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Abstract— The distributed constrained optimization problem
over an undirected communication topology is investigated in
this study. It focuses on addressing a global coupled equality
constraint that applies to all agents. To tackle this problem,
a distributed approach with arbitrary initialization is devel-
oped by virtue of the aperiodic sampling control idea and
the consensus-based multi-agent system(MAS) technology. This
approach is developed to address constrained optimization
problems within a pre-specified time. In addition, this prede-
fined time is freely defined by users and irrelevant to the initial
states, control coefficients, and network structure of systems.
The Lyapunov stability theory completes the convergence proof
of the developed method. Then, the developed method is ex-
tended to handle distributed nonlinear constrained optimization
problems. Finally, The availability of two developed methods is
demonstrated through two simulation examples.

Index Terms— distributed constrained optimization, pre-
specified time, nonlinear, non-periodical sampling

I. INTRODUCTION

Recently, the field of distributed optimization problems

over MASs has gained significant attention due to its ap-

plicability in various practical examples. These examples

include process operational optimization in chemical indus-

tries, spread control of epidemic diseases, source localiza-

tion in UAV systems, and more. The primary objective

of distributed optimization problems is to develop efficient

methods that enable agents to collaborate and minimize the

global objective function by leveraging local communication

among themselves [1].

Therefore, to handle optimization problems in a distributed

way, various discrete-time algorithms have been developed

by using consensus-based MAS technology and gradient de-

pendent strategy. For instance, in the case of distributed con-

vex optimal coordination problem over time-varying jointly

connected undirected networks, a well-known subgradient-

based distributed method with diminishing step size is cre-

ated in [2]. For time-varying cost function-based distributed
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optimization problem over an undirected communication

topology, a quantized distributed method utilizing random

quantization operation is introduced [3]. In the realm of

the distributed constrained optimization, a proximal primal-

dual method with diminishing and nonsummable step size is

proposed [4]. However, the above diminishing step size leads

to a lower convergence rate, i.e., a sublinear convergence

rate. To address this limitation, an exact first-order method

with constant control step size is designed in [5] to reach a

linear convergence rate. Additionally, a Nesterov accelerated

optimization method is suggested in [6] to further enhance

the convergence performance for problems over the undi-

rected communication topology. For distributed optimization

over an unbalanced directed network, a gradient tracking-

based distributed method is proposed in [7] to achieve

linear convergence. In addition, a surplus-based accelerated

method with an uncoordinated step size is provided in [8]

for achieving a linear convergence rate. A general unified

framework for distributed optimization is proposed in [9].

Compared with discrete-time algorithms, continuous-time

distributed methods have attracted significant attention be-

cause of their real-time solutions and the realization for hard-

ware implementation, which guarantees the more straight-

forward performance of the proposed methods in physical

systems. Furthermore, more robust convergence properties

can be ensured through Lyapunov stability, such as the

fixed time convergence theory [10]. Similar to discrete-time

algorithms, the linear(or exponential) convergence of the dis-

tributed algorithm is designed first. For example, a distributed

primal-dual distributed method combined by fixed control

parameters is designed for solving distributed optimization

problems over weight-balanced digraphs [11]. For reduc-

ing the communication consumption, a distributed method

with on demanded communication scheme is introduced in

[12]. However, these linear protocol-based approaches handle

distributed optimization problems with an exponential or

asymptotical convergence rate, meaning that the methods

achieve the optimal result as time goes to infinity. Neverthe-

less, there is a need to address the finite-time requirement

optimization problems in various applications.

To address this requirement, an adaptive distributed gradi-

ent optimization algorithm with scale sign consensus scheme

is proposed [13], enabling the establishment of optimal

solutions within a finite time. Considering the unknown

disturbance of agent, the finite-time result is guaranteed using

a sliding mode control scheme [14]. For the distributed

optimization over an unbalanced directed communication

topology, by using the nonsmooth theory, a distributed
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finite-time optimization method is created [15]. However,

the setting time of these finite-time distributed methods is

usually influenced by the primary state value, which may be

unavailable and hard to off-line pre-assign the setting time.

Therefore, to overcome this restriction, for the time-varying

cost function-based distributed optimization problem, the

optimal result is obtained within fixed time using three scale

sign terms [16]. In view of the zero-gradient-sum framework

and the scale sign function, the fixed-time result is obtained

for the quadratic optimization problems [17]. For distributed

optimization problems coupled with an equality constraint,

the fixed-time convergence is obtained via communicating

local gradient information among agents [18]. In more com-

plex cases involving global equality and local inequality

constraints, a projection-gradient-based method is developed

in [19].

