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Abstract— This paper presents an extended null-space-based
behavioral algorithm for the formation control of fleets of un-
deractuated autonomous underwater vehicles. The null-space-
based controller is developed to work directly with second-
order integrator systems, handling their dynamics in task space.
The method is applied to the formation-path-following problem
of a fleet of underactuated autonomous underwater vehicles.
The nonlinear six-degrees-of-freedom model of the vehicle is
transformed into a second-order integrator system using the
3D hand position output linearizing controller. The behavioral
controller implements a hierarchy of path-following, formation-
keeping, and collision-avoidance tasks. The closed-loop system
is proven uniformly globally asymptotically stable, and the
proposed method is validated through numerical simulations.

I. INTRODUCTION

Cooperating autonomous underwater vehicles (AUVs)
have become an important area of research due to their
potential for performing tasks that are difficult or impossible
for a single AUV to accomplish. Cooperation among AUVs
can increase mission efficiency, enable the exploration of
larger areas, and provide redundancy in case of system
failures.

In many applications, it is desirable for a fleet of AUVs to
move in formation while following a desired path. Formation
path following can be achieved using a variety of control
strategies. These include leader-follower approaches, where
one AUV acts as a leader and the others follow its tra-
jectory [1]–[3]. Coordinated path-following approaches use
distributed control methods to achieve formation control, of-
ten based on consensus algorithms [4]–[6], while behavioral
approaches focus on defining the behaviors each AUV should
exhibit in order to achieve a desired formation [7], [8]. A
comprehensive view of these strategies is provided in [9].

The null-space-based behavioral (NSB) approach is a
popular centralized method for formation path following that
has been extensively studied in the literature [10]–[14]. This
strategy enables complex missions through a hierarchy that
combines several simpler tasks with strict priority. In [10],
a comprehensive motivation is given for the decomposition
of complex path-planning and coordination in multi-agent
systems into two blocks: NSB and maneuvering. The NSB
block takes into account the parameters of the mission, the
environment, and the state of the fleet to calculate the desired
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velocities for each vehicle. The desired velocities are then
tracked by the maneuvering controls.

The NSB algorithm, as presented in the existing literature,
is developed for single-integrator systems [10]–[12]. Herein,
we extend the NSB method to vehicles with double-integrator
dynamics and propose an algorithm that uses the second-
order closed-loop inverse kinematics (SOCLIK) equation to
control the task variables through desired acceleration. The
procedure is inspired by robotic manipulators, where second-
order methods are more common, due to the inherent second-
order dynamics of mechanical systems [15], [16]. Although
existing NSB methods are developed for first-order systems,
AUV dynamics are inherently second-order. Therefore, any
first-order solution is necessarily perturbed by the dynamics
of the maneuvering controller. In contrast, our formulation
handles the second-order dynamics directly in the task space
as interpretable spring-damper systems.

We apply the proposed NSB method to a fleet of AUVs.
AUVs are underactuated systems with inherently nonlinear
dynamics. What enables us to still use the proposed NSB
method, developed for vehicles with linear double integrator
dynamics, is the use of the hand position input-output
linearization method, [17]–[20], for maneuvering control.
Specifically, we apply the 3D hand position method proposed
in [20], which transforms the underactuated six-degrees-
of-freedom AUV model into a double-integrator system.
Subsequently, through the design of specific path-following,
formation-keeping, and collision-avoidance tasks, the fleet
is controlled to follow a preplanned path in formation while
avoiding collisions both within the fleet and with external
obstacles. The stability of the system is proved, and its effec-
tiveness is verified in simulations. Because our reformulated
NSB method works directly with the second-order system
given by the hand position controller, there is no need to
transform desired velocities or accelerations into surge and
orientation references, as has been done in previous works.
This reduces one level of complexity in the controller design.

The paper is organized as follows. Section II presents
the extended NSB algorithm which is applicable for general
double-integrator systems. Section III presents a case study
of this NSB algorithm applied to a fleet of AUVs. Section
IV presents conclusions and future work.

