
  

 

Abstract— Neuropathic chronic pain, caused by nerve injury, 

is common and debilitating. Pharmaceuticals, the primary 

treatment, often lead to severe side effects. Electrical 

stimulation is a promising alternative with fewer side effects, 

but its efficacy is limited. Most clinical neuromodulation 

methods are open-loop, with settings adjusted during office 

visits, leading to reduced effectiveness over time. Proposed 

closed-loop strategies typically activate when a pain signal 

crosses a threshold, acting like an anesthetic by removing all 

pain. However, since acute pain has a protective role, the ideal 

therapy should target chronic pain while preserving acute pain 

responses. We present a proof-of-concept for a model-based 

closed-loop neuromodulation therapy aimed at normalizing 

pain responses in neuropathic rats. By measuring evoked pain 

responses from thalamic local field potentials in nerve-injured 

and naïve rats, we estimate transfer functions for both groups. 

We then use a model matching approach to quantify the 

difference between the nerve-injured and ideal (naïve) system 

responses as the error signal. Finally, we design an optimal 

controller using H-infinity methods to minimize this error and 

control input within relevant frequency bands. The resulting 

in-silico experiment provides a foundation for a more 

biologically realistic controller design which can be implemented 

in-vivo.  

 

I. INTRODUCTION 

Pain is a universal experience. Acute pain is an early-
warning physiological signal triggered in the nervous system, 
essential to detect and minimize contact with damaging or 
noxious stimuli. However, the nervous system responsible for 
the protective, nociceptive pain processing is fragile as 
inflammation, damage, and malfunction of the nervous system 
may divert its function, creating a debilitating disease known 
as neuropathic chronic pain (NCP).  NCP is defined as pain 
that lasts beyond the time it takes to heal a wound or longer 
than 12 weeks and affects about 100 million American 
adults—more than the total affected by heart disease, cancer, 
and diabetes combined. It costs the nation $560–635 billion 
each year in medical expenses and lost productivity [1]. 
Chronic pain is primarily treated with neuropharmacology, 
which may be inadequate or toxic, have negative side effects, 
and lose efficacy after long term use [2]. In fact, chronic pain 
has been linked to opioid dependence, as well as the resultant 
opioid epidemic [3]. Further, pain contributes to anxiety and 
depression, as well as reduced quality of life [1].  

A highly promising alternative to drug treatment with 
fewer side effects is neuromodulation via electrical stimulation 
of nerve fibers [4], [5]]. However, these therapies have been 
associated with suboptimal efficacy and limited long-term 

success as they are currently (i) trial-and-error therapeutic 
approaches, (ii) they primarily operate in open-loop, i.e., the 
stimulation parameters do not automatically adjust to 
fluctuations of the diseased state of the pain system, and (iii) 
their mechanisms of action remain unclear [6]. A few closed-
loop (CL) approaches that adapt the spinal cord stimulation 
parameters to pain signals have been proposed to treat chronic 
pain [7], [8], but they simply turn on suppressive stimulation 
when specific pain signals exceed a threshold. The goal of 
current CL systems is to suppress all pain, including acute 
pain that alerts the body to damaging stimuli. We need a 
systematic model-driven approach to optimize (based on 
model predictions and not trial and error) adaptive 
neurostimulation treatment that aims to restore the pain system 
back to health, i.e., suppressing pathological pain while 
transmitting acute pain. 

In this paper, we describe our approach to designing a 
model-based closed loop neuromodulation therapy (CLNT) 
that restores the nervous system response of a nerve injured 
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Figure 1. A. The pain system, including ascending and descending pain 
pathways. Pain and touch information from the periphery converge on 

WDR (W) neurons in the spinal cord. These signals are transmitted to 

the brain for further processing. B. Block diagram of pain system and 
our proposed closed-loop PNS feedback controller. 
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animal to that of a healthy animal based on an 
electrophysiological recording of neural activity in the rat’s 
brain, which in turn informs PNS treatment. See Fig. 1 for 
schematic of biological pain system (Fig. 1A) and our closed-
loop system (Fig. 1B). 

II. METHODS 

A. Electrophysiological Recordings 

Adult male Sprague-Dawley rats (300-400g) were used for 
this experiment. All procedures were approved by the Johns 
Hopkins Animal Care and Use Committee. A tibial spared 
nerve injury (SNI-t) model, sparing the tibial branch of the 
sciatic nerve, was used to simulate neuropathic chronic pain, 
as described here [9]. Before performing the SNI procedure, 
the rat’s pain threshold was assessed via a paw withdrawal test 
(PWT). In this test, calibrated Von Frey filaments are applied 
to the hind paw of the rat in the receptive field of the tibial 
nerve. The weight of the filament is increased until the rat 
withdraws its paw. Using this starting weight, a simplified up-
down (SUDO) procedure was performed to determine the 
baseline PWT of the rat [10]. The rat was then anesthetized 
with 1.5% isoflurane and the SNI-t procedure was performed, 
and the surgical site was closed. After 7-14 days, the animal is 
expected to have peak neuropathic pain [9]. The SUDO 
procedure is repeated to find the new PWT of the rat to confirm 
the expected decrease caused by the neuropathic pain 
induction.  