Existing finite- and fixed-time distributed algorithms are

known to exhibit setting times that are significantly corre-

lated with algorithm parameters and communication topolo-

gies, such as the agent number and its Laplacian matrix

eigenvalues. Therefore, studying predefine-time approaches

for distributed optimization problems is meaningful. Thus,

some excellent distributed methods have been designed re-

cently. One approach that has been explored is the the time-

based generator scheme, which has been used to derive many

predefined-time distributed methods for distributed convex

optimization problems. However, it is notable that the time-

based generator scheme can merely get its underutilized

solution. In order to obtain the exact most favorable solution,

a new class of predefined-time distributed methods has been

designed based on the sign function. These methods have

been applied to solve optimal coordination problems [20]

and resource allocation problems [21]. Nevertheless, sign

function leads to frequent trembling behavior. Currently, the

specified-time theory has gained considerable attention. For

instance, a new out-degree-based distributed method with

pre-specified time is designed in [22], where the conver-

gence time has nothing to do with other parameters. a

novel predefined time coordination algorithm is described

in [23] utilizing a multi-step planning, which requires the

initialization of the initial state of all agents. However,

an efficient method is still lacking to achieve exact most

favorable solutions within a pre-specified time without the

need for initializing all agent states.

Motivated by the aforementioned discussions, this study

further researches the distributed optimization problem,

specifically focusing on cases where a global coupled equal-

ity constraint exists. To address this problem, a novel

initialization-free distributed method with pre-specified time

is designed, leveraging a non-periodic sampling control strat-

egy. The contributions of this study can be summarized in

the following two folds: 1) Different from the existing results

[22], [23], our developed methods eliminate the requirement

for initialization, enhancing its practicality and efficiency;

2) Moreover, this study takes into account the presence of

a global nonlinear constraint, expanding the scope of the

problem addressed.

This study is organized as below. Section II provides

several preliminaries and presents the problem formulation.

Section III gives the main results achieved in this study.

Section IV illustrates the validity of our created approaches

through illustrative examples. Section V concludes the whole

work, highlighting potential avenues for future research.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notations: Let the set R indicate all real numbers. For

a differentiable function f(z), its gradient function and

Hessian matrix are denoted by ∇f(z) and ∇2f(z) in turn.

Here, z represents the input variable. For a positive integer

n, the symbols 0n and 1n respectively represent the all-zero

and all-one vector. Additionally, the notation span{1n} refers

to the vector space spanned by the all-one vector 1n.

A. Graph theory

Given a MAS consisting of n n agents. Let G(V , E ,A)
denote its communication topology. Particularly, V =
{1, 2, ..., n} represents the agent set, E ⊂ V × V denotes

its communication edge set, and A := [aij ] ∈ R
n×n is the

weight adjacency matrix. If the information from agent j

can be acquired by agent i, i.e., (i, j) ∈ E , then agent j

is considered a neighbor of agent i and thus aij > 0, and

aij = 0 otherwise. Additionally, we define aii = 0 even

if the information of i can be used by itself. This implies

that the graph G is assumed to have no self-loop. If at least

one neighbor agent exists for all agents in graph G, then G
is a connected graph. For the graph G, the corresponding

Laplacian matrix L := [lij ] ∈ R
n×n is defined as lij =

−aij , ∀i 6= j ∈ V and lii =
∑n

j=1 aij , ∀i ∈ V . It is evident

that L1n = 0. Furthermore, we have 1TnL = 0 and the

ordered eigenvalues 0 = ρ1(L) < ρ2(L) ≤, ...,≤ ρn(L)
when G is undirected.

B. Aperiodic sampling

Different from the periodic sampling and the event-

triggered sampling control, the aperiodic sampling is defined

as {tk}k=1,2,...,∞ with tk =
∑k

p=1
6Tf

(πp)2 , where Tf is the

pre-specified time. Based on the fact
∑

∞

k=1
1
k2 = π2

6 , then

we have limk→∞ tk = Tf .

C. Problem formulation

The dynamic of agent i, ∀i ∈ V , is given by

ẋi(t) = ui(t), (1)

in which xi(t) ∈ R
N and ui(t) ∈ R

N respectively denote

their state variable and control input. For simplicity, let N =
1 in the following context. The case N > 1 can be similarly

deduced by the Kroncker product.

