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Abstract—In this paper, a continuous-time reinforcement
learning (RL)-based controller is developed for image-based
visual servoing (IBVS). The IBVS control dynamics is of the
form where the drift term is absent and there is an uncertainty
in the Jacobian matrix that is multiplied with the input.
This poses a challenge for developing a continuous-time RL
controller. The paper presents an actor-critic or synchronous
policy iteration (PI)-based RL controller along with a parameter
update law for the unknown parameter in the image Jacobian
and proves closed-loop stability with the proposed controller.
An infinite-horizon value function minimization objective is
achieved by regulating the current image features to the desired
with near-optimal control efforts. The proposed controller is
tested using a simulation use case and the results validate the
proposed theory.

I. INTRODUCTION

Visual servo (VS) control uses image feedback to con-
trol the motion of a camera or a robot. There are several
approaches to visual servoing: image-based visual servo
control (IBVS), position-based visual servo control (PBVS),
2.5D approach, see [1], [2] for more details. PBVS requires
knowledge of the camera pose and the error is computed
between desired and current camera pose. IBVS uses image
features to directly compute the camera velocities, thereby
obviating the need to estimate pose. 2.5D visual servo control
approaches use camera pose and image feature error. Other
methods to visual servo control include partitioned approach
[3], switched VS [4] that switches between IBVS and PBVS,
and hybrid VS [5], which simultaneously minimizes the pose
and image feature errors. Although several advanced methods
have been developed for VS, few optimal control methods
exist for VS, e.g., [6], [7], where an linear quadratic (LQ)
controller is designed using the linearized system. The VS
dynamics are nonlinear, where the drift dynamics term is not
present and the control is multiplied by a Jacobian matrix
which is not fully known due to the presence of uncertain
parameters. Reinforcement learning (RL) has successfully
provided a means to design optimal adaptive controllers for
various classes of systems. The main objective of this paper
is to design an RL-based controller for IBVS dynamics.

RL is a goal-oriented learning method, where the decision
maker learns the optimal policy that maximizes a long term
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reward. By interacting with the environment the decision
maker gets an evaluative feedback about its actions, which
can be used to iteratively improve the control policy [8]. A
class of iterative RL methods is adaptive dynamic program-
ming (ADP), which was introduced by Werbos for discrete
time (DT) systems [9], [10], and implemented in actor-critic
framework. Extension of RL algorithms to continuous time
(CT) systems is achieved in [11] by using Hamilton-Jacobi-
Bellman (HJB) framework with known system dynamics,
where a continuous-time version of the temporal difference
error is employed. Several offline approaches of solving a
generalized HJB equation are developed in [12], [13], us-
ing Galerkin’s spectral approximation [12] and least-squares
successive approximation solution [13] to HJB, which is then
used to compute the optimal control.

To obviate the requirements of known system dynamics,
among online approaches, an integral reinforcement learning
(IRL) method is developed in [14], [15], which requires
only partial knowledge of system dynamics. The approach
called policy iteration (PI) is developed based on actor-critic
structure, where the actor neural network (NN) is learned at a
faster time scale than the critic NN. In [16] the IRL approach
is extended to simultaneously learn both the actor and critic
NNs, leading to a new method called synchronous PI. Further
in [17], an actor-critic-identifier (ACI) approach is presented,
which in addition to actor and critic NNs, uses an identifier
network to identify the unknown drift term in the dynamics.
The above mentioned methods require the knowledge of
the input gain or control effectiveness matrix. The method
in [18] identifies the complete nonlinear system dynamics
using experience replay technique and learns the actor-critic
NN using PI method for completely unknown dynamics.
For linear systems, a completely model free RL method
is developed in [19], which iteratively solves the algebraic
Riccati equation using the online information of state and
input. Using the IRL framework an on-policy model-free Q
learning approach is developed in [20] for linear systems.