II. THE NSB ALGORITHM FOR DOUBLE INTEGRATORS

The NSB method enables the creation of multiple tasks in
a hierarchical manner, ensuring that low-priority tasks do not
interfere with high-priority ones. In this section, we extend
this method to second-order systems. This modified NSB
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algorithm provides the acceleration input µ to the following
double-integrator system

ṗ = v, (1a)
v̇ = µ. (1b)

In the NSB algorithm, the control goals are expressed as
a series of tasks. Each task is defined using a task variable
σi ∈ Rmi , as a function of p

σi = fi(p). (2)

The first and second time-derivatives of σi are

σ̇i = Jiv, (3a)

σ̈i = Jiv̇ + J̇iv, (3b)

where Ji = ∂fi/∂p is the task Jacobian.

Let σ̈∗i be the desired behavior of the task. Then, the
smallest control input (in terms of Euclidean norm) that
achieves this behavior is given by

v̇i = J†i

(
σ̈∗i − J̇iv

)
, (4)

where J†i is the pseudoinverse of Ji.

Now, let us consider a case when the task variable should
track some predefined desired value σd,i. In the standard
NSB algorithm, which was developed for single-integrator
systems

ṗ = v, (5)

the control input vi for tracking the desired value is obtained
through the so-called closed-loop inverse kinematics (CLIK)
equation [21]

vi = J†i σ̇
∗
i , σ̇∗i = σ̇d,i −Λiσ̃i, (6)

where σ̃i = σi − σd,i, and Λi is a positive definite gain
matrix.

In second-order differential control, we propose a sim-
ilar second-order closed-loop inverse kinematics (SOCLIK)
equation inspired by robotic manipulators [22]. The SOCLIK
solution for tracking a desired value is given by

σ̈∗i = σ̈d,i −Λp,iσ̃i −Λd,i
˙̃σi, (7)

where ˙̃σi = σ̇i−σ̇d,i, and Λp,i and Λd,i are positive definite
gain matrices.

In the standard NSB algorithm, there exists a subspace of
velocities that do not conflict with a given task. Similarly,
in second-order systems, there exists a subspace of non-
conflicting accelerations. If we denote v̇1 as the SOCLIK
solution to the highest priority task, there exists an acceler-
ation v̇NSB that also satisfies this task:

v̇NSB = v̇1 + N1v̇2, (8)

where N1 = I− J†1J1 is the null space projector of task 1,
and v̇2 is some additional desired acceleration resulting from
other tasks. The relation can be generalized to obtain a

solution for N tasks:

v̇NSB =

N∑
i=1

N̄iv̇i, (9)

where N̄i is the null space projector of the augmented
Jacobian of all higher priority tasks J̄i = [JT

1 . . .J
T
i−1]T.

With this choice of acceleration, the highest priority task is
always fulfilled, whereas the lower priority tasks are fulfilled
as well as possible in the subspace that does not conflict with
the higher-priority tasks. The commanded acceleration µ is
then given by the NSB acceleration

µ = v̇NSB . (10)

A. Stability Analysis

In this section, we investigate the stability of an NSB
algorithm consisting of two tasks. The proof is based on
[23], but extended to a double integrator system. First, let us
present the concepts of task independence and orthogonality.

Definition 1: Let J1 and J2 denote the Jacobians of tasks
1 and 2. These two tasks are orthogonal if

J1J
†
2 = O, (11)

where O is a matrix of zeros. The tasks are independent if

ρ
(
JT
1

)
+ ρ

(
JT
2

)
= ρ

([
JT
1 JT

2

])
, (12)

where ρ(·) is the rank of the matrix.
Theorem 1: Consider two independent and orthogonal

tasks 1 and 2. Let X̃T =
[
σ̃T
1 , σ̃

T
2 , ˙̃σT

1 , ˙̃σT
2

]
denote the

stacked error vector.
The control input defined in (8) ensures that X̃ = 0 is a

globally exponentially stable equilibrium point.
Proof: First, let us find the closed-loop expressions for

¨̃σ1 and ¨̃σ2, from (3b), (8), and (10):

¨̃σ1 = J1v̇1 + J1N1v̇2 + J̇1v − σ̈d,1, (13a)
¨̃σ2 = J2v̇1 + J2N1v̇2 + J̇2v − σ̈d,2, (13b)

Note that thanks to the independence and orthogonality
assumptions, it follows that J2N1J

†
2 = I. Consequently,

substituting (4) into (13) and using (3), the time-derivative
of X̃ is given by

˙̃X = MX̃, (14)

where

M =


O O I O
O O O I
−Λp,1 O −Λd,1 O

O −Λp,2 O −Λd,2

 . (15)

Since the gain matrices are positive definite by design, the
matrix M is Hurwitz, and the closed-loop system is globally
exponentially stable (GES).

