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Generalized Discrete Adaptive Control Allocation
for Over-Actuated Systems
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Abstract— Actuators degradation negatively impacts the sys-
tem’s stability and performance. Unknown control degradation
can be addressed with continuous or discrete adaptive control
techniques. Discrete-time methods have several advantages
over continuous ones, such as they can be executed without
discretization requirements, and they are counted as derivative-
free controllers. Motivating from this, in this paper, a general-
ized discrete adaptive control allocation architecture for over-
actuated systems is presented for dealing with unknown control
effectiveness degradation while ensuring reference tracking.
Lyapunov stability analysis is performed to guarantee asymp-
totic tracking error convergence of the closed-loop system.
Furthermore, a hexacopter model is simulated to demonstrate
the effectiveness of this architecture.

I. INTRODUCTION

Fault tolerance is important in various autonomous Sys-
tems (e.g., aerial vehicles, robot manipulators, underwater
vehicles, and ground wheeled robots) [1]-[3]. By increas-
ing the number of actuators, redundancy can be achieved,
guaranteeing continued operation even in the event of de-
graded actuators [4]-[11]. The presence of control degrada-
tion for fully actuated systems has been dealt with through
continuous-time adaptive control methods [12]-[17].

In the literature, control of vehicle operation relies on an
effective mapping from desired (i.e., virtual) inputs to the
vehicle’s actuators. Finding this mapping is the objective of
the control allocation problem and is particularly studied in
over-actuated systems. Under nominal and ideal conditions
(i.e., in the absence of the control degradation), a solution
for control allocation is trivial. However, in the presence
of degraded actuators, providing a stable control method
is essential for an over-actuated system’s safety since the
performance of electric motors is often heavily dependent
on external factors such as temperature and battery charge
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levels. Damage to an actuator, such as a damaged propeller,
can have a significant impact on the control allocation.

Several continuous-time adaptive control techniques are
developed for systems to deal with unknown degradation
related to actuators. Specifically, in [6], [8], adaptive control
allocation methods are presented by combining a sliding
mode outer-loop control for fault tolerability and reference
tracking. Later in [7], the actuator constraints are added
to the problem of [6] and solved with an adaptive control
allocation algorithm. The authors of [9] propose a continuous
adaptive control architecture for a linear hexacopter system
applied to a position-tracking problem. The authors of [11]
add to [9] by considering modeling uncertainties alongside
the control effort uncertainty. While these approaches can
improve the fault tolerability of autonomous systems, they
are all proposed in continuous-time settings. Moreover, these
continuous-time control methods cannot be directly applied
or readily extended to the discrete-time due to changes in
Lyapunov analysis.

Discrete-time algorithms offer the advantage of direct
execution in embedded code, while continuous-time ones
require discretization that potentially leads to stability margin
loss [18]. In addition, current embedded systems and mi-
crocontrollers inherently operate in discrete time, processing
signals and making decisions at specific intervals. Further-
more, discrete-time control means a derivative-free update
law since the control laws are typically formulated based
on difference equations rather than differential equations.
However, designing discrete-time algorithms, often based
on quadratic Lyapunov frameworks, can be complex due to
intricate Lyapunov difference expressions. Authors in various
studies address this issue by employing logarithmic Lya-
punov function candidates to establish asymptotic stability
of controlled systems [19]-[28].

There are only a few papers that address control allocation
for an over-actuated discrete-time model in the presence
of actuation degradation. Specifically in [10], the authors
design a discrete adaptive control allocation method for an
over-actuated system with a guarantee of asymptotic error
convergence. They further extend this architecture to have
tracking capabilities through the use of an integrator state.
However, they make use of an inertial measurement unit
(IMU) to generate the desired forces and moments, and they
have certain requirements for the structure of the physical
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system (i.e., a reduced system should be stable).

In this paper, we present a discrete-time adaptive control
architecture for an over-actuated system in the presence of
actuator degradation. A Lyapunov function that includes log-
arithmic and quadratic terms is utilized to show asymptotic
convergence of state tracking error. A numerical example is
given to show the efficacy of the proposed algorithm, where
we used hexacopter dynamics.