In this paper, an actor-critic RL algorithm is designed
based on the development in [17] without the identifier
part for the IBVS system. The uncertainty in the input
gain matrix complicates the design of the RL algorithm for
the IBVS setting, where the ACI approach of [17] is not
directly applicable and therefore, motivates the contribution
in this paper. The unknown depth parameters of the system
dynamics (input gain/control effectiveness) is modeled as a
constant parameter and an adaptive parameter update law is

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 4358



developed using Lyapunov-based stability analysis. The critic
and actor NN approximate the optimal value function and
optimal control. The critic NN weight update law is derived
based on minimization of the Bellman error computed using
optimal and approximate HJB equation. A least-squares
weight update law is derived. Similarly, a gradient based
NN weight update law is derived for actor NN based on
minimization of Bellman error. The parameter and actor-critic
weights are learnt simultaneously as new state and control
input data becomes available. Lyapunov stability analysis
shows an exponential convergence to an ultimate bound of
the closed loop error system leading to uniformly ultimately
bounded (UUB) stability. The proposed IBVS controller is
validated using a simulation study.

II. SYSTEM MODEL AND CONTROL OBJECTIVE

A. System Dynamics

Consider the following system representing the evolution
of the points as a function of the camera velocity. The system
model can be written as

ẋ = J(x, θ)v (1)

where x(t) = [xT
1 , ..., x

T
n ]

T ∈ R2n denotes the set of feature
points with xi(t) = [sxi, syi]

T denoting the ith feature
point’s position with respect to a fixed frame, v(t) ∈ Rm

represents the input velocity vector, where m denotes the
number of DOF. The Jacobian matrix J(x, θ) ∈ R2n×m is
expressed as [5]

J(x, θ) = [Jv(x)θ Jω(x)]

= Yr(x)θ + [02n×m
2
, Jω(x)] (2)

where θ ∈ R is an unknown parameter related to the
depth and Jv ∈ R2n×m

2 and Jω ∈ R2n×m
2 and Yr =

[Jv(x), 02n×m
2
] ∈ R2n×m.

Remark 1. The parameter θ can be related to the unknown
depth using Homography matrix decomposition, refer to [5]
for further details.

B. Controller Objective

The control objective is to regulate the current locations
of the image features to the desired positions given by a
reference image.

For the control design, the IBVS regulation error x̄(t) ∈
R2n is defined as

x̄(t) ≜ x(t)− xd (3)

where xd ∈ R2n are the desired locations of the feature points
and the parameter estimation error θ̃(t) ∈ R is defined as

θ̃(t) ≜ θ − θ̂(t). (4)

Since the optimal regulation objective is to bring the state
x(t) to a non-zero desired state xd, the system model (1) is
first written in terms of x̄

˙̄x = J(x, θ)v = J(x̄, xd, θ)v (5)

A continuous RL controller is now designed using the system
in (5) with the objective to optimally regulate the state x̄(t)
to 0 with the minimum control effort v(t).

C. Continuous RL-based Controller Design

An RL-based controller is designed to achieve the desired
control objective given by the optimal value function is
defined as

V ∗(x(t)) = minu(τ)∈Θ(X )

∫ ∞

t

r(s)ds (6)

where Θ(X ) is a set of admissible policies, r(x, u) = Q(x)+
uT (x)Ru(x) ∈ R is the local cost, Q(x) is a positive definite
function and R = RT > 0. Without loss of generality, the
system of the form ẋ = J(x, θ)u is considered for further
development. Given the dynamics (5) and the value function
(6), the optimal control is given by

u∗(x) = −1

2
R−1JT (x, θ)

∂V ∗

∂x

T

(7)

where V ∗ is continuously differentiable and satisfies
V ∗(0) = 0.

The Hamiltonian of the system is given by

H(x, u, Vx) =
∂V

∂x
J(x, θ)u+ r(x, u) (8)

The optimal Hamiltonian associated with the optimal cost
and control is given by

H(x, u∗, V ∗
x ) =

∂V ∗

∂x
J(x, θ)u∗ + r(x, u∗) = 0 (9)

Computing the value function V (x) and the optimal con-
troller requires solution to the HJB which is a partial differ-
ential equation and hence hard to solve. The value function
is approximated using a neural network called as a critic NN
and the corresponding optimal control is approximated using
actor NN. Using the approximated cost and the controller the
approximated Hamiltonian is computed as

H(x, û, V̂x) =
∂V̂

∂x
J(x, θ̂)û+ r(x, û) (10)

Using the optimal and approximated Hamiltonian, a temporal
difference or Bellman error δ is computed as follows

H(x, û, V̂x)−H(x, u∗, V ∗
x ) = δ (11)

δ =
∂V̂

∂x
J(x, θ̂)û+ r(x, û) (12)

because the value of optimal Hamiltonian is 0. Bellman error,
δ, in Hamiltonian is used to learn the critic and actor NN
weights.