Let x = [x1, x2, ..., xn]
T ∈ R

n denotes the stack vector of

variables x1, x2, ..., xn. The goal of all agents is to minimize

the total cost function f(x) while satisfying a global coupled
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equality constraint. Mathematically, the following distributed

constrained optimization problem is provided:

min
x

f(x) =
n
∑

i=1

fi(xi),

n
∑

i=1

xi =

n
∑

i=1

di,

(2)

where fi(xi) and di represent its local cost function and

demand resource, respectively. To ensure the following con-

vergence analysis, the convex assumption is provided as

below.

Assumption 1: For agent i, ∀i ∈ V , let the differentiable

function fi(xi) satisfy 0 < ∇2fi(xi) ≤ mi (mi > 0).

Remark 1: The aforementioned Assumption 1 ensures the

uniqueness of the optimal solution for problem (2), which has

been employed in various existing methods [22], [23]. Unlike

the strong convexity requirements in most existing literature

[5]–[7], [9], the above smooth function requirement is more

practical. For instance, the exponential function is convex

but not strongly convex.

Based on Assumption 1 and the Karush-Kuhn-Tucker

conditions [22], the optimal result x∗ ∈ R
n needs to satisfy

that

∇f(x∗) ∈ span{1n},
n
∑

i=1

x∗

i =

n
∑

i=1

di.
(3)

III. MAIN RESULTS

A. Algorithm design

From (3), to acquire the optimal result x∗, it is necessary

to achieve the consensus on gradient function and the global

coupled constraint should be also satisfied. Thus, in view of

the aperiodic sampling control approach and the consensus

scheme in multi-agent systems, we design the following

distributed optimization method:

ẋi(t) =−
1

tl+1 − tl
ei(tl)

− α

n
∑

j=1

aij(∇fi(xi(tl))−∇fj(xj(tl))),
(4a)

ei(t) =xi(t)− di

+ α

∫ t

0

n
∑

j=1

aij(∇fi(xi(tl))−∇fj(xj(tl)))dτ

(4b)

where t ∈ [tl, tl+1) and α is the control parameter. We define

α = h
tl+1−tl

with h > 0. The sampling time tl is defined as

tl =

{

∑l

p=1
6Tf

(πl)2 , 0 ≤ t ≤ Tf

Tf +
∑l

p=1
6Tf

(πl)2 , Tf ≤ t ≤ 2Tf

. Without loss

of generality, let t0 = 0. From the aforementioned definition,

the proposed method (4) can be divided into two stages. In

stage 1 (0 ≤ t ≤ Tf ), the global equality constraint is solved.

In stage 2 (Tf ≤ t ≤ 2Tf ), the optimality is guaranteed. The

integral term
∫ t

0

∑n

j=1 aij(∇fi(xi(tl)) −∇fj(xj(tl)))dτ is

designed to balance the real state value xi(t) and the demand

state di. The initial value of xi can be randomly selected.

Moreover, let ei(0) = xi(0)− di.

Remark 2: Different from the time-based generator and

sign function method [20], [21], our proposed algorithm (4)

utilize the aperiodic sampling control approach to address the

problem (2) with pre-specified time. In addition, the designed

algorithm not merely obtain the exact most favorable result

but avoids chattering behavior as well. A distinctive feature

of our approach is that it allows for the random selection

of the initial state, which distinguishes it from the existing

work [22], [23].

From the definition of aperiodic sampling in subsection

II-B, the pre-specified time is ensured when k goes to

infinity. However, Zeno’s behavior will occur. To avoid

Zeno’s behavior, the sampling interval sequence is modified

as below:

tl = tl−1 +

{

6Tf

(πl)2 ,
6Tf

(πl)2 > ǫ

ǫ,
6Tf

(πl)2 ≤ ǫ
, (5)

where ǫ is a small positive constant. It implies that the

periodic sampling will stand in for the aperiodic sampling

when the sampling interval is relatively small. As proved in

[22], the convergence precision can be adjusted by choosing

proper ǫ.

B. Convergence analysis

Theorem 1: Consider that Assumption 1 is satisfied, and

the graph G is undirected and connected, the developed dis-

tributed method (4) achieves the optimal result of (2) within

pre-specified time 2Tf . In addition, the control parameter h

satisfies 0 < h < 2
mρ2(L) .

Proof: the above result is proved by the following two

steps. In step I, the global coupled equality constraint is

guaranteed with pre-specified time; In step II, x(t) achieve

the most favorable result within pre-specified time.