II. NOTATION

The mathematical notation used in this paper is as follows.
N denotes the set of non-negative integers. R denotes the
set of real numbers. R, denotes the set of real positive
numbers. R™ denotes the set of nx 1 real column vectors.
R"™*™ denotes the set of nxm real matrices, ]R:L_X" denotes
the set of positive definite real matrices, @ixn denotes the
set of positive semi-definite real matrices, D"*" denotes
the set of n x n diagonal matrices, I,, denotes the n xn
identity matrix, and 0,, denotes the n X n zero matrix. The
trace operator is denoted by tr(-), the inverse operator is
denoted by (-)~!, the pseudo-inverse operator is denoted by
()T, the set of matrix eigenvalues is denoted by spec(A), the
Euclidean norm of a vector, a, is denoted by ||a||, and the
2-norm of a matrix, A, is denoted by ||A||. Additionally, the
notations A(-) and \(-) represent the maximum and minimum
eigenvalues, respectively, of a matrix. Furthermore, = is used
for definitions.

III. DISCRETE ADAPTIVE CONTROL ALLOCATION

A. Discrete Control Allocation

In over-actuated systems, a mapping is required to trans-
form control inputs, u(k) € R!, to virtual control inputs,
v(k) € R™. In most physical dynamic systems, the virtual
control inputs are the desired force and moment commands.
The mapping matrix, denoted by M € R"*!, defines this
transformation where [ > n; thus, in general, rank(M) < n.
In an ideal case, the virtual control input is calculated from a
control law provided that M is full rank. (i.e. rank(M) = n).
This relationship is represented as

v(k) = Mu(k), k € N. (D

However, certain non-ideal conditions can degrade the actu-
ator’s effectiveness of providing the system with the desired
virtual control inputs; resulting in an actual virtual control
input, vaet(k) € R™. To capture this degradation, an un-
known constant positive definite diagonal matrix, A € D!*!,
is included in (2). The diagonal entries of A are restricted
to the set (0,1], where 1 represents nominal operation of
the actuator and O represents full actuator failure. Note that
this paper is concerned with the case of actuator degradation

and not full actuator failure. Specifically, the actual virtual
control input is given as

Vact (k) = MAu(k), k € N. ()

Ideally, calculating the control input from (2) requires the
inverse of the unknown matrix, MA € R™*!, which can be
expressed as in [9]

u(k) = (MA) vaeq (k)
= (MT 4 0)vaes(k), k €N, A3)
where 6 € RY™_ For the unknown control effectiveness case,
in implementation, (3) cannot be used because the true value
of A, and consequently the value € is unknown. This results
in the control law becoming a desired virtual control input,

va(k) € R™, when the value of # is approximated. The
control input can now be designed as

u(k) £ (M" + 0(k))va(k), k €N, @)

where (k) € R is the estimated value of 6 and it’s update
law is provided in subsection III-B. By substituting (4) into
(2) and subtracting the result from vq(k) one can obtain the
control error as

verr(k) = vd(k) - /Uact(k)
= va(k) = MAMT + 0(k))va(k)
- (In ~ MAM' + é(k))) va(k), keN. (5
Noting that in (5), I, can be replaced with ideal case,

MA(M?' + ), and the virtual control input error can be
expressed as

Verr (k) = (MA(MT +0) — MA(M' + é(k))) va (k)
—MAO(k)va(k), (6)

where é(k) € R represents the approximation error that
is defined as (k) = (k) — 6.

B. Proposed Architecture

A discrete-time over-actuated dynamical system with un-
known degraded actuator control effectiveness, shown in (2),
is considered in this paper. Specifically, the discrete-time
system model is defined as

x(k+1) = Ax(k) + Buact(k), k € N, x(0) =z, (7)

where z(k) € R™ is the measurable states of the system,
A € R™ " is the known state matrix, and B € R™"*" is the
known control input matrix with (A, B) being controllable.
Additionally, a discrete reference model is chosen of the form

Ir(k+1) = Arxr(k) + BrT(k'), k e N, mr(o) = Zx0,
(3)

where x, (k) € R™ is the reference model state vector, r(k) €
R™ is the bounded reference command with ||r(k)|| < r* €
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Ry, A, € R™™ is the Schur reference state matrix, and
B, € R"*™ is the reference control input matrix.