Assumption 1. The function J(x, θ) is second order differ-
entiable. Moreover, J is bounded 0 < J(x, θ) < j̄ with a
known bound.

Assumption 2. For a given NN, L(x) = WTσ(V Tx) +
ϵ(x), the ideal NN weights W and V are bounded by known
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positive constants, i.e., ∥W∥ ≤ W̄ , ∥V ∥ ≤ V̄ [21]. The NN
activation function σ and σ′ are bounded.

Assumption 3. Using the universal approximation property
of NN, the function reconstruction error ∥ϵ(x)∥ ≤ ϵ̄ and its
derivative ∥ϵ(x)′∥ ≤ ϵ̄′ are bounded [22].

III. ACTOR-CRITIC BASED OPTIMAL CONTROL DESIGN

A. Approximate Optimal Control

Using NN representation the optimal value function and
the optimal control is written as

V ∗(x(t)) = WT
c ϕ(x) + ϵc(x)

u∗(x) = −1

2
R−1JT (x, θ)(ϕ′(x)TWc + ϵ′c(x)

T ) (13)

where Wc ∈ Rnc×1, ϕ(x) : R2n → Rnc are the basis
functions, ϵ(x) ∈ R is the function error. Due to the function
approximation error these cannot be implemented in practice,
for that the approximated value function and the optimal
control laws are designed as

V̂ (x(t)) = ŴT
c ϕ(x)

û(x) = −1

2
R−1JT (x, θ̂)(ϕ′(x)T Ŵa) (14)

where Ŵc ∈ Rnc×1 and Ŵa ∈ Rna×1 are the estimated critic
and actor weights, along with the parameter update law for
θ̂(t) defined as

˙̂
θ = proj

(
−γθû

TY T
r ϕ′T Ŵc − σθ̂

)
(15)

where (2) is used and γθ, σ are constant gains and proj is a
smooth projection operator to keep the parameter estimates
bounded [23].

Assumption 4. The parameter estimate θ̂(t) ̸= 0 for any
time t.

Remark 2. Assumption 4 is made to avoid loss of control
or to ensure ẋ ̸= 0 for non-zero velocity control u and can
be guaranteed by a smooth projection operator that ensures
that the estimates are projected to a region away from zero.
For IBVS, θ̂(t) = 0 would imply that the feature points are
infinitely far away from the camera.

Remark 3. A similar parameter update law for θ ∈ Rp can
be derived for p > 1.

Let the actor-critic NN approximation errors are defined
as W̃c = Wc − Ŵc(t) and W̃a = Wa − Ŵa(t). The actor
and critic NN weights are updated using weight update laws
that minimize the error between approximated Hamiltonian
and the optimal one, given by Bellman error. The Bellman
error in a measurable form in terms of actor and critic NN
weights is written as

δ = ŴT
c ϕ′(x)J(x, θ̂)û+ r(x, û) (16)

For the analysis, another form of Bellman error based on
(11) is derived as follows

δ = ŴT
c ϕ′(x)J(x, θ̂)û+ ûTRû

−WT
c ϕ′(x)J(x, θ)u∗ − u∗TRu∗ − ϵcJ(x, θ)u

∗ (17)

which can be simplified to

δ = −W̃T
c ϕ′(x)J(x, θ̂)û−WT

c ϕ′(x)J̃(x, θ)ũ

− ϵ′cJ(x, θ)u
∗ +

1

4
W̃T

a ϕ′J(x, θ)R−1JT (x, θ)ϕ′T W̃a

− 1

2
W̃T

a ϕ′JR−1JTϕ′TWc −
1

4
ϵ′cJR

−1JT ϵ′Tc

− 1

2
ϵ′Tc JR−1JTϕ′TWc (18)

where âRâ − a∗TRa∗ = ãTRã − 2ãTRa∗ is used for
−u∗TRu∗ + ûTRû.