Neural activity was then recorded from both the nerve 
injured and naïve rats. The rats were induced with isoflurane 
and then paralyzed via intraperitoneal injection of urethane 
(10% concentration at 1% of body weight). The prepared rats 
were then head-fixed into a stereotaxic frame on a noise 
isolation table, and the yaw, pitch, and roll of the frame were 
adjusted so the skull was square to the referential axis. A 
1.5mm square craniotomy on the contralateral (right) side to 
the sciatic nerve of interest was performed. A single tungsten 
microelectrode (World Precision Instruments) was then 
inserted into the ventral posterolateral (VPL) nucleus of the 
thalamus in the brain, an important sensory relay point in the 
ascending pain pathway [11]. The recording location of 3.4mm 
ML, -3mm AP, 6mm DV relative to the bregma was selected 
according to the rat brain atlas [12]. The sciatic nerve of the 
left hind leg was then exposed and placed on a bipolar 
platinum hook electrode. The microelectrode location in the 
brain was then adjusted by analyzing the strength of the 
stimulation response evoked by a pulse stimulation at the 
sciatic nerve.  

Evoked LFPs were then recorded. A single pulse stimulus 
train was applied to the exposed sciatic nerve at 1mA. Fifteen 
pulses of 0.25ms width were applied at 0.1Hz. Next, an open-
loop stimulation mimicking clinical PNS (50Hz for 5 minutes) 
was applied to the sciatic nerve. After the treatment, the 
evoked LFP protocol was repeated to measure the effect of the 
therapeutic stimulation. Data was recorded using Tucker-
Davis technologies (TDT) Synapse software. 

B. Data Preprocessing 

 A notch filter at the powerline frequency, 60Hz, and its 

harmonics was applied to the data. A band-pass filter from 0.5 

to 300Hz was then applied. Recordings were split into 

individual trials based on the pulses applied to the sciatic 

nerve. Trials were shifted so that the neural activity before the 

stimulus was averaged to 0mV to remove any electrode drift. 

Since the stimulus was applied at 0.1Hz, we do not expect any 

accumulating windup effect to be present in subsequent trials. 

 

C.  Defining the Evoked Response in the Brain 

Since recording evoked potentials in the VPL from a PNS 

input is a unique experiment, we first needed to define the 

expected response shape for this activity. For each trial, 0.1 

seconds before and 1.2 seconds after the stimulus were 

analyzed. Points of interest, namely the positive and negative 

peaks, are denoted in Fig. 2. We then estimate which nerve 

fiber types are contributing to these points based on the 

conduction velocities of the various fibers (see Discussion 

section for further analysis). We expect the early portion of 

the response to be solely caused by fast activity from the 

myelinated Aα/ß fibers, while the later components are 

caused by a combination of the fast fibers and the 

unmyelinated C fibers.   

 

Peripheral nerves contain multiple fiber types which 

encode different stimuli (Fig. 1A). Aα and Aß fibers are large, 

heavily myelinated fibers with fast conduction velocities that 

encode non-noxious stimuli such as touch. Aδ fibers are 

smaller, also heavily myelinated, and have a slightly slower 

conduction velocity, encoding for fast noxious stimuli. C 

fibers are small, unmyelinated, and have a slow conduction 

velocity. C fibers encode for slow noxious stimuli. 

Information that is being transmitted via a peripheral nerve, 

such as the single pulse stimulation on the sciatic nerve, is 

carried at different rates based on which fibers are performing 

the transmission. In prior studies, it has been shown that C 

fiber-based activity within WDR neurons of the spinal cord is 

a good biomarker of chronic pain [13]. Our initial attempt to 

define the evoked response in the VPL uses a similar approach 

of delineating based on the latency of the components. Since 

 

Figure 2: Characterization of the evoked response in the VPL in the 
brain. The early response, which is likely related to non-noxious 
encoding, contains two sharp peaks: P1, and N1. The later portion of the 
response, which contains two slower peaks (P2 and N2), potentially 
corresponds to C-fiber mediated activity and is of interest as these fibers 
encode noxious stimuli. 
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our recording location is multiple synapses away from the 

stimulus and has receives multiple inputs not directly related 

to the pathway of interest, we expect the characterization of 

the response to be more complicated than that in the spinal 

cord. 