III. CASE STUDY: FORMATION PATH FOLLOWING OF
AUVS

The following sections present a case study of the pro-
posed NSB algorithm applied to a fleet of underactuated
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AUVs equipped with the hand-position-based controller from
[20]. The control objective of the fleet is to follow a prede-
fined path while keeping formation and avoiding obstacles.

The vehicle model under the hand position controller is
presented in Section III-A and the formation path following
problem is formulated in Section III-B. The NSB tasks are
detailed in Section III-C, Section III-D details the obsta-
cle avoidance method, Section III-E analyzes the stability
properites, and Section III-F presents a simulation study.

A. AUV model

We consider a six degree-of-freedom model of an AUV
exposed to an unknown constant irrotational ocean current.
The AUV’s position, attitude, translational and rotational
velocities are denoted by η ∈ R3, R ∈ SO(3), ν ∈ R3, and
ω ∈ R3, respectively. The relative linear velocity between the
AUV and current is νr = ν −RTvc, and the concatenated
velocity vector is ζTr = [νT

r ,ω
T].

The 3D hand position transformation consists of the fol-
lowing change of coordinates

x1 = η + RL, (16a)
x2 = Rνr + R(ω × L), (16b)

where L = [h, 0, 0]
T, and h > 0 is the hand length.

The transformed model of the AUV is then given by

ẋ1 = x2 + vc, (17a)
ẋ2 = µ, (17b)

Ṙ = RS(ω), (17c)

ω̇ = L̄×
(
RTµ+Dν(ζr) + Cν(ζr)−ω ×RTx2

)
−
(
L̄L

T
) (
Dω(ζr)+M′

22(Wzgbe3×RTe3)
)
,

(17d)

where µ is the transformed control input. The definitions
of the vectors and matrices L, L̄, M′

22 , zgb, e3, Dν , Dω
and Cν are given in [20].

Note that through the 3D hand position concept, the
underactuated and highly nonlinear AUV model is now
transformed to an input-output feedback linearized form,
where the external part of the system, x1 and x2, denotes the
hand position and velocity of the vehicle, while the internal
part of the system is given by R and ω.

B. Formation Path Following

We consider a fleet of n AUVs following a path in
the inertial coordinate frame given by a smooth function
pp : R 7→ R3, and define the stacked position and velocity
vectors p = [xT

1,1, . . . , xT
1,n]T and v = [xT

2,1, . . . , xT
2,n]T,

respectively. We also define the stacked ocean current vector
Vc = 1n,1 ⊗ vc, where 1n,1 is an n-dimensional vector
of ones, and ⊗ is the Kronecker product. We will in the
following denote the position of a single AUV by pi := x1,i

and its velocity relative to the ocean current by vi := x2,i.
The path function is assumed to be C∞ and regular,

meaning that the function is continuously differentiable and
the partial derivative with respect to ξ satisfies

∥∥∥∂pp(ξ)
∂ξ

∥∥∥ 6= 0.

y

x

z

xpRp

yp

zp

pp(ξ) ≡ Op

O

Fig. 1. Definition of the path angles and path-tangential coordinate frame.
O denotes the origin of the inertial coordinate frame, Op denotes the origin
of the path-tangential frame.

For every point pp(ξ), there exists a path-tangential
coordinate-frame with a corresponding rotation matrix Rp

(see Fig. 1). The path-following error ppb is defined in terms
of the barycenter of the fleet in the path-tangential coordinate
frame:

ppb = RT
p (pb − pp(ξ)) , pb =

1

n

n∑
i=1

pi. (18)

The formation is defined in the formation-centered coor-
dinate frame, centered at pb with the same orientation as the
path-tangential frame (see Fig. 2). The position of vehicle i
in the formation-centered frame is given by

pfi = RT
p (pi − pb) , (19)

and the desired positions are given by pff,1, . . . ,p
f
f,n.

C. NSB Controller

We let the control system consist of three tasks in decreas-
ing order of priority: inter-vehicle collision avoidance, for-
mation keeping, and path following. The following sections
will detail the chosen task variables and SOCLIK solution
for each task.

