions Fij(x, u, f(x) + g(x)u))
we can determine a set of linearly independent functions
over R defined on D × Rm, {φk(x, u)}nbk=1, such that each

Fij(x, u, f(x) + g(x)u)) can be expressed as a linear com-
bination of this basis, that is

Fij(x, u, f(x) + g(x)u)) = φ(x, u)>cij , (11)

φ(x, u) :=
[
φ1(x, u) . . . φnb(x, u)

]>
(12)

and cij ∈ Rnb is a vector of coefficients. Notice that the
subscript of cij is used to match the indexing of Fij , and
not to indicate some entry of the vector c. Here, each cij is
unique because φ(x, u) consists of independent functions.

Theorem 1: (Model-based solution with complete dictio-
naries) Let F (x, u, ẋ) be as in (9a). Let {φk(x, u)}nbk=1 be a
set of linearly independent functions over R defined on the
set D × Rm, such that each entry Fij of F is expressed as
in (11)-(12) on D×Rm. Then, v satisfies (10) if and only if
v is a solution of the system of linear equations

∑µ
j=1 c1je

>
j

...∑µ
j=1 cnje

>
j

 v = 0 (13)

where ej denotes the j-th vector of the canonical basis of
Rµ, and µ = ns+ pm+ rm denotes the size of v. �

Proof. Write the system of equations F (x, u, f(x) +
g(x)u))v = 0 in (10) row by row as
µ∑
j=1

Fij(x, u, f(x) + g(x)u))vj = 0, i = 1, 2, . . . , n (14)

By (11), the equations above can be re-written as
µ∑
j=1

Fij(x, u, f(x) + g(x)u))vj

=

µ∑
j=1

φ(x, u)>cijvj

= φ(x, u)>
µ∑
j=1

cije
>
j v = 0, i = 1, 2, . . . , n

(15)

As the vector φ(x, u)> is made of linearly independent
functions over R, the equation

φ(x, u)>
µ∑
j=1

cije
>
j v = 0 (16)

holds if and only if
∑µ
j=1 cije

>
j v = 0. This equation must

hold for any integer i. We conclude that the set of all the
vectors v such that (10) holds is given by the solutions to
the system of linear equations (13). �

A solution of interest is obtained by excluding the solution
v = 0 from the set of solutions to the system of linear
equations. One can further seek among all these solutions
at least one, say v̂, for which T̂ ∂Z

∂x (x
0) and M̂W (x0) are

nonsingular.
Example 1: (Model-based feedback linearization) Con-

sider the nonlinear system [36]{
ẋ1 = µx1 + u

ẋ2 = λ(x2 − x21) + u
(17)
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where µ 6= λ and where the equilibrium of interest is
x0 = 0. The system satisfies the necessary and sufficient
conditions for the linearization problem to be solvable [40,
Theorem 4.2.3]. To determine the coordinate transformation,
one could solve the partial differential equation ∂λ

∂xg(x) = 0
with the nontriviality condition ∂λ

∂x [f, g](0) 6= 0, where [·, ·]
denotes the Lie bracket. Once λ is obtained, the coordi-
nate transformation τ would be obtained setting τ(x) =
[ λ(x) ∂λ

∂x f(x) ]
>. Here, we pursue the approach outlined in

Theorem 1. Suppose that we choose the following library of
basis functions (this choice is dictated by the willingness to
keep the size of F and v small enough):

Z(x) =

 xx21
x22

 , Y (x) = Z(x), W (x) =

[
1

Z(x)

]
. (18)

We add the constant factor 1 in W (x) to make sure that
γ(x) = MW (x) is nonsingular about 0. With this choice,
F (x, u, ẋ) is made of the following sub-matrices:

`1(x, ẋ) =[
−ẋ1 x1 −ẋ2 x2 −2x1ẋ1 x21 −2x2ẋ2 x22
0 −ẋ1 0 −ẋ2 0 −2x1ẋ1 0 −2x2ẋ2

]
,

(19a)

`2(x) =

[
0 0 0 0
x1 x2 x21 x22

]
, (19b)

`3(x, u) =

[
0 0 0 0 0
u x1u x2u x21u x22u

]
. (19c)

Note that µ = size(v) = 17. Bearing in mind the expression
of ẋ1, ẋ2, the basis functions {φk(x, u)}nbk=1 in terms of
which the entries of F (x, u, ẋ) can be expressed are

x1, x2, u, x
2
1, x

2
2, x1u, x2u, x

2
1x2, x

2
1u, x

2
2u. (20)

Hence, nb = 10. This choice gives a unique set of co-
efficients cij , with i = 1, 2 and j = 1, 2, . . . , µ which,
once replaced in (13), gives rise to the following system
of equations:

−µv1 + v2 = 0, −λv3 + v4 = 0,
λv3 − 2µv5 + v6 = 0, −2λv7 + v8 = 0,

−µv2 + v9 = 0, −λv4 + v10 = 0,
−v2 − v4 + v13 = 0, λv4 − 2µv6 + v11 = 0,
−2v6 + v14 = 0, 2v8 = v15 = 0,

v1 + v3 = 0, v5 = v7 = 0,
−2λv8 + v12 = 0, v16 = v17 = 0,

(21)

whose solutions are given by

v> =
[
v1 µv1 −v1 −λv1 0 λv1 0 0 µ2v1 −λ2v1

λ(2µ+ λ)v1 0 (µ− λ)v1 2λv1 0 0 0
]

(22)
with v1 a free parameter. The first 8 entries of v define T :

T = v1

[
1 −1 0 0
µ −λ λ 0

]
(23)

which returns the change of coordinates

τ : x 7→ v1

[
x1 − x2

µx1 − λ(x2 − x21)

]
(24)

The 9th–12th entries of v define N and return δ(x) =
NY (x) = v1(µ

2x1 − λ2x2 + λ(2µ+ λ)x21). The 13th–17th
entries define M and return γ(x) =MW (x) = (µ−λ)v1+
2λv1x1. For any v1 6= 0, we obtain feasible τ(x), γ(x), δ(x).
The solution coincides with the one guaranteed by [40,
Theorem 4.2.3]. �

B. Data-based solution and generalization from the sample
space

The approach described in the previous section requires
knowledge of the vector fields f, g. We can draw inspiration
from the model-based approach to find a solution achiev-
able using data alone. We start again from the equation
F (x, u, ẋ)v = 0, but instead of expressing F (x, u, ẋ) via
the basis functions {φk(x, u)}nbk=1, which is not possible
since the vector fields defining ẋ are unknown, we evaluate
F (x, u, ẋ) on a dataset and use this information to build a
solution v to (10) when f, g are unknown.

Namely, assume that is is possible to make an experiment
on the system and collect a dataset D := {(xi, ui, ẋi)}L−1i=0

with xi ∈ D, u ∈ Rm, and ẋi = f(xi) + g(xi)ui. The idea
is then to solve (10) at the collected data points, namely to
find a vector v 6= 0 belonging to the kernel of F(D) where

F(D) :=

 F (x0, u0, ẋ0)
...

F (xL−1, uL−1, ẋL−1)

 . (25)

Note that each entry of F(D) is of the form F (x, u, ẋ) with
ẋi = f(xi) + g(xi)ui for each i = 0, . . . , L− 1.

The matrix F(D) can be computed from data, after which
we easily determine its null space. This procedure, however,
only guarantees that the dynamics are linearized at the
collected data points, i.e., in the sample space. Clearly, we
would like that to ascertain whether a solution defines a
coordinate transformation that is valid on a whole space of
interest, and this involves the problem of generalizing from
a finite set of data points to infinitely many data points. It is
actually possible to give a simple condition that resolves this
issue, and this condition can be checked using data alone.
This is formalized in the next result.

Theorem 2: (Data-driven solution with complete dictio-
naries) Let nullity(F(D)) = 1 where nullity(M) denotes
the dimension of the null space of a matrix M . Then, any
vector v 6= 0 belonging to the null space of F(D) satisfies
(10), hence it solves the linearization problem. �

Proof. By Assumption 2, the identity (8) holds for all
x ∈ D and all u ∈ Rm. In particular, it holds at the
collected data points, which implies that F(D)v = 0. Since
nullity(F(D)) = 1, then any nonzero vector v ∈ ker(F(D))
is such that v = λv, with λ ∈ R \ {0}. Multiplying both
sides of (8) by λ, we obtain λF (x, u, ẋ)v = 0, that is,
F (x, u, ẋ)v = 0. This concludes the proof. �

Example 2: (Data-driven feedback linearization) Con-
sider again the nonlinear system{

ẋ1 = µx1 + u

ẋ2 = λ(x2 − x21) + u
(26)
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where the equilibrium of interest is x0 = 0. We assume
µ = −0.5 and λ = 0.2. According to Example 1,

τ : x 7→
[

x1 − x2
−0.5x1 − 0.2(x2 − x21)

]
(27)

defines a change of variables linearizing the system about
the origin. Specifically, in the coordinates η = τ(x) we have

η̇1 = η2

η̇2 = 0.25x1 − 0.04x2 − 0.16x21︸ ︷︷ ︸
δ(x)

+(0.4x1 − 0.7)︸ ︷︷ ︸
γ(x)

u

(28)
Suppose that the model is unknown and we want to discover
this coordinate transformation using data collected from the
system. We make an experiment on the system of duration
10s in which we apply a piecewise constant input uniformly
distributed within [−0.1, 0.1] and with initial conditions in
the same interval. We collect L = 100 samples {xi, ui, ẋi}
with period 0.1s. Suppose that we choose the following
library of basis functions:

Z(x) =


x
x2

x3

sin(x)
cos(x)

 , Y (x) = Z(x), W (x) =

[
1

Z(x)

]
.

