
Distributed Online Learning Algorithms for Aggregative Games Over
Time-Varying Unbalanced Digraphs.

Xiaolong Zuo and Zhenhua Deng*

Abstract— In this paper, online aggregative games over time-
varying unbalanced digraphs are studied, where the cost
functions of players are time-varying and are gradually re-
vealed to corresponding players only after decisions are made.
Moreover, in the problems, players are subject to local convex
set constraints and time-varying coupled nonlinear inequality
constraints. To the best of our knowledge, no result about online
games with unbalanced digraphs has been reported, let alone
constrained online games. To solve the problem, a distributed
online algorithm based on primal-dual, mirror descents and
push-sum methods is developed. With the algorithm, sublinear
dynamic regrets and constraint violations are established.
Finally, online electricity market games illustrate the algorithm.

I. INTRODUCTION

Aggregative games (AGs) appear in various fields, such as
environmental economies [1], smart grids [2] and communi-
cation networks [3]. In AGs, each player aims to find an ideal
decision to selfishly optimize its individual cost function,
which relies on its own decision as well as the aggregate
of the decisions of all players. Hence, generalized Nash
Equilibrium (GNE) is a desirable decision for the players,
which portrays the state that no player can benefit more by
deviating from the equilibrium unilaterally (see [4], [5]).

To seek the (G)NE of AGs, numerous distributed strate-
gies have been developed in recent years(see [6], [7], [8],
[9]). However, these works typically assumed that the cost
functions are fixed and time-invariant, which is not in line
with most of engineering realities. For example, in many
practical situations such as radio resource allocation [10],
robust portfolio selection [11] and wind power grids [12], the
environments are dynamic and evolving, which often lead to
cost functions and constraint varying over time. Moreover,
the cost functions and constraints only can be known to
players after decisions are made. Accordingly, it is necessary
to investigate AGs with time-varying and gradually revealing
cost functions and constraints, which are called online AGs.

The communication networks are required to be static
and/or undirected in most of existing works for online games
(see [13], [14]). Nevertheless, in many situations, the com-
munication among players are time-varying and unbalanced,
such as transportation networks [15] and social networks
[16]. Moreover, it is well known that undirected graphs have
limitations compared to unbalanced digraphs which have
wider applications and are easier to implement [17]. Besides,
static and undirected graphs are special cases of time-varying
unbalanced digraphs. As far as we know, there are no results
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about online AGs over unbalanced digraphs so far, let alone
time-varying unbalanced digraphs.

This paper studies online AGs over time-varying networks
and design a distributed online algorithm to seek the GNE
sequences. The main contributions are outlined below:
• We study online AGs with local convex set constraints

and coupled nonlinear inequality constraint over time-
varying unbalanced digraphs. Unlike the traditional
static AGs, such as [6], [7], [8], [9], the cost functions
and coupled constraints are time-varying and unknown
before decisions are made in our problems. Besides,
our problems are extensions of existing online games,
such as [13], [14], by considering time-varying un-
balanced digraphs and time-varying coupled inequality
constraints.

• We design a distributed online learning algorithm for
AGs over time-varying unbalanced digraphs based on
mirror descent and push-sum methods. It is not easy
to develop online algorithms with sublinear dynamic
regrets (see [18] and references therein). We prove that
under our algorithm, the decisions made by players
are no-regret and the dynamic regrets and constraint
violations are sublinear.

The rest of the paper is organized as follows. Section II
recalls some preliminary knowledge and introduces problem
formulation. Section III develops a distributed online learn-
ing algorithm and presents the main results. Section IV gives
a simulation example. Section V summarizes the conclusion.

II. PRELIMINARIES AND FORMULATION

This section introduces some preliminary knowledge and
presents the problem.

A. Preliminaries

a) Notations: R is the set of real numbers. Rn denotes
the n-dimensional Euclidean space. ⊗ and × denote the
Kronecker product and the Cartesian product, respectively.
‖x‖ is the standard Euclidean norm of vector. ‖X‖ is the
spectral norm of matrix X . col(x1, . . . ,xn) = [xT

1 , . . . ,x
T
n ]