Step I. if t ∈ [0, Tf ], one has

ėi(t) = −
1

tl+1 − tl
ei(tl), t ∈ [tl, tl+1). (6)

Integrating (6) over time [tl, tl+1), it can be obtained that

ei(tl+1) = ei(tl)−

∫ tl+1

tl

1

tl+1 − tl
ei(tl)dτ

= ei(tl)− ei(tl)

= 0.

(7)

It is notable that ei(tl) = 0, ∀l ≥ 1. it followings this result

and (4b) that

n
∑

i=1

ei(tl) =
n
∑

i=1

(xi(tl)− di) = 0, (8)

in which the result 1TnL = 0 is used. Namely, the coupled

equality limitation
∑n

i=1 xi =
∑n

i=1 di is guaranteed within

pre-specified time Tf .
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Step II. When t ∈ [Tf , 2Tf ], we have

ẋi(t) =
h

tl+1 − tl
L∇f(x(tl)), t ∈ [tl, tl+1). (9)

Integrating (9) over time [tl, tl+1) yields

x(tl+1) = x(tl)− hL∇f(x(tl)). (10)

Let V (l) = f(x(tl))− f(x∗), in which x∗ is the theoretical

optimal result of problem (2). Since the global coupled

equality limitation holds the whole time, V (l) is radially

unbounded and semi-positive. The difference of V (l) along

system (10) is provided by

∆V (l) = V (l + 1)− V (l). (11)

As f(x) is convex, then one has

f(y) =f(z) +∇T f(z)(y − z)

+
1

2
(y − z)T∇2f(ȳ)(y − z),

(12)

in which ȳ ∈ (y, z). Let y = x(tl+1) and z = x(tl),
substituting the result (12) into (11) yields

∆V (l) =
1

2
(x(tl+1)− x(tl))

T∇2f(ȳ)

· (x(tl+1)− x(tl))

+∇T f(x(tl))(x(tl+1)− x(tl))

=
h2

2
∇T f(x(tl))L

T∇2f(ȳ)L∇f(x(tl))

− h∇T f(x(tl))L∇f(x(tl)).

(13)

We have used the fact (10) in the second equality of (13). It

follows Assumption 1 that

∆V (l) ≤
h2m

2
∇T f(x(tl))L

TL∇f(x(tl))

− h∇T f(x(tl))L∇f(x(tl)),
(14)

in which m = maximi. It follows the undirected and

connected assumption for graph G that LTL ≤ ρn(L)L with

the largest eigenvalue ρn(L). It follows (14) that

∆V (l) ≤ −h(1−
hm

2
)∇T f(x(tl))L∇f(x(tl)). (15)

If 0 < h < 2
mρn(L) , we have ∆(l) ≤ 0. Additionally, in view

of the definition of Laplacian matrix L, ∇f(x(tl)) achieves

consensus iff L∇f(x(tl)) = 0. Thus, in view of (3), the

most favorable result is achieved within pre-specified time

due to the fact liml→∞ tl = 2Tf when t ∈ [Tf , 2Tf ].

C. Applications to economic dispatch problems

The global coupled constraint is considered linear in the

problem (2). However, the nonlinear term is more general

in applications, such as the transmission line loss in the

economic dispatch problem of energy internet. Next, we

extend the proposed algorithm (4) to the global nonlinear

constrained distributed optimization problem shown below:

min
x

f(x) =

n
∑

i=1

fi(xi),

n
∑

i=1

gi(xi) = 0,

(16)

where gi(xi) is a nonlinear function. For instance, the local

function gi(xi) is defined as gi(xi) = xi−di−Bix
2
i with loss

coefficient Bi. Generally, Bi is very small. The following

distributed optimization approach is created to obtain the

optimal solution of the problem (16) within a pre-specified

time.

ẋi(t) =−
1

(tl+1 − tl)∇gi(xi(t))
ei(tl)

−
α

∇gi(xi(t))

n
∑

j=1

aij(∇fi(xi(tl))−∇fj(xj(tl))),

(17a)

ei(t) =gi(xi)

+ α

∫ t

0

n
∑

j=1

aij(∇fi(xi(tl))−∇fj(xj(tl)))dτ

(17b)

where t ∈ [tl, tl+1) and α is the control parameter, which is

defined the same with algorithm (4). To obtain the optimal

solution of (16), we provide following assumption.

Assumption 2: For each agent i, the condition ∇gi(xi) >
0 holds.

By similar convergence proof in Theorem 1, we establish the

following conclusion.