1) Inter-vehicle collision avoidance: The highest-priority
task is inter-vehicle collision avoidance (COLAV). This
task is active only when two vehicles are closer than an
activation distance dCOLAV . The task variable is given by
a stacked vector σ1 = [σT

1,1, . . . , σ
T
1,l]

T of relative distances
between vehicles closer than the activation distance:

σ1,k = ‖pi − pj‖, ∀i, j ∈ 1, . . . , n : j > i,

‖pi − pj‖ < dCOLAV .
(20)

pp(ξ)

ppb ≡ Of

pff,1

pff,2

pff,n

p1

p2

pn

Fig. 2. Definition of the formation. Of denotes the origin of the formation-
centered coordinate frame.
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The dimension of σ1 varies depending on the number of
vehicles that are within the activation distance, and it is
empty if there is no risk of collision. The desired values of
the task are given by

σd,1 = dCOLAV 1l, (21)

which ensures that the vehicles recover the safe distance
dCOLAV whenever the threshold is violated. We note that
σ̈d,1 = σ̇d,1 = 0.

The task Jacobian is given by the stacked partial deriva-
tives for each active collision

J1 =

[(
∂σ1,1
∂p

)T

, . . . ,

(
∂σ1,l
∂p

)T
]T

, (22a)

∂σ1,k
∂pi

=
(pi − pj)

T

‖pi − pj‖
,
∂σ1,k
∂pj

= − (pi − pj)
T

‖pi − pj‖
. (22b)

The resulting SOCLIK equation for the task is

v̇1 = −J†1
(
Λp,1σ̃1 + Λd,1σ̇1 + J̇1(v + Vc)

)
, (23)

with σ̇1= J1(v+Vc). Note that due to the structure of the
task Jacobian, it follows that J1Vc = J̇1Vc = 0. Conse-
quently, v̇1 is independent of the ocean current velocity.

2) Formation-Keeping Task: The formation-keeping
task moves the vehicles into a predefined formation in the
formation-centered frame. The task variable is given by

σ2 =
[
σT
2,1, ...,σ

T
2,n−1

]T
, σ2,i = pi − pb. (24)

The desired values are

σd,2 = [
(
Rpp

f
f,1

)T
, ...,

(
Rpp

f
f,n−1

)T
]T. (25)

There is one fewer task than AUVs to avoid singularities,
as the last AUV’s position is implied by the fact that∑n
i=1 pff,1 = 0. The Jacobian is given by

J2 =

([
In−1 0n−1,1

]
− 1n−1,n

N

)
⊗ I3. (26)

Because J̇2 = 0, the SOCLIK equation reduces to

v̇2 = J†2
(
σ̈d,2 −Λp,2σ̃2 −Λd,2

˙̃σ2

)
. (27)

The nominal task acceleration (27) may saturate the actu-
ators if the formation error is large. The NSB controller may
also lead to a loss of controllability if the formation-keeping
velocities exactly cancel out the path-following velocities.
Therefore, we introduce the saturated task acceleration

v̇2 = J†2
(
σ̈d,2 − v2maxsat

(
Λp,2σ̃2

)
−Λd,2

˙̃σ2

)
, (28)

where v2max is a positive constant and sat is a saturation
function given by

sat
(
x
)

= x
tanh ‖x‖
‖x‖

. (29)

With the saturated task acceleration, we further require that
the product of the gain matrices Λp,2Λd,2 is symmetric
positive definite.

Like the inter-vehicle collision avoidance task, this task is
independent of the ocean current.

3) Path-Following Task: The path following task concerns
moving the barycenter along the predefined path. Moreover,
we want the formation to move at a constant, positive, desired
path-following speed ULOS > 0.

The path-following task variable is given by the barycenter
σ3 = pb, with pb given by (18). The corresponding task
Jacobian and its pseudoinverse are given by

J3 =
1

n
11,n ⊗ I3, J†3 = 1n,1 ⊗ I3. (30)

Inserting the pseudoinverse into (4), the same acceleration
is applied to all vehicles. Furthermore, the Jacobians of
the formation-keeping and path-following tasks satisfy the
definitions of independence and orthogonality (11), (12).