D.  Predicting System Response Using LTI Models 

The pain processing pathway is likely a nonlinear process, 

as the transference of information up ascending pathways 

(towards the brain) is modulated by a descending pathway 

(towards the peripheral nervous system), as described in the 

Gate Control Theory of pain processing [14]. Several attempts 

have been made to construct biophysical models of this nerve 

fiber activation [15], [16]. While these models do provide 

some insight into the neurophysiology of pain, they are all 

high dimensional and non-linear, and are therefore not great 

candidates for tractable, real time closed-loop control 

applications.  

Instead, we aim to assess whether a linear time-invariant 

model can be used to characterize VPL activity and to develop 

a closed-loop neuromodulation therapy. The first step is to 

determine how the input (the single pulse PNS on the sciatic 

nerve) is modulated along its path up the spinothalamic tract 

(STT) to the observed output (the LFP activity in the VPL). 

See Fig. 3. Using a linear time-invariant (LTI) model, we 

characterized the system with the equation: 

 

𝑌(𝑠) = 𝐺(𝑠)𝑅(𝑠)         (1) 

 

where 𝑠 is the Laplace variable, 𝑅(𝑠) is the single pulse 

stimulus reference input, 𝐺(𝑠) is the plant representing the 

pathway of the STT that the signal travels through, and 𝑌(𝑠) 

is our recorded output at the VPL. The STT model has the 

form: 

𝐺(𝑠) =
𝑏𝑧𝑠𝑧+𝑏𝑧−1𝑠𝑧−1+𝑏𝑧−2𝑠𝑧−2+⋯+𝑏0

𝑠𝑝+𝑎𝑝−1𝑠𝑝−1+𝑎𝑝−2𝑠𝑝−2+⋯+𝑎0
,     (2) 

 

where 𝑎⃑ and 𝑏⃑⃑ are coefficients fitted using MATLAB’s tfest 

function as described here [29], and 𝑝 and 𝑧 are the number 

of poles and zeros, respectively. We omit the time delay term 

for simplicity as we assume no time delay in our estimation. 

One major challenge of fitting transfer functions to 

neurophysiological data is the recorded LFP signal captures 

activity directly related to the evoked response and unrelated 

neural activity in close proximity to the recording electrode. 

To limit the impact of this unrelated activity, we used the 

average of the evoked trials as 𝑌(𝑠). Limiting the model 

complexity to prevent fitting high frequency oscillations also 

helps reduce the impact of the background neural signals. 

The number of poles and zeros was determined via a grid 

search, allowing the poles and zeros to range from 4 to 8. 

The upper bound on model complexity was set to prevent 

overfitting. For each potential transfer function estimation, 

the corresponding evoked response was simulated by 

inputting an impulse into the model. This estimated response 

was compared to the actual average response and the transfer 

function that produced the smallest root means squared error 

between the real-averaged and estimated responses was 

chosen.  

 

E. Model-Matching Control 

The control objective for this work is to approximate the 

neural activity of the healthy rat by adding a controller that 

modulates the neural activity of the neuropathic rat. To 

accomplish this goal, we use a model-matching scheme as 

shown in Fig. 4.  The model representing the naïve rat, 𝐺𝑁, 

is the ideal system, and the plant representing the injured rat, 

𝐺𝐼, is controlled by the controller, 𝐾. An error term, 𝑒(𝑡), 

representing the difference in output of the two systems, 

𝑦𝑁(𝑡) and 𝑦𝐼(𝑡) respectively, to the exogenous impulse 

input, 𝑟(𝑡), was constructed. This error term is provided as 

input to the controller, which produces a control input, 𝑢(𝑡). 

The control input is added to 𝑟(t) to create a closed-loop 

input for 𝐺𝐼. 

To identify an optimal 𝐾, we constructed two 

performance functions: 𝑧𝑒 and 𝑧𝑢, in the form of: 

 

𝑧𝑒 = 𝑊𝑒𝐸(𝑠),          (3) 

 

𝑧𝑢 = 𝑊𝑢𝑈(𝑠),           (4) 

 

where 𝑊𝑒 and 𝑊𝑢 are frequency-specific weighting 

functions. Specifically, the weighting functions were 

designed to limit the error between the naïve and closed-loop 

injured responses within biologically relevant low 

frequencies and the control input within high frequencies. We 

 

Figure 4: Design of the controller to normalize the pain response in a 
neuropathic rat. A) Block diagram of the model-matching scheme which 
attempts to control the VPL activity of an injured rat, y(t), to that of a healthy 
rat, yH(t). B) Weighting functions used to generate performance metrics on the 
error, e(t), and control input, u(t), for H∞ synthesis. 

 

Figure 3: Experimental design. Local field potentials are read from the 
VPL in the brain. This readout is the input to a controller, K, which outputs 
a signal to use for peripheral nerve stimulation of the sciatic nerve. 
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then searched for a 𝐾 that solved the following minimization 

equation: 
𝑚𝑖𝑛

𝐾 stabilizing
‖

𝑧𝑒

𝑧𝑢
‖

∞
,        (5)  

 

using H∞ synthesis methods in MATLAB [30], [31], 

[32], [33], [34].  