B. Critic NN Weight Update Laws

The least-squares update law for the critic NN can be
derived by minimizing the integral Bellman error Ecr =∫ t

0
1
2δ

2(τ)dτ . Taking the time derivative of Ecr with respect
to Ŵc

∂Ecr

∂Ŵc

= 2

∫ t

0

δ
∂δ

∂Ŵc

dτ = 0 (19)

where ∂δ
∂Ŵc

= ûTJT (x, θ)ϕ′(x)T = wT

∂Ecr

∂Ŵc

= 2

∫ t

0

ŴT
c wwT + r(x, û)wT dτ = 0 (20)

The least squares solution can be derived as

˙̂
Wc = proj

(
−γcΓ

w

1 + c1wTΓw
δ

)
(21)

where c1 ∈ R and γc ∈ R are constant gains, Γ(t) =
(
∫ t

0
w(τ)w(τ)T dτ)−1 ∈ Rn×n is a symmetric estimation

gain matrix, which is computed using the differential equa-
tion

Γ̇ = −γΓ
wwT

1 + c1wTΓw
Γ, Γ(0) = c2I (22)

for positive constants γ and c2.

Assumption 5. The normalized critic regressor ξ =
w√

1+c1wTΓw
is bounded and is persistently exciting (PE),

i.e.,

µaI ≤
∫ t0+T

t0

ξ(τ)ξT (τ)dτ ≤ µbI, ∀t0 > 0 (23)

where µa, µb, T are positive constants. [17]
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C. Actor NN Weight Update Laws

The least-squares gradient-based update law for the actor
NN is derived using the squared Bellman error Ea = δ2.
Computing the gradient of Ea, we get

∂Ea

∂Ŵa

= 2
∂δ

∂Ŵa

δ

= 2

(
ŴT

c ϕ′(x)J(x, θ)
∂û

∂Ŵa

+ 2ûTR
∂û

∂Ŵa

)
δ (24)

Setting the above inequality to 0, the gradient weight update
law for Ŵa can be derived as

˙̂
Wa = proj

(
− 2γa√

1 + wTw

(
ŴT

c ϕ′(x)J(x, θ)
∂û

∂Ŵa

)T

δ

− 4γa√
1 + wTw

∂û

∂Ŵa

T

Rûδ − γa2(Ŵa − Ŵc)

)
(25)

where γa and γa2 are constant gains.

IV. STABILITY ANALYSIS

Theorem 1. Given that the Assumptions 1-5 hold and the
following sufficient condition is satisfied η2 > 0,1 the actor-
critic controller (14)-(15) along with the weight update laws
in (21)-(25) guarantee that the signals x(t), W̃a(t) and W̃c(t)
are uniformly ultimately bounded.

Proof. Consider a positive definite continuously differen-
tiable Lyapunov function V : X ×Rnc ×Rna ×R× [0,∞) →
R+

Vz(x, W̃c, W̃a, t) = V ∗(t) + Vwc(t, W̃c)

+
1

2
W̃T

a W̃a +
1

2γθ
θ̃T θ̃ (26)

where V ∗(t) is the optimal value function, Vwc is a Lya-
punov function corresponding to W̃c defined further in
the proof, γθ is a constant gain. Since the optimal value
function V ∗(t) is continuously differentiable and positive
definite, there exists class K functions such that α1(∥x∥) ≤
V ∗(t) ≤ α2(∥x∥) ∀x ∈ Ba ⊂ X . Let us define z(t) =
[x(t)T , W̃c(t)

T , W̃a(t)
T , θ̃]T ∈ Rn+nc+na+1. Based on the

bounds on V ∗(t), the following bounds can be derived

α3(∥z∥) ≤ Vz(x, W̃c, W̃a, t) ≤ α4(∥z∥) ∀x ∈ Bz (27)

where α3(·) and α4(·) are the class K functions. Taking the
time derivative of the Lyapunov function

V̇ (x, W̃c, W̃a, t) =
∂V ∗

∂x
J(x, θ̂)û+ V̇wc + W̃T

a
˙̃Wa

+
1

γθ
θ̃T

˙̃
θ (28)

1η2 is defined in the proof.