T . xi
is the ith element of vector x. 1n is the column vectors of n
ones. In is an n×n identity matrix. For a vector or matrix M,
the transpose of M is denoted by MT . Communication graph
between agents at time t is denoted by Gt = {V ,Et}, where
V is the vertex set of Gt and Et is the edge set. The adjacency
matrix is At and [At ]i j denotes the weighting of (i, j) at time
t. For a vector v ∈ Rn, [v]+ = max(v,0). h1 = O(h2) means
that h1 grow sublinearly with respect to h2.
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b) Bregman Divergence: The Bregman divergence of
x, y with x,y ∈Ω⊂ Rn is defined as (see [19])

Dϕ(x,y) := ϕ(x)−ϕ(y)−〈∇ϕ(y),x− y〉 ,
where ϕ : Ω → R is differentiable and δ -strongly con-
vex distance-measuring function, i.e., ϕ(x) ≥ ϕ(y) +
〈∇ϕ(y),x− y〉+ δ

2 ‖x− y‖2. Therefore, it can be easily de-
rived that Dϕ(x,y)≥ δ

2 ‖x− y‖2 and
〈x−y,∇ϕ(y)−∇ϕ(z)〉=Dϕ(x,z)−Dϕ(x,y)−Dϕ(y,z). (1)
A mild assumption on the Bregman divergence are listed

as follows, which were widely used in [19], [20].
Assumption 1: The Bregman divergence satisfies the fol-

lowing conditions:

Dϕ(x,
N

∑
i=1

aiyi)≤
N

∑
i=1

aiDϕ(x,yi)

,
‖Dϕ(x,z)−Dϕ(y,z)‖ ≤ lD‖x− y‖

where x,yi,z ∈ Rn and ∑
N
i=1 ai = 1 with ai ∈ R and lD is a

positive constant.

B. Problem Formulation

Consider an online AG of N players over time-varying
unbalanced digraphs. At each time t ∈ {1, . . . ,T}, where
T ∈ N+ denotes the running time, only after player i
has made a decision xi

t from its decision set Ωi ⊂
Rn, it receives its cost function f i

t (x
i
t ,x
−i
t ), where x−i

t =
col(x1

t , . . . ,x
i−1
t ,xi+1

t , . . . ,xN
t ) denotes the decisions of other

players. Moreover, the decisions of players are coupled by
the following time-varying nonlinear inequality:

Kt = {xt ∈ RNn|
N

∑
i=1

gi
t(x

i
t)≤ 0m} (2)

where gi
t = col(gi1

t , . . . ,g
im
t ) and gi j

t : Rn → R. Specially,
since the cost functions in AGs depend on the aggregate
of the decisions of all players, the function f i

t (x
i
t ,x
−i
t ) could

be rewritten as Ji
t (x

i
t ,σ(xt)), where the aggregative function

σ(xt) is defined as σ(xt) =
1
N ∑

N
i=1 ψi(xi

t). ψi(xi
t) : Rn→ Rd

is differentiable and Lipschitz continuous, i.e., there exists a
positive constant lψ such that ||ψi(xi

t)−ψi(yi
t)|| ≤ lψ ||xi

t−yi
t ||

for any xi
t , yi

t ∈ Rn. Accordingly, for player i, it faces the
following aggregative game at time t:

min
xi

t∈Ωi

Ji
t (x

i
t ,σ(xt))

s.t.
N

∑
i=1

gi
t(x

i
t)≤ 0m.

(3)

The GNE of the AG (3) is defined as follows (see [5]):
Definition 1: A decision x∗t = (xi∗

t ,x
−i∗
t ) is a GNE of the

AG (3) at time t ∈ {1,2, . . . ,T} if f i
t (x

i∗
t ,x

−i∗
t )≤ f i

t (x
i
t ,x
−i∗
t ),

∀xt : (xi
t ,x
−i∗
t ) ∈Ω∩Kt , i ∈ V , where Ω = Ω1× . . .×ΩN .

Similarly to [13], [14], [19], [20], [21], the path length of
the GNE sequence is defined as VT = ∑

T
t=1
∥∥x∗t+1− x∗t

∥∥.
In the following, some widely used assumptions in online

games are listed.
Assumption 2: The nonempty set Ωi is convex and com-

pact.
Assumption 3: The cost functions and coupled constraint

satisfy: (i) The function f i
t (x

i
t ,x
−i
t ) and gi

t(x
i
t) are convex

and differentiable on xi
t . (ii) The gradient ∇Ji

t (x
i
t ,σ(xt)) is

Lipschitz continuous, i.e., ‖∇Ji
t (x

i
t , σ̂

i
t+1)−∇Ji

t (x
i
t ,σ(xt))‖ ≤

l‖σ̂ i
t+1−σ(xt)‖, where l is a positive constant and

∇Ji
t (x

i
t ,σ(xt)) :=

(
∂

∂ µ
Ji(µ,ν)+

∂

∂ν
Ji(µ,ν)

∂ν

∂xi
t

)∣∣∣∣µ=xi
t

ν=σ(xt )

.

