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Abstract— This paper investigates synchronized optimization
with prescribed performance for the strict-feedback system with
time-synchronized convergence property, which is the highly es-
sential performance desired in various real-world high-precision
control applications. The prescribed performance is considered
to keep the state-variables within a predefined region during
the control period to meet the required system performance.
To consider optimization performance while also concurrently
attaining the time-synchronized properties simultaneously of
each backstepping subsystem, optimized backstepping is uti-
lized to establish the learning framework; wherein the norm-
normalized sign function is appropriately incorporated in each
backstepping subsystem, which generates the decomposition
of the optimal system control and gradient term of the cost
function with appropriate time-synchronized control items and
unknown independently learning parts to be approximated
with neural networks. With this decomposition design, the
learning objective is transformed to adaptively explore the
optimal control parameter in the admissible policy region.
By additionally employing the adaptive dynamic program-
ming technique, actor-critic method, and gradient-constrained
method, the solution of the Hamilton-Jacobi-Bellman equation
is iteratively approximated while the learnable parameter stays
within the predefined region. The work here has the outcome
of time-synchronized convergence which surpasses the usual
typical developments in this class of problems considered. The
proposed method is verified with the vehicle platoon problem
to show its effectiveness in that the system preserves special
properties of time-synchronized stability and control while
optimizing the overall system control.

I. INTRODUCTION

High-precision performance optimization and control have
raised great attention and are being applied to various areas,
which further require the specific performance in the finite-
or fixed-time convergence, (fixed) time-synchronized con-
vergence, constrained performance, prescribed performance,
optimized performance, and so on [1]. Generally speaking,
the standalone performance is not adequate for the demand
of accomplishing multiple complex specific tasks, the con-
strained and synchronized optimization is studied in this

1Y. Zhang, X. Liang, S. S. Ge, and T. H. Lee are with the Department
of Electrical and Computer Engineering, National University of Singapore,
Singapore, 117576.

2D. Li is with the School of Cyber Science and Technology, Beihang
University, Beijing 100191, China, also from Tianmushan Laboratory,
Hangzhou, 310023 P. R. China. dongyuli@buaa.edu.cn

This research/project is partially supported by the Ministry of Education,
Singapore, under its Research Centre of Excellence award to the Institute
for Functional Intelligent Materials (I-FIM, project No. EDUNC-33-18-
279-V12), Tianmushan Laboratory Research Project TK-2023-B-010 and
TK-2023-C-020, the National Nature Science Foundation of China No.
62273256, Key Laboratory of Industrial Internet of Things & Networked
Control, Ministry of Education under Project 2022FF04.

work, which essentially considers the prescribed performance
and time-synchronized convergence.

The practical systems are usually safety-critical systems,
which require system performance to satisfy certain limits,
and are denoted as the safe zone/region. To satisfy the
safety requirement of the system, the constraints on the
system state-variables are usually considered. Regarding the
constrained control methods, the Barrier Lyapunov function
(BLF) can effectively keep the system state-variables stayed
within the desired zone by keeping the BLF bounded in
the close-loop [2], [3]. The prescribed performance con-
trol (PPC) is a more direct way to constrain the state-
variables and realize prescribed tracking performance [4].
Model Predictive Control (MPC) is another effective method
to consider system constraints explicitly by solving the open-
loop optimization problem in the predictive horizon with the
consideration of system tracking performance and control in-
puts, which usually require substantial online calculation [5].

The important concepts of time-synchronized stability
(TSS) and fixed time-synchronized stability (FTSS), also
termed as a simultaneous-arrival-to-origin (SATO) conver-
gence, specifically require all state-variables of the system
converge to the origin at the same time [6], which have
been well-investigated and recognized as the critical demand
in the control design of various practical systems, e.g.
synchronously motion and cooperatively work in the multi-
agent cooperative missions, the synchronization control for
shift control of inverse automated manual transmission to
rejects jerk [7], adaptive reference-free trajectory planning of
autonomous vehicles under multi-scenario driving [8], syn-
chronized control governor for autonomous vehicle motion
control to reduce the chattering [9], etc.