Corollary 1: Consider that Assumptions 1 and 2 hold,

and the graph G is undirected and connected, the proposed

distributed method (17) achieves the optimal result of (16)

within pre-specified time 2Tf . In addition, the control pa-

rameter h satisfies 0 < h <
2maxi ∇gi(xi)

mρ2(L) .

IV. SIMULATION

In the following, we will provide some cases to indicate

the accuracy for our designed algorithm.

Example 1. The economic dispatch problem without

transmission line loss over smart grids in [23] is devoted

to illustrating the algorithm (2). For each generator i, let

fi(xi) = aix
2
i + bixi + ci with coefficients ai, bi, ci, where

xi indicates its generation power output. The coefficients

are shown in Table. I. The economic dispatch problem aims

to design a generation plan for some distributed generators

while minimizing the total generation cost function. Let

the initial state be x(0) = [60, 0, 0, 0, 0, 0]T ∈ R
6. It can

be seen that the global coupled equality constraint does

not hold. Thus, existing results [22], [23] fail to solve the

economic dispatch problem under the same initial states.

From Theorem 1, it can be calculated that 0 < h <= 2
mρ2

=
2

2×0.105∗5.7 = 1.77. Let the control parameter h be h = 1,

the detailed trajectories of variable xi and ei, ∀i ∈ V , are
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shown in Figs. 1 and 2. From Fig. 1, the most favorable

result x∗ = [23.47, 16.09, 15.22, 10.40, 18.12, 16.70]T ∈ R
6

is obtained within setting time 2Tf . Additionally, the setting

time 2Tf is independent on the constrained optimization

problem and its network knowledge. From 2, the error

variable ei(t) reaches zero within a given time Tf = 5s,

meaning that the coupled equality limitation is ensured by a

pre-specified time. Additionally, the error is zero after one

iteration from the analysis of the theorem. After one iteration,

the coupling constraint in constraint optimization problem (2)

holds and remains unchanged.

TABLE I

THE COEFFICIENTS OF EACH GENERATOR.

generator i

coefficients
ai bi ci di

1 0.096 1.22 51 20

2 0.072 3.41 31 20

3 0.105 2.53 78 20

4 0.078 4.02 42 20

5 0.078 2.90 67 10

6 0.090 2.72 49 10
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Fig. 1. Transient behavior of xi, ∀i ∈ V , in Example 1.
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Fig. 2. Transient behavior of ei,∀i ∈ V , in Example 1.

Example 2. For the economic dispatch problem

shown in [24], whose coefficients are given

by a = [0.094, 0.078, 0.105, 0.082, 0.074]T ∈
R

5, b = [1.22, 3.41, 2.53, 4.02, 3.17]T ∈ R
5, c =

[51, 31, 78, 42, 62]T ∈ R
5, d = [20, 20, 20, 20, 40]T ∈ R

5

and B = [0.0021, 0.0031, 0.0011, 0.0022, 0.0041]T ∈ R
5.

The considered network is an undirected ring topology.

Let the control parameter be h =

{

1, t ∈ [0, Tf ]
0.1, t ∈ [Tf , 2Tf ]

and the initial state be x(0) = [60, 0, 0, 0, 0]T ∈ R
5, the

detailed trajectories of variables xi and ei, ∀i ∈ V ,

are depicted in Figs. 3 and 4. From (16), the

algorithm is executed in two steps. The consensus term
α

∇gi(xi(t))

∑n

j=1 aij(∇fi(xi(tl)) − ∇fj(xj(tl))) with big

control parameter h always working. Therefore, the optimal

solution can be achieved far earlier than the pre-specified

time 2Tf . It has been verified in Fig. 3. Thus, the developed

algorithms are valid for distributed constrained optimization

problems with pre-specified time.
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Fig. 3. Transient behavior of xi, ∀i ∈ V , in Example 2.
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Fig. 4. Transient behavior of ei,∀i ∈ V , in Example 2.

V. CONCLUSIONS AND FUTURE WORKS

This paper introduces two distributed algorithms for solv-

ing distributed constrained optimization problems over undi-

rected MASs. In view of the aperiodic sampling control

approach, our developed methods converge to the optimal

result within a pre-specified time. The developed optimiza-

tion approaches have been proved to be convergent using

the Lyapunov stability theory. Furthermore, the efficiency

illustration is completed by economic dispatch problems. In

future work, we plan to incorporate the consideration of local

constraints for each agent in the design of pre-specified-time
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distributed optimization problems. Besides, the exact value

of gradient function is required to develop the optimization

approaches, which heavily increased the system bandwidth

consumption. Consequently, we will also study the quantized

optimization approaches within pre-specified time.
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