(iii)The pseudo-gradient Ft(xt) is µ-strong monotone, i.e.,
(Ft(xt)−Ft(yt))

T (xt − yt) ≥ µ‖x− y‖2, where Ft(xt) is de-
fined as Ft(xt) = col(∇ f i

t (x
1
t ,x
−1
t ), . . . ,∇ f N

t (xN
t ,x
−N
t )) with

∇ f i
t (x

i
t ,x
−i
t ) =

∂ f i
t (x

i
t ,x
−i
t )

∂xi
t

.
Assumption 4: The graph Gt , ∀t ∈ {1, . . . ,T}, satisfies the

following conditions: (i) (Weight Rule) [At ]i j ≥ϖ with ϖ >
0, if (i, j)∈ Et ; [At ]ii≥ϖ , ∀i∈V ; (ii) (Column-stochasticity)
∑

N
i=1[At ]i j = 1; (iii) (Uniformly connectivity) There exists an

integer B> 0 such that the jointly graph {V ,∪k=0,...,B−1Et+k}
is strongly connected.

The following lemma holds based on Assumption 4.
Lemma 1: (see [22, Corollary 2]) Suppose Assumption 4

holds, there exists a sequence {φt} of stochastic vectors φt ∈
Rn, θ > 0 and η ∈ (0,1), such that

∣∣[A(t : k)]i j−φ i
t
∣∣≤ θη t−k,

where A(t : k) = AtAt−1 . . .Ak+1Ak.
The dynamic regret and constraint violation are widely

used to evaluate the performance of online decision-making
process (see [13], [14], [20], [21]) and are defined as follows:

Regi(T ) =
T

∑
t=1

( f i
t (x

i
t ,x
−i∗
t )− f i

t (x
i∗
t ,x

−i∗
t )) (4)

Rg(T ) =

∥∥∥∥∥
[

T

∑
t=1

N

∑
i=1

gi
t(x

i
t)

]+∥∥∥∥∥ . (5)

where x∗t = (xi∗
t ,x

−i∗
t ) is the GNE of AG (3) at time t.

The sublinear dynamic regret and constraint violation are
expected to established in online problems because they
implies, in the terms of time average, the errors of the
algorithm approach zero and the coupled constraint is largely
satisfied, i.e., lim

T→∞
Regi(T )/T = 0 and lim

T→∞
Rg(T )/T = 0.

Therefore, the goal of this paper is to design an algorithm
for the AG (3) over time-varying graphs {Gt} such that
sublinear dynamic regret (4) and constraint violation (5) are
obtained.

III. MAIN RESULTS

This section presents a distributed online algorithm (i.e.,
Algorithm 1) for the AG (3) and analyzes its performance.

A. Distributed Online Learning Algorithm Design

This subsection presents a distributed online algorithm
(i.e., Algorithm 1).

Assumption 2 indicates that the radius of the convex set
Ω is bounded, i.e., there exists positive constant r such that
‖x− y‖ ≤ r, ∀x,y ∈ Ω, which together with Assumption 3
indicates Ji

t (x
i
t ,σ(xt)) and ∇Ji

t (x
i
t ,σ(xt)) are bounded be-

cause Ji
t (x

i
t ,σ(xt)) is convex and xi

t ∈Ωi always holds under
Algorithm 1, i.e., there exist positive constants Bg, Cg, B j and
C j such that ‖gi

t(x
i
t)‖≤Bg, ‖∇gi

t(x
i
t)‖≤Cg, ‖Ji

t (x
i
t ,σ(xt))‖≤

B j and ‖∇Ji
t (x

i
t ,σ(xt))‖ ≤ C j. Furthermore, since gi

t(x
i
t) +

∇gi
t(x

i
t)(z

i
t+1− xi

t)≤ gi
t(z

i
t+1), by (6e) and ‖gi

t(x
i
t)‖ ≤ Bg, we

2279



have ‖yi
t+1‖ ≤ Bg. Besides, based on Assumption 1, it can

be deduced that Dϕ(x,y)≤ lDr, ∀x,y ∈Ω.