The time-synchronized property is innovated by the
core analytical methodology of the formally defined norm-
normalized sign function when compared with the classical
sign function [10]. The characteristic of the norm-normalized
sign function is that each output element contains informa-
tion on the whole input vector, which enables the overall
system control to guide all system state-variables converge
time-synchronously [11]. This ultimate time-synchronized
convergence property is also additionally notable for at-
taining superior system performance with an outcome of a
shorter and smoother output trajectory; less chattering on the
output trajectory; and also lower energy consumption; which
can be obtained after the optimization of control inputs. To
consider optimization performance on system control while
also concurrently attaining the important time-synchronized
properties simultaneously, reinforcement learning (RL) and
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adaptive dynamic programming (ADP) that are always re-
garded as effective learning-based sequential control methods
can be employed by satisfying Bellman optimality and solv-
ing the Hamilton-Jacobi-Bellman (HJB) equations [12]. Due
to the inherent nonlinearity of the HJB equation, the unique
solution is usually impossible and rather complicated to be
directly obtained, which requires neural networks (NNs) as
an approximation for iteratively solving [13].

From a deeper perspective, synchronized optimization
with prescribed performance and time-synchronized con-
vergence property for high-order system control is an im-
portant requirement, which is not yet well established in
current research. In this work, for the high-order strict
feedback system, the prescribed performance is considered
to keep the state-variables within a predefined region dur-
ing the control period to meet the required system per-
formance. To consider optimization performance on system
control while also concurrently attaining the important time-
synchronized properties simultaneously of each backstepping
subsystem, optimized backstepping is utilized that considers
the learning-based method with ADP and NNs approxi-
mation to solve the HJB equation with iterations. In each
backstepping subsystem, control is decomposed into the
nonlinear control law and NN-based unknown part to be
optimized via iterative learning. With this decomposition,
the learning part of reinforcement learning is transformed
to adaptively explore the optimal control parameter in the
admissible policy region. By designing the specific form
of the control law with the norm-normalized sign function
into the learning framework, the system preserves special
properties of time-synchronized stability and control while
optimizing the overall system control. The proposed method
is applied to the vehicle platoon problem, which has verified
the effectiveness of the optimization and constrained control
with the time-synchronized property.

Notation: R and Rn are the set of real numbers and the n
dimensional Euclidean space, respectively. ∥ · ∥ denotes the
vector norm or matrix norm in Rn. diag(x1, x2, ..., xn) is a
diagonal matrix with diagonal elements x1, x2,..., xn. x ≺ y
denotes that vector y is element-wisely greater and no less
than the vector x, respectively.

II. SYNCHRONIZED OPTIMIZATION WITH PRESCRIBED
PERFORMANCE

Consider the strict-feedback system with the following
form as {

ẋi = fi(x̄i) + gi(x̄i)xi+1,

ẋn = fn(x̄n) + gn(x̄n)u,
(1)

where x̄i = (x1, x2, ..., xi), xi ∈ Rm denotes the system
state-variable, u ∈ Rm is the control input.

Assumption 1: [14] The system dynamics fi(x̄i) ∈ Rm

and gi(x̄i) ∈ Rm×m are second-order differentiable. gi(x̄i)
satisfy det(gi(x̄i)) ̸= 0.
Let the reference signal yd(t) be a sufficiently smooth
function. Define the tracking error for the first backstep-
ping step as z1 = x1 − yd. The control objective is to
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Fig. 1. The diagram of the proposed algorithm

design the synchronized optimization for the strict-feedback
system with prescribed performance, such that the control
law in each backstepping subsystem is optimized under
the reinforcement learning framework with the preserved
time-synchronized property. The diagram of the proposed
algorithm is shown in Fig.1.