The objective of the discrete adaptive controller is to
achieve a desired closed-loop stability of discrete system (7)
in the presence of unknown control effectiveness degrada-
tion, while ensuring discrete reference model (8) tracking.
To this end, the desired virtual control law is designed as

va(k) £ —Kyz(k) + Kor(k), k €N, 9

where K1 € R™ " and Ko € R™ ™ are the constant
gain matrices chosen such that A, £ A — BK; and B, £
BK5. The proposed update law for the estimated control
effectiveness degradation parameter é(kz) in control input
given by (4) is chosen as

noMTB7 (e(k+1) — Ace(k))v] (k)
1+ eT(k)Pe(k) ’
keN
(10)

O(k+1) = 0(k) —

with learning rate 79 € Ry and matrix P € R}*" that
satisfies the discrete Lyapunov equation AT PA,+R—P =0,
with R € R7*"™. In (10), e(k) € R™ represents the tracking
error between the discrete dynamic system states and the
discrete reference model states defined as

e(k) = x(k) — 2,(k), k € N. (11)
Then, the tracking error dynamics yields
e(k+1)=a(k+1) — z,(k+1)
= Ax(k) + Bvaci (k) — Ay, (k) — Ber(k)
= Az (k) + B(va(k) — verr (k) — Ara (k)
—B,r(k)
= Ace(k) + BMAG(k)vq (k). (12)

Next, from (10), the approximation error dynamics can be
obtained as

noMTB™ (e(k+1) — Ave(k))v] (k)
1+ eT(k)Pe(k) ’
kEeN
(13)

O(k+1) = 6(k) —

Using (12), (13) can be mathematically expressed as
oM T MAG(k)vav] (k)

1+ €T (k)Pe(k)
k e N.

O(k+1) = (k) —
(14)

Note that the tracking error dynamics in (12) and approxima-
tion error dynamics in (14) will be used in the the stability
analysis of this paper.

C. Stability Analysis

Theorem 1. Consider the uncertain over-actuated discrete
dynamical system with actuator degradation given by (7) and
the discrete reference model given by (8). The control input
designed in (9) along with the adaptive update law (10)
guarantees boundedness of the pair (e,é) € R™ x Rx™,
Moreover, e(k) — 0 as k — oo.

Proof. The positive definite Lyapunov candidate function
that consists of logarithmic and quadratic functions for
proving stability of the closed-loop system error dynamics
is chosen as

V(e,0)=1In[1+ " (k)Pe(k)]

+éng {éT(k)A% AB(k )} (15)

where £ € R,. The corresponding Lyapunov difference
equation is then given as

AV(-)=In[1+€e" (k+1)Pe(k+1)] —In[1 + e" (k) Pe(k)]
+ny tr{GT(kH—l)Aé(lH—l)}

—ng e [67 (k) AB(R)]

The two logarithmic terms in (16) can be combined using the
logarithmic property In[a] — Infa] = In [%], using (12) and
(13), using the trace property tr[ba’] = aTb where a € R"
and b € R™, and using the logarithmic property In[1+a| < a,
an upper bound results in