Algorithm 1 Distributed Online Push-sum Mirror Descent
Algorithm
Initialization: zi

0, xi
0 ∈ Rn, ω0 = 1N , ui

0 = 0m, si
0 = ψi(xi

0).
for t = 0, . . . ,T −1 do

s̃i
t+1 =

N

∑
k=1

[At ]iksk
t (6a)

wi
t+1 =

N

∑
k=1

[At ]ikwk
t (6b)

ûi
t+1 =

N

∑
k=1

[At ]ikuk
t (6c)

zi
t+1 =arg min

x∈Ωi

{
αt〈∇Ji

t (x
i
t , σ̂

i
t+1)

+γt∇gi
t(x

i
t)

T ũi
t+1,x〉+Dϕi(x,x

i
t)
}

(6d)

yi
t+1 =gi

t(x
i
t)+∇gi

t(x
i
t)(z

i
t+1− xi

t) (6e)

ui
t+1 =[(1− γ

2
t )

N

∑
k=1

[At ]ikuk
t + γtyi

t+1]
+ (6f)

xi
t+1 =(1−αt)xi

t +αtzi
t+1 (6g)

si
t+1 =

N

∑
k=1

[At ]iksk
t +ψi(xi

t+1)−ψi(xi
t) (6h)

end for
where σ̂ i

t+1 =
s̃i
t+1

wi
t+1

, ũi
t+1 =

ûi
t+1

wi
t+1

, and αt ,γt ∈ (0,1) are non-
increasing stepsizes.

B. Performance Analysis

In this subsection, we analyze the bounds of dynamic
regret (4) and constraint violation (5) of Algorithm 1. Before
stating our main results, some necessary lemmas are given
as follows.

Lemma 2: (see [21, Lemma 4]) Under Assumptions 2 and
4, ∀i∈ V , t ∈ {1, . . . ,T}, it can be obtained that δ ≤ω i

t ≤N,

δ ≤ 1 and ‖ûi
t+1‖ ≤

ω i
t+1Bg

γt δ 2 .
Lemma 3: Under Assumptions 2 and 4, ∀i ∈ V , t ∈

{1, . . . ,T}, we have

‖σ̂ i
t+1−σ(xt)‖ ≤

2θ

δ
η

t‖s0‖+
2θ
√

Nrlψ
δ

t

∑
k=1

η
t−k

αk−1

‖ũi
t+1− ūt‖ ≤

4θ
√

NNBg

δ 3

t

∑
k=1

η
t−k

γk−1.

where δ := inf
t=0,1,...

( min
1≤i≤N

[AtAt−1 . . .A01N ]i) ≥ 1
NNB , s0 =

col(s1
0, . . . ,s

N
0 ) and ūt = ∑

N
i=1 ui

t .
Proof: Denote ξ i

t+1 = ψi(xi
t+1)− ψi(xi

t). Under As-
sumption 2, by (6g) and the Lipschitz continuity of ψi(xi

t),
we have ‖ξ i

t+1‖ ≤ lψ‖xi
t+1− xi

t‖ ≤ lψ αtr. Similarly, denote
ε i

t+1 = [(1− γ2
t )û

i
t+1 + γtyi

t+1]
+ − ûi

t+1, based on ‖yi
t+1‖ ≤

Bg, Lemma 2 in [4] and Lemma 2, we have ε i
t+1 ≤

2γt ω
i
t+1Bg

δ 2 . For easy of notation, we consider n = 1 and

m = 1. Then the compact form of si
t+1 and ui

t+1 are st+1 =
Atst + ξt+1 and ut+1 = Atut + εt+1, respectively, where st =
col(s1

t , . . . ,s
N
t ), ut = col(u1

t , . . . ,u
N
t ), ξt = col(ξ 1

t , . . . ,ξ
N
t ) and

εt = col(ε1
t , . . . ,ε

N
t ). Hence, we can deduced that s̄t = σ(xt),

where s̄t =
1
N ∑

N
t=1 si

t (see [23, Lemma 1]). Then Lemma 3
can be obtained based on Lemmas 1 and the detailed proof
is given in [22].