A. Prescribed performance state transformation

With consideration of the prescribed performance, system
control is designed to ensure the constraints on state-variable
z1(t) as

ηρ(t) ≤ z1(t) ≤ ηρ(t) (2)

where η, η are positive constants, ρ(t) is a time-varying
strictly decreasing and positive function.

In order to achieve the prescribed performance, the con-
straint in (2) is then transformed as unconstrained control,
in which s̃(t) is the transformed error

s̃(t) = Φ−1(z1(t)/ρ(t)) (3)

where Φ−1(·) is the inverse function of Φ(·), and Φ(·)
is smooth, strictly increasing, denoted as Φ for clarifica-
tion. Design the transformation function with the following
form [15]

Φ(s̃(t)) =
ηes̃(t) − ηe−s̃(t)

es̃(t) + e−s̃(t)
(4)

Then, (3) is changed into

s̃(t) = Φ−1

(
z1(t)

ρ(t)

)
=

1

2
ln
η +Φ

η − Φ
(5)

Further, reformat the error signal as

s(t) = s̃(t)− 1

2
ln(η/η)− ϱ(s̃(t)) (6)

where 1
2 ln(η/η) is used to keep that s(t) ∈[

− 1
2 ln(η/η),

1
2 ln(η/η)

]
, ϱ(s̃(t) is used to relax the
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limitation of nonzero initial of ṡ(0) and s̈(0), which can be
expressed as [16]

ϱ(s(t)) = (ṡ(0)t+
1

2
s̈(0)t2)e−t2 (7)

B. Time-synchronized Optimization Design

Synchronized optimization is formulated with the prelim-
inaries of the well-defined FTSS/TSS with norm-normalized
sign function from the earlier work in [6], [11]. The learn-
ing mechanism of synchronized optimization is constructed
with the optimized backstepping and the time-synchronized
control methods, which will be stated in the following.

Step 1: The time derivative of error dynamics of s(t)

ṡ(t) = ˙̃s− ϱ̇(s̃)

=ϖ

(
ż1 −

ρ̇(t)z1
ρ(t)

)
− ϱ̇(s̃)

=ϖ

(
f1(x̄1) + g1(x̄1)x2 − ẏd −

ρ̇(t)z1
ρ(t)

)
− ϱ̇(s̃)

=fs(x̄1) + gs(x̄1)x2

(8)

where fs(x̄1) = ϖ(f1(x̄1) − ẏd − (ρ̇(t)z1)/ρ(t)) − ϱ̇(s̃),
gs(x̄1) = ϖg1(x̄1), ϖ = 1

2ρ(t)

(
1

Φ+η − 1
Φ−η

)
.

To formulate the optimization problem in subsystem s with
the optimized virtual control α∗

1, design optimal cost function
as

J∗(s) =

∫ ∞

t

(sTKss+ α∗T
1 Kα1

α∗
1)dτ, (9)

where Ks = diag(ks1 , ks2 , ..., ksm) and Kα1
=

diag(kα11
, kα12

, ..., kα1m
) are positive definite matrices.

The optimal gradient term of cost function J∗(s) and the
optimal virtual control α∗

1 can be obtained by solving the
HJB function [17], which can be expressed as

H

(
s, α∗

1,
∂J∗(s)

∂s

)
= sTKss+ α∗T

1 Kα1α
∗
1

+
∂J∗(s)

∂s

T(
fs(x̄1) + gs(x̄1)α

∗
1

) (10)

For simplification, denote J∗
s ≜ ∂J∗(s)/∂s ∈ Rm,

H
(
s, α∗

1, J
∗
s

)
≜ Hs. The unique solution of Hs = 0 can

be obtained by calculating ∂Hs/∂α
∗
1 = 0, which means the

optimal gradient term of cost function J∗
s and the optimal

virtual control α∗
1 satisfies

α∗
1 = −1

2
K−1

α1
gTs (x̄1)J

∗
s . (11)