To achieve the path-following task, we define the follow-
ing desired task behavior:

σ̈∗3 = v̇LOS,d + Λp,3(vLOS,d− σ̇3) + Λi,3(pv −σ3), (31)

where vLOS,d is the desired velocity given by the line-of-
sight (LOS) guidance law from [12]. Let xpb , ypb , and zpb be
the components of the path-following error ppb . Then, the
LOS velocity is given by

vLOS,d = Rp [∆(ppb),−y
p
b ,−z

p
b ]

T ULOS
D

. (32)

In addition, we use a virtual integral state pv to eliminate
the tracking error caused by the ocean current

ṗv = vLOS,d. (33)

As we mentioned previously, other tasks are not affected
by the ocean current. Therefore, we only need to counteract
the ocean current in this task.

The term ∆(ppb) is an error-dependent look-ahead distance

∆(ppb) =
√

∆2
0 + (xpb)

2 + (ypb )2 + (zpb )2, (34)

where ∆0 is a positive constant, and

D =
√

∆(·)2 + (ypb )2 + (zpb )2 (35)

is a normalization term.
Lemma 1: Let Λp,3 and Λi,3 be two symmetric positive

definite matrices. The relative barycenter velocity vb con-
verges exponentially to the relative LOS velocity vLOS,d−vc
under the controller (9), (10), with the path-following task-
acceleration given by (31).

Proof: We define the following error variables

p̃ = pb − pv −Λ−1i,3Λp,3vc, (36a)

ṽ = vb − (vLOS,d − vc) , (36b)

which have the following linear dynamics[
˙̃p
˙̃v

]
=

[
0 I
−Λi,3 −Λp,3

] [
p̃
ṽ

]
. (37)

This system is GES, meaning that ṽ exponentially converges
to zero. Consequently, vb converges to vLOS,d − vc.

The desired acceleration for the path-following is then
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given by
v̇3 = J†3σ̈

∗
3 = 1n,1 ⊗ σ̈∗3 . (38)

Like in [12], the update of the path-parameter ξ is used as
an extra degree of freedom to guarantee along-track stability

ξ̇ = ULOS

∥∥∥∥∂pp(ξ)

∂ξ

∥∥∥∥−1
(

∆(ppb)

D
+ kξ

xpb√
1 + (xpb)

2

)
.

(39)
This choice ensures that the desired LOS velocity (32)
guarantees USGES of the path-following task, which we will
rely on in the stability proof presented in Section III-E.

D. Obstacle avoidance

We implement an obstacle avoidance method that enables
the fleet to avoid external obstacles while keeping the forma-
tion. This approach mitigates the issue of vehicles straying
out of communication range while evading obstacles. We
modify the collision cones method from [12] to be compat-
ible with double integrator dynamics and focus on obstacle
avoidance in the xy-plane.

We assume a constant velocity model for the obstacle.
Its position and velocity vectors are denoted by po =
[xo, yo, zo]

T and vo = [ẋo, ẏo, żo]
T. We define an obstacle

avoidance radius ro that is large enough to account for both
the size of the obstacle and the AUV. The formation radius
rf is defined as the maximum distance between any vehicle
in the fleet and the formation center, and it is assumed to be
constant. We further define prel = [xb−xo, yb−yo]T, vrel =
[ẋLOS,d− ẋo, ẏLOS,d− ẏo]T, and v̇rel = [ẍLOS,d, ÿLOS,d]

T.
Note that vrel is defined in terms of the LOS velocity (32),
so, in general, ṗrel 6= vrel.

Collision is avoided if we ensure

‖prel‖ ≥ ro + rf (40)

throughout the avoidance maneuver (see Fig. 3(a)). The
formation is on a collision course (see Fig. 3(b)), if

|∠(−prel,vrel)| ≤ α, α = sin−1
(ro + rf
‖prel‖

)
. (41)

Then the obstacle avoidance task is activated if the fleet is
close enough so that α > αmin. When the task is active, the
x- and y-components of vLOS,d and v̇LOS,d given by (32)
are replaced with vOA,d and v̇OA,d, given by

vOA,d = ‖vrel‖ [cos (ψOA), sin (ψOA)]
T

+[ẋo, ẏo]
T
, (42)

v̇OA,d =
(

d
dt‖vrel‖

)
[cos (ψOA), sin (ψOA)]