Lemma 4: Under Assumptions 2-4, for ∀u∈Rm
+, we have

−
T

∑
t=1

γt

N

∑
i=1
〈ũi

t+1,y
i
t+1〉

≤1
2

N(1+
T

∑
t=1

γ
2
t )‖u‖2−uT

T

∑
t=1

γt

N

∑
i=1

gi
t(x

i
t)+NCgr‖u‖

T

∑
t=1

γt

+
6N3B2

g

δ 5

T

∑
t=1

γ
2
t +

2NBg

δ 2

T

∑
t=1

γt

N

∑
i=1
‖ũi

t+1− ūt‖. (7)

Proof: See Appendix V-A.
Lemma 5: Under Assumptions 1-4, there holds

µ

T

∑
t=1
‖xt − x∗t ‖2

≤lr
T

∑
t=1

N

∑
i=1
‖σ̂ i

t+1−σ(xt)‖+Bg

T

∑
t=1

γt

N

∑
i=1
‖ũi

t+1− ūt‖

− δ

4
‖zt+1− xt‖2 +NCgBur

T

∑
t=1

γt+
NC2

j

2δ

T

∑
t=1

αt

−
T

∑
t=1

γt

N

∑
i=1
〈ũi

t+1,y
i
t+1〉+

NlDr
α2

T
+

√
NlD
α2

T
VT .

Proof: See Appendix V-B.
Based on above analysis, we have the following theorem.
Theorem 1: Suppose Assumptions 1-4 hold. Under Algo-

rithm 1, the dynamic regret and constraint violation satisfy

Regi(T )≤O(

√
T (

VT +1
α2

T
+

T

∑
t=1

αt +
T

∑
t=1

γt)) (8)

Rg(T )≤O(
1
γT

√
(
VT +1

α2
T

+
T

∑
t=1

αt+
T

∑
t=1

γt)(1+
T

∑
t=1

γ2
t )). (9)

Proof: By the convexity of the cost function, it is
apparent that

Regi(T )≤
T

∑
t=1

∇ f i
t (x

i
t ,x
−i∗
t )T (xi

t − xi∗
t )

≤
T

∑
t=1

C j‖xi
t − xi∗

t ‖ ≤C j

√
T

T

∑
t=1
‖xt − x∗t ‖2. (10)

Based on Lemma 3, we have

T

∑
t=1

N

∑
i=1
‖σ̂ i

t+1−σ(xt)‖

≤2θ

δ
‖s0‖

η

1−η
+

2θ
√

Nrlψ
δ

T

∑
t=1

t

∑
k=1

η
t−k

αk−1 (11)

where ∑
T
t=1 ∑

t
k=1 η t−kαk−1 = ∑

T
k=1 αk−1 ∑

T−k
t=0 η t ≤

O(∑T
t=1 αt). Therefore, it can be derived that
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∑
T
t=1 ∑

N
i=1 ‖σ̂ i

t+1 − σ(xt)‖ ≤ O(∑T
t=1 αt). Similarly, we

have ∑
T
t=1 ∑

N
i=1 ‖ũi

t+1− ūt‖ ≤ O(∑T
t=1 γt).

Based on above analysis, it can be deduced from Lemmas
4 and 5 that

µ

T

∑
t=1
‖xt − x∗t ‖2−

T

∑
t=1

E(t)‖u‖2 +uT
T

∑
t=0

γt

N

∑
i=1

gi
t(x

i
t)

≤O(
VT +1

α2
T

+
T

∑
t=1

αt +
T

∑
t=1

γt) (12)

where E(t) = N
2δ
(δ +δ ∑

T
t=1 γ2

t +2NC2
g ∑

T
t=1 γ2

t ).
Due to the arbitrariness of u ∈ Rm

+, let u = 0m, we have

µ

T

∑
t=1
‖xt − x∗t ‖2 ≤ O(

1+VT

α2
T

+
T

∑
t=1

αt +
T

∑
t=1

γt). (13)

Then (8) is obtained by substituting (13) into (10).
Let u =

[∑T
t=1 γt ∑

N
i=1 gi

t (x
i
t )]+

E(t) , we have

uT
T

∑
t=1

γt

N

∑
i=1

gi
t(x

i
t)−E(t)‖u‖2=

[∑T
t=1 γt ∑

N
i=1 gi

t(x
i
t)]

2
+

E(t)
≥ γ2

T Rg2

E(t)
which, together with (12), results in (9).

This completes the proof of Theorem 1.
Remark 1: Theorem 1 indicates that the bound of the dy-

namic regret and constraint violation depend on the algorithm
parameter αt , γt and VT . Thus, provided that VT satisfies
certain conditions, sublinear dynamic regret and constraint
violation can be obtained by choosing appropriate αt and γt .