Following the time-synchronized control methodology, the
estimation of the optimized fixed time-synchronized control
(TSC) virtual control law can be expressed as

α̂∗
1 = g−1

s (x̄1)(−fs(x̄1)− σs − ĥa1
) (12)

where σs ∈ Rm is a switching variable that contains Ms and
is triggered by s to avoid the singularity problem. ĥa1 is the

unknown learning part to be iterated. Ms, σs and ĥa1
are

designed as

Ms = κ11sig
p1
n (s) + κ12sig

p2
n (s) , (13)

σs =

{
Ms if ∥s∥ > ε,
γ1s+ γ2sig

4
n(s), if ∥s∥ ≤ ε,

(14)

ĥa1 = b̂a1 sig
p1
n (s) (15)

where κ11, κ12 are positive constants, p1, p2 are defined as
p1 = p∗11/p

∗
12 > 1, 0 < p2 = p∗21/p

∗
22 < 1, with positive odd

integers p∗11, p∗12, p∗21, p∗22, ε is a small positive constant, ĥa1

is designed specifically to preserve the time-synchronized
property, which contains the learnable control parameter b̂a1

that is defined as the output of Actor NNs. The forms of γ1
and γ2 are designed to ensure the continuity of the switching
algorithm on σs and σ̇s. The detailed forms can be found
in [6], [11], which are omitted here.

Remark 1: The decomposed form with the nonlinear
design method for the design of the optimized control α̂∗

1

in (12) can naturally provide the required admissible appro-
priate initial policy as well as suitable learning region [14],
[17], [18], which enables the policy is TSC during the whole
learning period [6], [11].

Correspondingly, with (11), the estimation of optimal
gradient term of value function J∗

s yields

Ĵ∗
s =2G−1

s

(
fs(x̄1) + σs + ĥc1

)
(16)

where Gs = gs(x̄1)K
−1
α1
gTs (x̄1), ĥc1 = b̂c1 sig

p1
n (s) ∈ Rm

is the independent of the learning part ĥa1 in (12). b̂c1 is
the learnable control parameter that is output by Critic NNs.
Substituting (12) and (16) into (10), the estimation of Hs

can be represented as

Ĥs = sTKss+ α̂∗T
1 Kα1

α̂∗
1 + Ĵ∗T

s

(
− σs − ĥa1

)
(17)

The learning objective for subsystem s is to optimize the
learning parts ĥa1 and ĥc1 and constrained the parameters
b̂a1 and b̂c1 in a specific range enabling to iteratively find
the approximated solution of the optimal system control. The
constraints on the learnable region of parameters b̂a1

and b̂c1
will be analyzed with the Lyapunov synthesis.

Remark 2: For the reason there is no explicit control law
regarding the unique solution of the nonlinear HJB function
with the nonlinear model, the iteration-based method is
required to approximate the numerical solution with NNs.
The decomposed design enables the ultimate control to
satisfy some predefined characteristic, e.g. safe and time-
synchronized, which does not influence the relationship be-
tween the optimal control policy and the optimal gradient
term of the cost function. The approximation ĥa and ĥc
represent the residual unknown parts between the expected
optimized system control and the classic fixed TSC law. The
learning part ĥa and ĥc with the specific form preserve the
time-synchronized property during the learning process.