 

II. RESULTS 

A. Evoked Responses Shape Changes After Nerve Injury 

Fig. 5 shows the evoked VPL activity for the naïve and 

nerve injured rats. For the first 150ms after the stimulus, the 

naïve rat appears to have the two strong peaks P1 and N1, as 

denoted in Fig. 2. This portion of the response is likely 

transmitted by the faster nerve fibers (Aα/ß), which encode 

non-noxious stimuli. From 150ms to 500ms, the naïve rat’s 

response contains a high amplitude, wide peak (P2) and a 

small negative amplitude, wide peak (N2). This portion of the 

response could be transmitted by the slower C-fibers, which 

encode noxious stimuli.  In contrast, the nerve injured rat’s 

initial components seem to occur slightly earlier, with P1 

occurring around 25ms and N1 occurring around 75ms.  The 

later components of the neuropathic rat’s response are 

smaller in amplitude, with N2 being barely detectable.  

 

 

Figure 6: Estimated evoked responses in the VPL in the brain from a single pulse stimulation of the contralateral sciatic nerve. A) Naïve (black line), 
injured (orange line), and B) open loop PNS (yellow line) groups are estimated from experimentally recorded responses, while the C) closed loop PNS 
(green line) and D) combined PNS (blue line) groups are the estimated response of the closed-loop systems with an exogenous impulse input. The 
associated block diagram to generate each response is included in the respective plot. 

 

Figure 5: Model estimation of evoked responses for (A) a naïve rat, (B) a 
neuropathic rat, and (C) a neuropathic rat after open loop PNS. The standard 
error across the 15 recorded trials is represented by the shaded region around 
the black solid line for each respective experiment. 
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B. Model Estimation Can Recreate VPL Response 

Linear time-invariant models were estimated for both the 

naïve and neuropathic rats. The fit was assessed by comparing 

the output estimated by the models to an impulse input to the 

actual recorded response. Fig. 5 shows the actual average 

VPL response (black line) and the estimated response (blue 

line) for a) the naïve rat and b) the neuropathic rat, and c) the 

same neuropathic rat after receiving the open loop PNS 

treatment. 

 

C. H∞ Controller Approximates Healthy Response to Impulse 

Stimulus 

Fig. 6 shows the estimated naïve rat response (black line), 

a) injured rat response (orange line), b) and injured rat 

response after open loop PNS treatment (yellow line) from 

experimental data, and c) the estimated injured rat response in 

closed-loop (green line) and d) estimated injured rat response 

with a combination of the open loop and closed loop 

stimulations (blue line). The controller in c) was able to steer 

the injured response towards the naïve response to an impulse 

stimulus, specifically by better aligning the early components 

and by reviving the higher frequency activity of the later 

portion of the response. The controller in d)  showed marginal 

improvement over the controller in c) by better aligning the 

early components and N2. 

III. DISCUSSION AND FUTURE WORK    

Prior work has demonstrated that neuropathic rats have an 

increased spontaneous firing rate of WDR neurons in the 

spinal cord [20] and VPL neurons [35]. Within the spinal 

cord, it has also been shown that the C-component of the 

evoked response increases after nerve injury [20]. Yet there is 

no work, to our knowledge, that analyzes the evoked activity 

of VPL neurons to an electrical stimulation of a peripheral 

nerve. For our novel experiment, we found that the early 

components of the evoked response are similar for both naïve 

and neuropathic rats. The later, potentially C-driven, 

component of the response varied between the two 

populations. The change in response after nerve injury 

initially appears contrary to what was observed in the spinal 

cord. However, single-cell recordings were performed in the 

spinal cord whereas local field potentials, which record 

population activity from hundreds to thousands of neurons, 

were recorded from the VPL. Two possible explanations for 

this phenomenon are (1) the increased spontaneous firing rate 

of these neurons makes it more difficult for them to respond 

to a stimulus and (2) while individual neurons have an 

increased firing rate, the simultaneous recruitment of neurons 

necessary to see large LFP changes is lessened. 

With the current experiment design, we are unable to 

definitively label which nerve fiber types contribute to each 

component of the evoked response. In future work, we will 

utilize the peripherally acting opioid dermorphin [D-Arg2, 

Lys4] (1–4) amide (DALDA), which has been shown to 

selectively inhibit C-fiber activation [36]. The portions of the 

response that remain after DALDA injection will be attributed 

to A-fiber activation, and the removed components will be 

attributed to C-fiber activation. This knowledge could aid in 

future control design, allowing for biologically motivated 

objective functions that focus on normalizing C-fiber activity. 
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