Corollary 1: Suppose Assumptions 1-4 hold. Under Algo-
rithm 1 with αt = γt =

1
ta and a ∈ (0, 1

2 ), the dynamic regret
(8) and constraint violation (9) are bounded by

Regi(T )≤ O
(

T
1
2+a√VT +T 1− a

2

)
Rg(T )≤ O

(
T

1
2+a√VT +T 1− a

2

)
Proof: By choosing αt =

1
ta , we have

T

∑
t=1

αt =
T

∑
t=1

1
ta ≤

∫ T

0
t−adt ≤ O(T 1−a). (14)

Similarly, we have ∑
T
t=1 γt ≤ O(T 1−a) and ∑

T
t=1 γ2

t ≤
O(T 1−2a). Then based on Theorem 1, the Corollary 1 can
be proved.

Remark 2: In Corollary 1, it is clearly that T
1
2+a and

T 1− a
2 are sublinear with T because a ∈ (0, 1

2 ). Hence, the
sublinear dynamic regret and constraint violation can be
established, i.e., lim

T→∞
Regi(T )/T = 0 and lim

T→∞
Rg(T )/T = 0

if VT satisfies lim
T→∞

VT/T 1−2a = 0.

IV. SIMULATION

Consider the online electricity market games of six wind
farms over time-varying unbalanced communication net-
works (e.g., Fig. 1). Every wind farm faces the following
problem (see [24]).

min
Pi,t∈R

Ji,t(Pi,t ,P−i,t)

s.t. Pi,t ∈ [Pmin
Gi

,Pmax
Gi

]

6

∑
i=1

Pi,t ≥
6

∑
i=1

PDi,t .

(15)

where Ji,t is the cost function of wind farm i at time
t, in M$; Pi,t is the generated power of wind farm
i at time t, in MW ; The load demand of wind farm
i at time t is denoted by PDi,t with PDt = [12,11 +
0.5sin(t/4),8,7.5,9,10]T . The generated power Pi,t cannot
exceed the corresponding minimum output power Pmin

Gi
and

maximum output power Pmax
Gi

(Pmin
G = [2,3,3,6,5,4] and

Pmax
G = [65,58,73,35,66,45]). Moreover, the sum of the

generated power is expected to equal or greater than the
total load demand. Particularly, the cost function Ji,t is
Ji,t(Pi,t ,P−i,t) = ci,t(Pi,t)− pi,t(Pi,t ,P−i,t)Pi,t , where ci,t(Pi,t)
and pi,t(Pi,t ,P−i,t) are the production cost and the electricity
price, respectively. pi,t(Pi,t ,P−i,t)= ιi,t− 1

6 ∑
6
k=1 Pk,t with ιi,t =

80+ 0.5sin(t/12) and ci,t(Pi,t) is ci,t(Pi,t) = α̃i,t + β̃i,tPi,t +
γ̃i,t(Pi,t)

2, where α̃t = [2,5 + 0.5sin(t/12),4,3,7,2], β̃t =
[35 + 3.0sin(t/3),20 + 1.5sin(t/4),52 + 2.0sin(t/7),38 +
3.5sin(t/8),15 + 2.5sin(t/10),47 + 4.0sin(t/11)] and γ̃t =
[2,4,3,1.5,3+0.5cos(t/3),2].

In Algorithm 1, we choose ϕ(x) = 1
2‖x‖

2 and the corre-
sponding Bregman divergence is D(x,y) = 1

2‖x−y‖2. Setting
αt = 1/ 4

√
t and βt = 1/ 4

√
t. The simulation results of average

dynamic regret Regi/t and average constraint violation Rg/t
are presented in Fig. 2 and Fig. 3, respectively.

It can be observed from Figs. 2 and 3 that both Regi/t and
Rg/t approach zero as time tends to infinity, which implies
the dynamic regret and constraint violation are sublinear with
T , thus verifying the effectiveness of the algorithm.
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Fig. 1. The time-varying unbalanced communication networks

V. CONCLUSIONS
This paper has investigated constrained online AGs over

time-varying unbalanced digraphs. To seek the GNE se-
quence of the online AG, a distributed online algorithm based
on push-sum and mirror descent approach has been proposed.
To the best of our knowledge, this is the first work to solve
online AGs over time-varying unbalanced digraphs. With the
algorithm, sublinear dynamic regret and constraint violation
have been established. Finally, simulation results of online
market games verify the effectiveness of our method.