Step i (i = 2, 3, ..., n − 1): Define the tracking error for
subsystem zi as zi = xi−αi−1. The time derivative of error
dynamics of zi is

żi = fi(x̄i) + gi(x̄i)xi+1 − α̇i−1 (18)
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Formulate the optimization problem in subsystem zi with the
optimized virtual control α∗

i , define optimal cost function as

J∗(zi) =

∫ ∞

t

(zTi Kzizi + α∗T
i Kαi

α∗
i )dτ, (19)

where Kzi = diag(kzi1 , kzi2 , ..., kzim) and Kαi
=

diag(kαi1 , kαi2 , ..., kαim) are positive definite matrices.
Following the same way in subsystem z1, the estimation of

the optimized fixed TSC virtual control α̂∗
i and the optimal

gradient term of cost function Ĵ∗
zi in subsystem zi can be

expressed as

α̂∗
i = g−1

i (x̄i)
(
− fi(x̄i)− σzi − ĥai

− ζi + ˙̂αi−1

)
(20)

Ĵ∗
zi =2G−1

zi

(
fi(x̄i) + σzi + ĥci + ζi − ˙̂αi−1

)
(21)

where the switching variable σzi , Mzi (that is included in
σzi and includes control parameters κi1 and κi2), and ĥai

can be designed following the forms defined in (13)-(15) in
the first backstepping step by replacing s with zi. ζi can be
expressed as

ζi =

{
gss i = 2
gi−1zi−1 i = 3, ..., n− 1

(22)

Using (20) and (21) to estimate the corresponding HJB
function H

(
zi, α

∗
i , J

∗
zi

)
as

Ĥ
(
zi, α̂

∗
i , Ĵ

∗
zi

)
= zTi Kzizi + α̂∗T

i Kαi α̂
∗
i + ĴT

zi

×
(
− σzi − ĥai − ζi

) (23)

Step n: Define the tracking error for subsystem zn as zn =
xn − u. The time derivative of error dynamics of zn is

żn = fn(x̄n) + gn(x̄n)u− α̇n−1 (24)

To formulate the optimization problem in subsystem zn with
the optimized system control u∗, design optimal cost function
as

J∗(zn) =

∫ ∞

t

(zTnKznzn + u∗TKuu
∗)dτ, (25)

where Kzn = diag(kzn1
, kzn2

, ..., kznm
) and Ku =

diag(ku1
, ku2

, ..., kum
) are positive definite matrices.

Following the same way in the previous subsystems, the
estimation of the optimized fixed TSC system control û∗

and the optimal gradient term of cost function Ĵ∗
zn in the

subsystem zn can be expressed as

û∗ = g−1
n (x̄n)

(
− fn(x̄n)− σzn − ĥan

− gn−1zn−1 + ˙̂αn−1

)
(26)

Ĵ∗
zn =2G−1

zn

(
fn(x̄n) + σzn + ĥcn + gn−1zn−1 − ˙̂αn−1

)
(27)

where the switching variable σzn , Mzn (that is included in
σzn and includes control parameters κn1 and κn2), and ĥan

can be designed following the forms defined in (13)-(15) in
the first backstepping step by replacing s with zn.

Using (26) and (27) to estimate the corresponding HJB
function H

(
zn, u

∗, J∗
zn

)
as

Ĥ
(
zn, û

∗, Ĵ∗
zn

)
= zTnKznzn + û∗TKuû

∗ + Ĵ∗T
zn

×
(
− σzn − ĥan − gn−1zn−1

) (28)

The learning objective for subsystem z2 to zn is similar to
subsystem s, the learning parts ĥai and ĥci (i = 2, .., n) are
optimized and the parameters b̂ai and b̂ci are constrained
in a specific range to find the approximated solution of
the optimal system control. The constraints on the learnable
region of parameters b̂ai

and b̂ci will be analyzed with the
Lyapunov synthesis.