Utilizing linear-in-the-parameter property of the dynamics
J(x, θ) we get

V̇ (x, W̃c, W̃a, t) =
∂V ∗

∂x
J(x, θ)û− ∂V ∗

∂x
Yr(x)ûθ̃

+ V̇wc + W̃T
a

˙̃Wa +
1

γθ
θ̃T

˙̃
θ (29)

Using ˙̃Wa = − ˙̂
Wa, and ˙̃

θ = − ˙̂
θ, we get

V̇ (x, W̃c, W̃a, t) =
∂V ∗

∂x
J(x, θ)û− W̃T

a
˙̂
Wa

+ V̇wc −
1

γθ
θ̃T

˙̂
θ − ∂V ∗

∂x
Yr(x)ûθ̃ (30)

Adding and subtracting ∂V ∗

∂x J(x, θ)u∗ term yields

V̇ (x,W̃c, W̃a, t) =
∂V ∗

∂x
J(x, θ)u∗ − ∂V ∗

∂x
J(x, θ)(u∗ − û)

+ V̇wc − W̃T
a

˙̂
Wa −

∂V ∗

∂x
Yr(x)ûθ̃ −

1

γθ
θ̃T

˙̂
θ (31)

Utilizing ∂V ∗

∂x J(x, θ) = −2u∗TR and ∂V ∗

∂x J(x, θ)u∗ =

−Q(x)− u∗TRu∗, V̇ becomes

V̇ (x,W̃c, W̃a, t) = −Q(x)− u∗TRu∗ + 2u∗TR(u∗ − û)

+ V̇wc − W̃T
a

˙̂
Wa −

∂V ∗

∂x
Yr(x)ûθ̃ −

1

γθ
θ̃T

˙̂
θ (32)

Substituting u∗ from (13), û from (14) and simplifying few
terms yields

V̇ = −Q(x) +
1

4

(
∂V ∗

∂x
J(x, θ)R−1J(x, θ)T

∂V ∗

∂x

)
− 1

2

∂V ∗

∂x
J(x, θ)R−1JT (x, θ)ϕ′T Ŵa

+ V̇wc − W̃T
a

˙̂
Wa −

∂V ∗

∂x
Yr(x)ûθ̃ −

1

γθ
θ̃T

˙̂
θ (33)

Substituting the NN form of the V ∗ from (13) we get

V̇ = −Q(x) +
1

4
ϵ′cJrϵ

′T
c − 1

4
WT

c JϕWc −
1

4
ϵ′cJrWc

+
1

2
WT

c JϕW̃a +
1

2
ϵ′cJrϕ

′T W̃a + V̇wc − W̃T
a

˙̂
Wa

− ŴT
c ϕ′Yr(x)ûθ̃ − W̃T

c ϕ′Yr(x)ûθ̃ − ϵ′Tc ϕ′Yr(x)ûθ̃

+ θ̃T ûTY T
r ϕ′T Ŵc − σ1θ̃

T θ̃ + σ1θ̃
T θ (34)

where Jr = J(x, θ)R−1J(x, θ)T , Jϕ =
ϕ′J(x, θ)R−1J(x, θ)Tϕ′T and σ1 = σ/γθ.

To further simplify the V̇ expression (34) consider
−W̃T

a
˙̂
Wa term after substituting actor weight update law

from (25)

−W̃T
a

˙̂
Wa = −C1W̃

T
a

(
Ŵc

T
Jϕ

)T
δ + C1W̃

T
a

(
JϕŴa

)
δ

+ C2W̃
T
a (Ŵa − Ŵc) (35)

where C1 = − 2γa√
1+wTw

and C2 = γa2. The term in (35) can

be written as

−W̃T
a

˙̂
Wa = C1W̃

T
a

(
Jϕ(Ŵa − Ŵc)

)
δ

− C2W̃
T
a W̃a + C2W̃

T
a (Wc − Ŵc) (36)
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Consider ˙̃Wc term after substituting δ from (18)