AV() < eT(k)ATPA.e(k) — eT (k) Pe(k)
1+ eT(k)Pe(k)
eT(k)AT PBMAG(k)vq (k)
1+ eT(k)Pe(k)
vl (k)0T (k)AM™ BT PBMAG(k)va (k)
1+ eT(k)Pe(k)
2607 (k)T (k)AM™ MAO(k)va (k)
a 1+ €T (k) Pe(k)
Enovl (k)OT (k)AMT MAM™ MAG(k)
+ 1+ T (k) Pe(k)
va (k)T (k)va(k)
1+ €eT(k)Pe(k)
The first two terms in the numerator of the natural log in
(17) can be expressed using the discrete Lyapunov equation
defined before that is ATPA, — P = —R. For sufficiently
small values of v, R > Q +yAT PBBTPA, holds, where
Q € RY*™ and v € Ry, [27]. Adding and subtracting
the term “7‘1vg(k)éT(k)AMTMAé(kJ)vd(k)” into (17) an
upper bound for (17) can be written as
AV() < —e* (k)Qe(k) — 2" (k) Lz (k)
1+ eT(k)Pe(k)
+(7y71 + X(BTPB) — (2~ moX(MMT)m") )

(16)

a7
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||MAG(k)va (k)|
1+ eT(k)Pe(k)

. BTPA,e(k) ~I 1T
A . T é n n
with z(k) = [MAG(k)vd(k) and L SI, 4L
where z(k) € R* and L € @Jrnx " and m* is an upper

bound f v] (k)va (k) . A dix A
oun or m as given 1n Appendix A.

; & 7 '+NBTPB)

By deﬁnlng g T 2—noA(MMT)Ym*>

(16) is shown to be negative semi-definite, that is
—e"(k)Qe(k) — 2" (k) L2(k)

AV ()< <0. 18

()< 1+ eT(k)Pe(k) - (18)

Note that in order for (15) to remain positive definite, & must

be positive. This puts an upper bound on the learning rate,

1o, described as

the maximum bound for

no < (19)

NMMT)ym*
Here, (18) proves that the pair (e(k),d(k)) is Lyapunov
stable. It can be shown from Theorem 13.10 of [29] that
e(k) — 0 as k — oo. Because of the asymptotic
convergence of e(k), if follows that system states, z(k),

approach the reference model states, z,(k), as k — oo.
[ |

IV. ILLUSTRATIVE NUMERICAL EXAMPLES

A. Simulation Model

The discrete-time system used for simulating the adaptive
architecture is the linearized state-space rotational equations
for the hexacopter. Specifically, we considered

1 0 0
z(k+1)=(0 1 0| z(k)
0 0 1
0.01 0 0
+1 0 0.01 0 MAu(k), (20)
0 0 0.0071
where the discretization is obtained in 10 [Hz], the

state vector, x(k) = [p(k),q(k),7(k)]T, consists of
the hexacopter’s angular rates about the three body-
fixed axes and the control input vector, wu(k) =
[w?(k), w3 (k),w?(k),w?(k),w?(k),ws(k)]T, consists of the
squared motor speeds for the hexacopter’s six motors. M
is the motor mixing matrix, which represents the linear
mapping from (1). Specifically,

0 Bk Bk, 0 Bk Lk
M2 ik Yk <Lk -k Lk Lk
—ka kg —kq  ka —kyq ka

@1)

In (21) k; and k4 are the lift and drag coefficients of the
vehicle’s rotors and [ is the hexacopter’s arm length. The

specific values for the parameters in (21) are summarized
in Table 1. Finally, A is the control effectiveness matrix de-
scribed by (2). A discrete-time reference model, constructed
from desired continuous-time stable eigenvalues, spec(A;) =
[-0.5 £ 24, —0.1] is used to obtain

09323 —0.1890 0
ze(k+1)=|0.1890 09323 0 | (k)
0 0 0.9900
0.0677 0.1890 0
+1—0.1890 0.0677 0 | r(k). (22)
0 0 0.0100]

That results in the discrete feedback gains used in (9) are

6.7732  18.8980 0
K; = |—18.8980 6.7732 0 (23)
0 0 1.3930
6.7732  18.8980 0
Ky = |—18.8980 6.7732 0 (24)
0 0 1.3930

The reference command chosen is a constant angular rate,
r = [5deg/s,5deg/s, 5 deg/s|T. All initial conditions are set
to 0 and the diagonal entries of the unknown uncertainty
matrix, A, is set to [1,0.8,0.7,0.9,1,0.9] indicating degra-
dation of 20%, 30%, 10%, and 10% on motors 2, 3, 4, and
6, respectively.