(29)
where by x2 we mean the vector with components x21 and
x22, and the same meaning holds for the sine, the cosine and
the cubic function. Here the library is richer than the one of
Example 1 to illustrate the situation where we add several
candidate functions to compensate the lack of knowledge
of the dynamics of the system. Using this library and the
dataset, we compute F(D) and determine its null space. The
null space of F(D) is 1, and the solution is indeed as in next
(30) (modulo a constant factor):

T =

[
1 −1 0 0 0 0 0 0 0 0
−0.5 −0.2 0.2 0 0 0 0 0 0 0

]
(30a)

N =
[
0.25 −0.04 −0.16 0 0 0 0 0 0 0

]
(30b)

M =
[
−0.7 0.4 0 0 0 0 0 0 0 0 0

]
.

(30c)

One sees that the algorithm automatically discards sine,
cosine and cubic functions, recovering the model-based
solution. In this example, we systematically obtained the
same solution with different datasets generated considering
different input signals. �

We conclude this section with some remarks discussing
theoretical and practical aspects of the data-based solution.

Remark 1: (Domain of linearization and region of at-
traction (RoA)) Assumption 2 requires that we know the
domain of linearization D. In practice, this can be inferred
from data by determining the domain over which TZ(x) is a
diffeomorphism. It is interesting to note that the knowledge
of D permits us to immediately obtain an estimate of the
RoA. In fact, once we have the linear dynamics η̇ =

Acη + Bcv in the coordinates η = τ(x) we can determine
a stabilizing control law v = Kτ(x) and a RoA, say S, for
the system η̇ = (Ac + BcK)η that is also an invariant set
(for instance, a Lyapunov sublevel set). Thus, a RoA for the
nonlinear system can be obtained as any invariant set R ⊆ S
such that τ−1(η) ∈ D for all η ∈ R. �

Remark 2: (Choice of the library and noisy data) Our
approach crucially depends on Assumption 2. As shown
in Example 2, we can be generous with the number of
candidate functions as the solution is eventually obtained
by determining the null space of a matrix (F(D)), which
is computationally fast even for big matrices. The situation
can be different with noisy data. The main issue with
noisy data is that all the functions might be selected (the
overfitting problem). In this case, some prior knowledge can
help to keep the size of the library moderate. In parallel,
it can be useful to explicitly search for sparse solutions,
for example: minimizev:‖v‖=1‖F(D)v‖22 + α‖v‖0, where
‖F(D)v‖22 replaces the constraint F(D)v = 0, while α‖v‖0,
α > 0, penalizes the complexity of the solution; finally, the
constraint ‖v‖ = 1 ensures that the solution is different from
zero. Formulations of this type have been widely adopted in
the context of data-driven control cf. [24], [34], [38], [41].
Treatment of this problem is left for future research. �

Remark 3: (Experiment design and the data acquisition
scheme) Besides noisy data, there are other practical aspects
that are worth mentioning. The matrix F(D) has dimension
Ln×(ns+pm+rm). Thus, a necessary condition to have the
condition nullity(F(D)) = 1 fulfilled is that rank(F(D)) =
ns+ pm+ rm− 1 and therefore we need that Ln ≥ (ns+
pm+rm)−1. This means that we need to collect a sufficient
amount of data, and this amount increases with the number
of basis functions. This is not surprising as the solution is
obtained through an interpolation problem. Another aspect
related to experiment design is that to have rank(F(D)) =
ns+pm+ rm−1 we need data of good quality. The design
of (persistently) exciting input signals for nonlinear systems
is still not well understood, we refer the interested reader to
[42] for a recent discussion. The choice of the sampling time
is instead less critical except when we sample too fast. In
this case, the trajectories become almost constant, thus we
can lose information regarding the dynamics of the system
and the problem can become numerically ill-conditioned. �

IV. CONCLUDING REMARKS

In this paper, we addressed the problem of feedback
linearization from data. Unlike existing results where the
state transformation is assumed to be known, we propose
a method to learn both the change of coordinates and the
state feedback control. Our method has some interesting
features. Most notably, it allows us to determine a solution
from a finite set of datapoints. From a practical point of view,
the solution is obtained by determining the null space of a
matrix, which is computationally fast even for big matrices.
There are many important venues for future research, we
list three. An important research line is how to extend the
result presented here to the case of input-output feedback
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linearization, which occurs when only a portion of the state
is linearizable. We are confident that the ideas discussed here
can be successfully extended to this case as well. A second
research line pertains how to deal with neglected dynamics
(incomplete basis functions) and noisy data, all cases where
the solution might return an approximate linearization only.
Here the challenge is to understand how errors made on the
estimate of τ(x) propagate to the control law, and how we
can mitigate this through the choice of the basis functions.
Finally, it is interesting to consider these ideas in the more
general context of immersion.
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