˙̃Wc = −γcΩw
T W̃c + γcΩ

(
−WT

c ϕ′J̃ ũ+
1

4
W̃T

a JϕW̃a

− 1

2
W̃T

a JϕWc −ϵ
′

cJu
∗ − 1

4
ϵ
′

cJrϵ
′T
c − 1

2
ϵ
′T
c Jrϕ

′TWc

)
(37)

where Ω = Γ w
1+c1wTΓw

. Under Assumption 5, a nominal sys-
tem formed using first term of (37) is globally exponentially
stable [17], [24], which according to converse Lyapunov
Theorem induces a Lyapunov function Vwc(t, W̃c) with fol-
lowing properties γ1∥W̃c∥2 ≤ Vwc(W̃c, t) ≤ γ2∥W̃c∥2,
∂Vwc

∂t + ∂Vwc

∂W̃wc
(−γcΩw

T W̃c) ≤ −η1∥W̃c∥2 and ∥∂Vwc

∂W̃c
∥ ≤

γ̄∥W̃c∥ where γ1, γ2, η1, γ̄ are positive constants. Substituting
(36) and the bounds on Lyapunov function Vwc into (34), V̇
can be written as

V̇ = −Q(x)− η1∥W̃c∥2 − C2∥W̃a∥2 +
1

4
ϵ′cJrϵ

′
c
T

− 1

4
WT

c JϕWc −
1

4
ϵ′cJrWc +

1

2
WT

c JϕW̃a +
1

2
ϵ′cJrϕ

′T W̃a

+ γ̄∥W̃c∥

(
−WT

c ϕ′(x)J̃ ũ+
1

4
W̃T

a JϕW̃a −
1

2
W̃T

a JϕWc

− ϵ′cJ(x, θ)u
∗ − 1

4
ϵ′cJrϵ

′
c
T − 1

2
ϵ′c

TJrϕ
′TWc

)
+ C1W̃

T
a

(
Jrϕ

′T (Ŵa − Ŵc)
)
δ − C2W̃

T
a W̃a

+ C2W̃
T
a (Wc − Ŵc)− σ1∥θ̃∥2 + σ1θ̃

T θ (38)

Let

∥1
4
ϵ′cJrϵ

′
c
T − 1

4
WT

c JϕWc −
1

4
ϵ′cJrWc∥ ≤ κ1 (39)

∥1
2
WT

c Jϕ∥ ≤ κ2, ∥1
2
ϵ′cJrϕ

′T ∥ ≤ κ3 (40)

∥1
4
W̃T

a JϕW̃a∥ ≤ κ4, w =
∥∥∥Jrϕ′T (Ŵa − Ŵc)

∥∥∥ (41)

∥ −WT
c ϕ′J̃ ũ− ϵ′cJu

∗ − 1

4
ϵ′cJrϵ

′
c
T − 1

2
ϵ′c

TJrϕ
′TWc∥ ≤ κ5

(42)

Utilizing the bounds in (39)-(42), V̇ can be upper bounded
as

V̇ ≤ −Q(x)− η1∥W̃c∥2 − 2C2∥W̃a∥2 + κ1

+ (κ2 + κ3)∥W̃a∥+ γ̄κ5∥W̃c∥+
1

4
γ̄κ4∥W̃c∥

+
1

2
γ̄κ2∥W̃c∥W̃a∥ − C1W̃

T
a

(
Jϕ(Ŵa − Ŵc)

)
δ

+ C2∥W̃a∥∥W̃c∥ − σ1∥θ̃∥2 + σ1∥θ̃∥∥θ∥ (43)

which can further be simplified to

V̇ ≤ −Q(x)− η1∥W̃c∥2 − 2C2∥W̃a∥2 − σ1∥θ̃∥2 + κ1

+ (κ2 + κ3)∥W̃a∥+ γ̄κ5∥W̃c∥+
1

4
γ̄κ4∥W̃c∥

+
1

2
γ̄κ2∥W̃c∥W̃a∥+ C1κ5wj

∥∥∥W̃a

∥∥∥+ C1κ4wj

∥∥∥W̃a

∥∥∥2

+ C1κ2wj

∥∥∥W̃a

∥∥∥+ C2∥W̃a∥∥W̃c∥+ σ1∥θ̃∥∥θ∥ (44)