APPENDIX
A. Proof of Lemma 4

Multiplying both sides of ut+1 = Atut + εt+1 by 1
N 1T

N ,
because At is column stochastic, we have ūt+1 = ūt +
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Fig. 2. The trajectories of Regi/t
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Fig. 3. The trajectories of Rg/t

1
N ∑

N
i=1 ε i

t+1. Therefore, for ∀u ∈ Rm
+,

‖ūt+1−u‖2

≤‖ūt −u‖2 +
1
N

N

∑
i=1
‖ε i

t+1‖2 +
2
N

N

∑
i=1

ε
iT
t+1(ūt −u). (16)

For the term ε iT
t+1(ū−u), we have

ε
iT
t+1(ūt −u)

=ε
iT
t+1(ūt − ũi

t+1)+ ε
iT
t+1(ũ

i
t+1−u)

≤‖ε i
t+1‖‖ũi

t+1− ūt‖+ γt(yi
t+1− γt ûi

t+1)
T (ũi

t+1−u)

+
1

ω i
t+1

(ε i
t+1− γt(yi

t+1− γt ûi
t+1))

T (ûi
t+1−ui

t+1)

+
1

ω i
t+1

(ε i
t+1− γt(yi

t+1− γt ûi
t+1))

T (ui
t+1−ω

i
t+1u)

≤‖ε i
t+1‖‖ũi

t+1− ūt‖+ γt〈yi
t+1, ũ

i
t+1−u〉

− γ
2
t ω

i
t+1ũiT

t+1(ũ
i
t+1−u)+

1
ω i

t+1
γt(yi

t+1− γt ûi
t+1)

T
ε

i
t+1

≤
2γtω

i
t+1Bg

δ 2 ‖ũi
t+1− ūt‖+ γt〈yi

t+1, ũ
i
t+1−u〉

+
1
2

ω
i
t+1γ

2
t ‖u‖2 +

4γ2
t ω i2

t+1B2
g

δ 5 (17)

where the second inequality holds for ε iT
t+1(û

i
t+1− ui

t+1) =
−‖ε i

t+1‖2 ≤ 0 and (ε i
t+1 − γt(yi

t+1 − γt ûi
t+1))

T (ui
t+1 −

ω i
t+1u) ≤ 0 (see [4, Lemma 2]). −γ2

t ũiT
t+1(ũ

i
t+1 − u) ≤

1
2 γ2

t ‖u‖2 and ε i
t+1 ≤

2γt ω
i
t+1Bg

δ 2 are used to get the last in-
equality.

Substitute (17) into (16) and rearrange (16), we obtain

− γt

N

∑
i=1
〈ũi

t+1,y
i
t+1〉

≤N
2
‖ūt −u‖2− N

2
‖ūt+1−u‖2− γt

N

∑
i=1
〈u,gi

t(x
i
t)〉

+
2γtNBg

δ 2

N

∑
i=1
‖ũi

t+1− ūt‖+
6γ2

t N3B2
g

δ 5 +
1
2

Nγ
2
t ‖u‖2

− γt

N

∑
i=1
〈u,∇gi

t(x
i
t)(z

i
t+1− xi

t)〉

where N
2 ∑

T
t=0(‖ūt − u‖2 − ‖ūt+1 − u‖2) ≤ 1

2 N‖u‖2. Then
Lemma 4 can be obtained based on Cauchy-Schwarz inequal-
ity and ‖∇gi

t(x
i
t)‖ ≤Cg.

B. Proof of Lemma 5

Based on the optimality condition of zi
t+1 in (6d) and by

(1), the following inequality is yields

αt〈zi
t+1− xi∗

t ,∇Ji
t (x

i
t , σ̂

i
t+1)+ γt∇gi

t(x
i
t)

T ũi
t+1〉

≤〈∇ϕi(zi
t+1)−∇ϕi(xi

t),x
i∗
t − zi

t+1〉
=Dϕ(xi∗

t ,x
i
t)−Dϕ(xi∗

t ,z
i
t+1)−Dϕ(zi

t+1,x
i
t). (18)

Based on Dϕ(x,y)≥ δ

2 ‖x− y‖2, we further obtain that

Dϕ(xi∗
t ,z

i
t+1)≤Dϕ(xi∗

t ,x
i
t)−

δ

2
‖zi

t+1− xi
t‖2

+αt〈xi∗
t − zi

t+1,∇Ji
t (x

i
t , σ̂

i
t+1)〉

+αtγt〈xi∗
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t(x

i
t)