TABLE I
HEXACOPTER PHYSICAL PARAMETERS

Parameter Value Units
Tox 10 kg-m?
Iyy 10 kg-m?
I.. 14 kg-m?
k; 8 x 1075

kg 6x10°6

l 1 m

B. Simulation Results

The system model described in Section IV-A is simulated
to show the effectiveness of the adaptive architecture in the
face of control effectiveness degradation. The learning rate,
1Mo, is set to 8.3585 x 10°, which is its maximum bound
set by (19). Figures 1, 2, and 3 show the results of the
successful implementation of the discrete adaptive control
architecture. The angular rates track the reference model
trajectories which converge to the reference command, with
minor overshoot. Convergence of the yaw rate takes longer
due to the smaller magnitude of the real eigenvalue of A,.

Convergence of the estimated parameter, 0, happens faster
than the reference tracking convergence. Note that due to the
structure of M, the first three rows of 0 are the negative of
the last three rows of 6 (see Figures 4 and 5).
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Roll Rate Reference Tracking Results
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Fig. 1. Roll rate tracking with control effectiveness degradation.
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Fig. 2. Pitch rate tracking with control effectiveness degradation.

V. CONCLUSIONS

This work presented a generalized adaptive control al-
location architecture in a discrete setting for the presence
of over-actuated systems with unknown control effective-
ness degradation. The implemented architecture ensured a
desired closed-loop stability and tracking performance. An
adaptive update law was designed to deal with the unknown
degradation. The Lyapunov analysis proved the asymptotic
convergence of the tracking error. Simulation results for the
attitude dynamics of a hexacopter system illustrated the per-
formance of the adaptive architecture. In the future, this work
can be extended by considering modeling uncertainties and
redesigning the control architecture to deal with the modeling
uncertainty as well and control effectiveness degradation.

VI. APPENDIX

The Lyapunov proof relies on the bound of %.
vg (k)va(k) = (~ Ko (k) + Kor (k)"

(—Kyz(k) + Kor(k))

Yaw Rate Reference Tracking Results
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Fig. 3. Yaw rate tracking with control effectiveness degradation.
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Fig. 4. Convergence of estimated parameter (first 3 rows).

vl (B)va (k) =21 (B) K] Kyz(k) — 22" (k) KT Kor (k)
+r (k) KJ Kor(k). (25)

Considering that each quadratic term in (25) can be upper
bounded, an upper bound on (25) can be expressed as

vg (k)va(k) <[|K{ KA ||z(k)|?
+2||K{ K| (k)] [|r (k)|
+[| K3 K| [[r(K)[]?. (26)

Using (11) with the triangle inequality, along with defining
bounds on the reference states and reference command as
||z (k)|| <« and ||r(k)|| < r* (26) can be rewritten as

va (k)va(k) < || K K| lle(k)|
+2 (||KT K[y + [ K7 Ko ||r) [le(k)]]
HIKT K |lay? + (| Ky Kol

+2z || KT K. 27)
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Fig. 5. Convergence of estimated parameter (last 3 rows).

Including the denominator, a further bound can be found by
using minimum eigenvalue of P

vg (k)va(k)

KL K[ [le(R)[”

1+ eT(k)Pe(k) ~ 1+ A(P)|[e(k)| |2

2 (|7 K[| + || KT Ko[r*) [|e(k)]]
L+ A(P)|le(R)[?
|| K K|y + | K|
L+ A(P)[e(k)][*
2271 [| K K ||

+

. (28)
L+ A(P)[[e(R)[?
Using the inequalities {352 < 7, 1957 < #, and

_a
1+bax?

[1]

[4]
[5]

[6]

[7]
[8]

< a, a final bound on (28) can be expressed as
U4 vd KT K| | KK |2f 4 || KT K|
1+eTPe™ AP) A(P)

H KT K + [ K Ko

+227 || KT Ko|| £ m*. (29)
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