Completing the squares, we get

V̇ ≤ −Q(x)− (1− θ1)η1∥W̃c∥2

− (1− θ1) (2C2 − C1κ4wj) ∥W̃a∥2 − (1− θ3)σ1∥θ̃∥2

+ κ1 + (κ2 + κ3 + C1(κ5 + κ2)wj)∥W̃a∥

+

(
γ̄κ5 +

1

4
γ̄κ4

)
∥W̃c∥+

σ1∥θ∥2

4θ3
(45)

where 1− θ1 > 0, 1− θ3 > 0, η2 = 2C2 −C1κ4wj and the
final bound on V̇ can derived as

V̇ ≤ −Q(x)− (1− θ1 − θ2)η1∥W̃c∥2

− (1− θ1 − θ2)η2∥W̃a∥2 − (1− θ3)σ1∥θ̃∥2

+ κ1 +
(γ̄κ5 +

1
4 γ̄κ4)

2

4(1− θ1 − θ2)η1

+
(κ2 + κ3 + C1(κ5 + κ2)wj)

2

4(1− θ1 − θ2)η2
+

σ1∥θ∥2

4θ3
(46)

where 1−θ1−θ2 > 0. Since Q(x) is positive definite, Lemma
4.3 of [25] can be utilized to derive

α5(∥z∥) ≤ Q+ (1− θ1 − θ2)η1∥W̃c∥2 + (1− θ3)σ1∥θ̃∥2

+ (1− θ1 − θ2)η2∥W̃a∥2 ≤ α6(∥z∥) (47)

Using (47), the expression (48) can be upper bounded as

V̇ ≤ −α5(∥z∥) + κ1 +
(γ̄κ5 +

1
4 γ̄κ4)

2

4(1− θ1 − θ2)η1

+
(κ2 + κ3 + C1(κ5 + κ2)wj)

2

4(1− θ1 − θ2)η2
+

σ1θ̄

4θ3
(48)

which proves that V̇ is always negative whenever z(t) is
outside the compact set

Ω̄ = {z : ∥z∥ ≤ α−1
5 (κ1 +

(γ̄κ5 +
1
4 γ̄κ4)

2

4(1− θ1 − θ2)η1

+
(κ2 + κ3 + C1(κ5 + κ2)wj)

2

4(1− θ1 − θ2)η2
+

σ1θ̄

4θ3
)}. (49)

Invoking Theorem 4.18 of [25] ∥z∥ is uniformly ultimately
bounded (UUB).

V. SIMULATION

Simulations are carried out to test the performance of the
proposed RL-based IBVS control law. Camera and image
frame motion is simulated using MATLAB, where four points
were selected on the image plane with the initial pixel
values of [50 50; 100 50; 100 100; 50 100]T and the desired
pixel values of [825 790; 860 825; 825 860; 790 825]T . The
controller parameters are selected as Q = 1000I8×8 and
R = 800I6×6. The basis functions for approximating the
value function V is selected to be polynomial combinations
of elements of ϕ = [x̄1, x̄2, ..x̄n]

T , the initial weights for
the critic NN are set to Wc(t0) = 3I36×36. The parameters
of critic NN are found by empirical tuning as γc = 0.0006,
Γ = 20 and c1 = 100. The actor NN weights are initialized
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Figure 1. Results of simulation 1: (a) control velocity, (b) pixel error norm, (c) model parameter weights.

to Wa(t0) = 3.5I36×36. The parameters of actor NN are
selected as γ1 = 0.01 and γa2 = 0.05. Fig, 1(a) shows the
norm of camera linear and angular velocities generated by
the RL-IBVS controller. The velocities are bounded and are
generated in an optimal manner based on the minimization of
the value function. The image pixel error norms are shown in
Fig. 1(b). The model parameter estimation θ̂(t) is shown in
Fig. 1(c), which is generated using the parameter estimation
update law. The model parameter is bounded and converges
to a value, not necessarily the true parameter. However, the
RL-IBVS controller drives the error to a small ball around
zero in the presence of uncertainties in the image Jacobian.

VI. CONCLUSION

In this paper, a reinforcement learning based IBVS con-
troller is developed using the RL method for continuous time
systems. The IBVS control dynamics is of the form where the
uncertainty is present in the Jacobian matrix with unknown
depth parameter. The RL controller is developed based on a
continuous-time version of the PI architecture, and a proof of
stability is provided using Lyapunov stability analysis along
with the proposed parameter update law.
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