T ũi
t+1〉. (19)

For the second term in the right hand sides of (19), we have

αt〈xi∗
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t+1,∇Ji
t (x

i
t , σ̂

i
t+1)〉

≤αt〈xi∗
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t ,∇Ji
t (x

i
t ,σ(xt))−∇Ji

t (x
i∗
t ,σ(x∗t ))〉

+αt〈xi∗
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t ,∇Ji
t (x

i
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i
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t (x
i
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+αt〈xi∗
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t ,∇Ji
t (x
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t ,σ(x∗t ))+ γt∇gi

t(x
i∗
t )

T u∗t 〉
−αtγt〈xi∗

t − xi
t ,∇gi

t(x
i∗
t )

T u∗t 〉
+αt〈xi

t − zi
t+1,∇Ji

t (x
i
t , σ̂

i
t+1)〉

≤αt〈xi∗
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t ,∇Ji
t (x

i
t ,σ(xt))−∇Ji

t (x
i∗
t ,σ(x∗t ))〉

+αt‖xi∗
t − xi

t‖‖∇Ji
t (x

i
t , σ̂

i
t+1)−∇Ji

t (x
i
t ,σ(xt))‖

+αtγt‖xi∗
t − xi

t‖‖∇gi
t(x

i∗
t )‖‖u∗t ‖

+αt‖xi
t − zi

t+1‖‖∇Ji
t (x

i
t , σ̂

i
t+1)‖

≤αt〈xi∗
t − xi

t ,∇Ji
t (x

i
t ,σ(xt))−∇Ji

t (x
i∗
t ,σ(x∗t ))〉

+αt lr‖σ̂ i
t+1−σ(xt)‖+αtγtrCgBu

+
δ

4
‖zi

t+1− xi
t‖2 +

1
δ

C2
j α

2
t (20)

where u∗t is the optimal dual variable and it has a upper bound
by Lemma 1 in [25], i.e., ‖u∗t ‖≤Bu. The second inequality is
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obtained by Cauchy-Schwarz inequality and the optimality
of x∗t , and the third inequality is by Assumptions 2-3 and
Jensen’s inequality.

For the third term in the right hand sides of (19), we have

αtγt〈xi∗
t − zi

t+1,∇gi
t(x

i
t)

T ũi
t+1〉

≤αtγt〈xi∗
t −xi
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t(x

i
t)

T ũi
t+1〉+αtγt〈xi

t−zi
t+1,∇gi

t(x
i
t)

T ũi
t+1〉

≤αtγtgi
t(x

i∗
t )

T ũi
t+1−αtγt〈ũi

t+1,y
i
t+1〉

≤αtγtBg‖ũi
t+1− ūt‖+αtγtgi

t(x
i∗
t )

T ūt −αtγt〈ũi
t+1,y

i
t+1〉 (21)

where the second inequality is obtain by the convexity of
gi

t(x
i
t) and the definition of yi

t+1.
By Assumptions 1 and (6g), it can be derived that

Dϕ(xi∗
t+1,x

i
t+1)

≤Dϕ(xi∗
t ,x

i
t+1)+ lD‖xi∗

t+1− xi∗
t ‖

≤(1−αt)Dϕ(xi∗
t ,x

i
t)+αtDϕ(xi∗

t ,z
i
t+1)+lD‖xi∗

t+1−xi∗
t ‖ (22)

Combining with (19)-(22) and summing over i ∈
{1, . . . ,N} yields

µ‖xt − x∗t ‖2

≤〈xt − x∗t ,F(xt)−F(x∗t )〉

≤ 1
α2

t

N

∑
i=1

(Dϕ(xi∗
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1
2δ
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j αt
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−γt
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i=1
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√
NlD
α2

t
‖x∗t+1−x∗t ‖ (23)

where ∑
N
i=1 gi

t(x
i∗
t )

T ūt ≤ 0 and the strong monotonicity of
Ft(xt) are used to get the inequalities. Hereto, Lemma 5 can
be easily obtained by summing over t ∈ {1, . . . ,T} and by
the following inequalities

T

∑
t=1

1
α2

t

N

∑
i=1

(Dϕ(xi∗
t ,x

i
t)−Dϕ(xi∗
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1
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1

α2
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− 1
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1
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0
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where Dϕ(x,y)≤ lDr is used to obtain the inequalities.
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