C. Reinforcement Learning Algorithm Design

In this section, the iterative algorithm that contains policy
evaluation and policy improvement procedures is designed
to realize the learning objective, which optimizes the overall
system control with attained FTSS property. The procedure
of the iterative algorithm is established under the actor-
critic framework as shown in Fig.1. To realize this process
that solves the rather complicated HJB equation in each
backstepping step, the evaluation signals are defined with
RL methodology and utilized for policy improvement. The
residual signals are defined as follows for policy evaluation,
and we take the subsystem s for example

ẽĤs
:= Ĥs −Hs, (29)

ẽα̂∗
1
:= α̂∗

1 +
1

2
K−1

α1
gTs (x̄1)Ĵ

∗
s , (30)

The updating step can be described as updating the esti-
mation of the optimal gradient term Ĵ∗

s towards the HJB
equation, then updating the estimation of the optimized
policy α̂∗

1 towards the extremum point of HJB equation.
Rewrite the residual error ẽĤs

in vector form as ẽĤs
=

[ẽĤs1
, ..., ẽĤsm

]T to consider possible different calcula-
tion ranges of each element, in which the i-th element
ẽĤsi

= ksis
2
i + kα1i

α̂∗2
1i + Ĵ∗

si(−σsi − ĥa1i
), and σs =

[σs1, σs2, ..., σsm]T , ĥa1 = [ĥa11 , ĥa12 , ..., ĥa1m ]T . The con-
straints on the b̂a1

and b̂c1 satisfy

Φa1 ≜ {b̂a1 ∈ R | ψj(b̂a1) ≤ 0, j = 1, 2}, (31)

Φc1 ≜ {b̂c1 ∈ R | χj(b̂c1) ≤ 0 , j = 1, 2} , (32)

where ψj(b̂a1
) is the j-th element in ψ(b̂a1

) and χj(b̂c1)
is the j-th element in χ(b̂c1). Denote M1,min :=
κ1,mins

T sigp1
n (s) + κ2,mins

T sigp2
n (s) and M1,max :=

κ1,maxs
T sigp1

n (s) + κ2,maxs
T sigp2

n (s) with appropriate con-
stants κ1,min > 0, κ2,min > 0, κ1,max > 0, κ2,max > 0.

ψ(b̂a1) =

[
−Ms − ĥa1

+M1,min

Ms + ĥa1
−M1,max

]
, (33)

χ(b̂c1) =

[
−Ms − ĥc1 +M1,min

Ms + ĥc1 −M1,max

]
, (34)

The error signals for the updating of b̂a1
in the estimation

of optimal system control input α̂∗
1 and b̂c1 in estimation of

3570



optimal gradient term Ĵ∗
s are designed as

eb̂c1
= Proj(−γc1Γc1 ẽĤs

) (35)

eb̂a1
= Proj(−Θa1

Ẽa1
) (36)

where

Γc1 =

[
∂ẽĤs1

∂b̂c1
, ...,

∂ẽĤsm

∂b̂c1

]
∈ R1×m,Θa1 = [γc1 , γa1 ],

γ{c1,a1} ∈ R+, Ẽa1 = [ΓT
c1 ẽĤs

, ẽb1 ]
T ∈ R2×1, ẽb1 = b̂a1 − b̂c1 ,

The updating equation with the consideration of constraints
is designed with the gradient projection method [14], which
is used to confine all elements of the learning part vector to
be inside the constraint sets Φc1 and Φa1

. If some updating
direction of the learning part vectors are going to be outside
the constraint sets Φc1 and Φa1

, these elements are bounded
by the projection operator after updating. If the elements of
the updating direction of the learning part vectors are inside
the constraint sets Φc1 and Φa1

, these elements will maintain
their value.

The property of the iterative algorithm can be stated in the
following main result.

Theorem 1: Consider the strict-feedback system gov-
erned by (1), the prescribed performance is satisfied with
state transformation, then design and approximate the op-
timal system control inputs with the TSC law form as (12)
in the first backstepping step, as (20) in zi(i = 2, ..., n− 1)
backstpping step and as (26) in zn backstepping step, and
approximate the optimal value of the term J∗

s as (16) in
z1 subsystem, J∗

zi as (21) in zi subsystem, J∗
zn as (27) in

zn subsystem. With the same design method of updating the
equation on the unknown part shown in (35)-(36), the error
signals for each backstepping step can be designed as

eb̂ci
= Proj(−γciΓci ẽĤ(·)

) (37)

eb̂ai
= Proj(−Θai

Ẽai
) (38)

with γci , Γci , Θai , Ẽai that follows the design method in the
first backstepping step, ẽĤ(·)

is ẽĤs
or ẽĤzi

. The estimation
of the optimal system control input and the associated
gradient term of the cost function in each subsystem can
eventually satisfy Bellman optimality via learning iteratively.
The closed-loop system is FTSS, and the time-synchronized
optimized control performance can be guaranteed.

Proof: The main parts of proofing will be stated as
follows: Firstly, consider the Lyapunov function candidate
Vz = 1

2s
T s + 1

2

∑n
i=2 z

T
i zi = Vs +

∑n
i=2 Vzi . We prove

that the state-variables s and zi converge in fixed time and
synchronously. Calculating the time derivative of Vz and
substituting the control laws in all the subsystems

V̇z = sT
(
− σs − ĥa1 + gsz2

)
+ zT2

(
− σz2 − ĥa2

− gss

+ g2z3
)
+

n−1∑
i=3

zTi
(
− σzi − ĥai

− gi−1zi−1 + gizi+1

)
+ zTn

(
− σzn − ĥan

− gn−1zn−1

)

= sT
(
− σs − ĥa1

)
+

n∑
i=2

zTi
(
− σzi − ĥai

)
= −2

1+p1
2 (κ11 + b̂a1

)V
1+p1

2
s − 2

1+p2
2 κ12V

1+p2
2

s

+

n∑
i=2

(
− 2

1+p1
2 (κi1 + b̂ai)V

1+p1
2

zi − 2
1+p2

2 κi2V
1+p2

2
zi

)
With this development, the convergence of state-variables
and the finite setting time are therefore guaranteed.
The (37) and (38) are derived with the subsequent learning
procedures of policy evaluation and policy improvement
under the generalized policy iteration frame. The overall
system control is optimized by obtaining the solution of the
HJB function at each subsystem, which means the defined
policy evaluation signals are expected to ẽĤs

, ẽĤzi
→ 0

and ẽα̂∗
i
, ẽû∗ → 0. The policy improvement updates the

estimation of the optimal gradient term Ĵ∗
s , Ĵ∗

zi that pushes
the estimation Ĥs → Hs = 0, Ĥzi → Hzi = 0; and the
updating step on the estimation of the optimized control α̂∗

i ,
û∗ towards/holds as the extremum point of current residual
error ẽĤs

= 0 and ẽĤzi
= 0, subsequently. Take subsystem

s for example, ẽα̂∗
1

can be calculated as

ẽα̂∗
1
=
ĥa1

− ĥc1
gs(x̄1)

=
b̂a1

− b̂c1
gs(x̄1)

sigp1
n (s) (39)

Design Lyapunov function candidates Vc and Va that are
equivalent to ẽĤs

= 0, ẽĤzi
= 0 and ẽα̂∗

1
= 0, ẽû∗ = 0,

which can be expressed as the following form

Vo = Vc + Va, (40)

where

Vc =
1

2
ẽT
Ĥs
ẽ
Ĥs

+

n∑
i=2

1

2
ẽT
Ĥzi

ẽ
Ĥzi

, (41)

Va =

n∑
i=1

1

2

(
b̂ai

− b̂ci

)2
. (42)

The time derivative of Vc and Va with (37) and (38) is

V̇c = ẽT
Ĥs

Γc1eb̂c1
+

n∑
i=2

ẽT
Ĥzi

Γcieb̂ci
≤ −γc1 ẽTĤs

Γc1Γ
T
c1 ẽĤs

−
n∑

i=2

γci ẽ
T
Ĥzi

ΓciΓ
T
ci ẽĤzi

≤ 0 (43)

V̇a =

n∑
i=1

(
∂Va

∂b̂ai

eb̂ai
+
∂Va

∂b̂ci
eb̂ci

)
=

n∑
i=1

∂Va

∂b̂ai

(
eb̂ai

− eb̂ci

)
≤− γai

n∑
i=1

(
b̂ai − b̂ci

)2
≤ 0 (44)

With this, and with the gradient projection method, the
closed-loop system is FTSS, and the time-synchronized opti-
mized control performance can be guaranteed. The required
proof is thus completed.
Following is a pertinent remark related to the proof above:

Remark 3: The settings of κi1,min, κi2,min, κi1,max,
κi2,max in Mi,min Mi,max decide the range of the learning
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parts b̂ai
and b̂ci , which finally influence the property of op-

timization and convergence with the designed system control.
The constraint sets on b̂ai , b̂ci ensure that the control stays
in the admissible policy region that satisfies

−DZ,1 ≤ V̇z ≤ DZ,2

where DZ,1 and DZ,2 are designed boundaries when κi1 and
κi2 are set as the min and max values, respectively. Thus the
work here has the outcome of time-synchronized convergence
which surpasses the usual typical developments in this class
of problems considered.

III. SIMULATION

In this section, the autonomous vehicle control problem
is considered to verify the effectiveness of the proposed
synchronized optimization algorithm. The dynamics of each
vehicle i-th in the platoon as the following form [19]

ṗi = vi, v̇i = ai, ȧi = −1/τiai + ui, (45)

where pi, vi and ai denote the position, velocity and ac-
celeration of i-th vehicle, respectively; τi denotes the time
constant parameter; ui is the control input of the vehicle i.

Design yd,i = pi−1 − ds,i. ds,i is the expected spacing
of the vehicles. The initial positions are set as -1m, -
13m, -25m, -36m, -46m, and -56m, respectively. The initial
velocities are 10 m/s, and the initial accelerations are zero. In
the time-synchronized control (TSC) and time-synchronized
optimization control (TSOC), control parameters are set as
the same: κ11=10, κ21=5, κ31=5, κ12=2, κ22=2, κ32=2,
p1 = 1.1, p2 = 0.65. In TSOC, the k1s, k2s, k3s increase
with 0.01 from 1 to 10 at each 0.01s time-step. k1c, k2c, k3c
decrease with 0.01 from 3 to 0.1 at each 0.01s time-step.
The parameters γc = 0.018 and γa = 0.01. The control
performance of the TSC and TSOC are compared as shown
in Fig. 2. The trajectories of state-variables z1, z2 and z3
are shown in Figs. 2 (a)-(e), (f)-(g) and (h)-(i), respectively.
As shown in Figs. 2 (a)-(e), the state-variables s1 to s5
are constrained within the prescribed region. The control
performance is better with the proposed time-synchronized
optimization control with less fluctuation and control inputs.
Time-synchronized optimization control can optimize the
system control in a manner that each state-variable element
converges and arrives at the origin synchronously in each
backstepping step, which satisfies the requirement of high-
precision control problems.

IV. CONCLUSION

Based on the methodology of time-synchronized opti-
mized control, this paper has proposed and investigated
synchronized optimization with prescribed performance for
the strict-feedback system. To effectively achieve such high-
performance control, prescribed performance control and
optimized backstepping, and adaptive dynamic programming
are utilized to establish the learning framework thein the
norm-normalized sign function is appropriately incorporated
in each backstepping subsystem. With the decomposition

Fig. 2. Comparison of the trajectories of the state-variables z1, z2, and
z3 with TSC and TSOC.

design, the learning objective can be transformed to adap-
tively explore the optimal control parameter in the admissible
policy region, which is analyzed via Lyapunov synthesis. The
effectiveness of the proposed method has been verified with
the vehicle platoon problem. The results show that the overall
system control is optimized and prescribed performance is
ensured while attaining special time-synchronized properties
during the learning process. In the future, we will apply
this method to more complex and abundant synchronized
optimization problems among various types of unmanned
vehicle systems.
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