T

+‖vrel‖
[
− sin (ψOA)ψ̇OA, cos (ψOA)ψ̇OA

]
T,

(43)

where

ψOA = atan2 (yo − yb, xo − xb)± α, (44)

ψ̇OA =
(xo−xb)(ẏo−ẏb)−(yo − yb)(ẋo−ẋb)

‖prel‖2
± α̇, (45)

α̇ =
ro + rf

‖prel‖2
√
‖prel‖2 − (ro + rf )2

pT
relṗrel, (46)

before entering into (31).

ro

pb

po

rf

p1

p2

pn
‖prel‖

(a) Illustration of the obstacle avoid-
ance constraint (40).

ro + rf

α

pb

po

vrel

(b) Illustration of the conflict con-
dition (41).

Fig. 3. Illustrations of obstacle avoidance.

E. Closed-Loop Analysis

In this section, we analyze the closed-loop stability of the
system’s external states and the boundedness of the internal
states. We assume that the inter-vehicle collision avoidance
task is inactive for the analysis. Since the path-following
and formation-keeping tasks are orthogonal, the null-space
projection N2 from the formation-keeping task will not affect
the path-following acceleration v3. Consequently, the total
acceleration of the vehicles is given by

v̇ = v̇2 + v̇3. (47)

Furthermore, because of the following independence rela-
tions

σ̈2 = J2v̇2 + J2v̇3 = J2v̇2, (48)

v̇b =
1

n

n∑
i=1

(v̇2 + v̇3) =
1

n

n∑
i=1

v̇3, (49)

the closed-loop properties of each task can be analyzed
separately.

1) Stability of the Formation-Keeping Task: The closed-
loop dynamics of the formation-task error σ̃2 under the
saturated formation-keeping acceleration, (28), are given by
the system

¨̃σ2 = −v2maxsat
(
Λp,2σ̃2

)
−Λd,2

˙̃σ2. (50)

Theorem 2: Let Λp,2, Λd,2 be two symmetric positive
definite matrices so that the product Λp,2Λd,2 is symmetric
positive definite. Then,

[
˙̃σT
2 , σ̃

T
2

]T
= 0 is a uniformly

globally asymptotically stable (UGAS) equilibrium of the
closed-loop system (50).

Proof: Consider the Lyapunov function

V (σ̃2, ˙̃σ2)=v2,max log (cosh ‖Λp,2σ̃2‖)

+
1

2
˙̃σT
2 Λp,2

˙̃σ2.
(51)

Inserting for (50), the time-derivative is given by

V̇ = v2,maxsat (Λp,2σ̃2)
T

Λp,2
˙̃σ2

− ˙̃σT
2 Λp,2

(
v2,maxsat (Λp,2σ̃2) + Λd,2

˙̃σ2)
)
,

= − ˙̃σT
2 Λp,2Λd,2

˙̃σ2.

(52)
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Let S = {
[

˙̃σT
2 , σ̃

T
2

]T ∈ R6(n−1)|V̇ = 0}. Because of the
dynamics (50), no other solution can stay identically in S,
other than the trivial solution

[
˙̃σT
2 , σ̃

T
2

]T ≡ 0. Thus, the
origin is globally asymptotically stable according to [24,
Corollary 4.2]. Furthermore, because (50) is time-invariant,
the equilibrium is UGAS.

2) Stability of the Path-Following Task: Let p̃ and ṽ be
given by (36). Using the definition

ppb = RT
p (pb − pp), (53)

we get the following error system

˙̃p = ṽ,

˙̃v = −Λp,3ṽ −Λi,3p̃,
(54a)

ṗpb = f(·) + g(·)ṽ,

= RT
p (vb+vc−ṗp) +

(
S(ωpξ̇)

)T
RT
p (pb − pp),

= RT
p (vLOS,d − ṗp)− S(ωpξ̇)p

p
b + RT

p ṽ.

(54b)

Theorem 3: Let Λp,3, Λi,3 be positive definite matrices.
Then, [p̃T, ṽT, (ppb)

T]T = 0 is a uniformly semiglobally
exponentially stable equilibrium (USGES) of the system
(54a)-(54b).

Proof: Note that the error system is in a cascaded form
where the velocity error ṽ from (54a) perturbs the system
(54b). The dynamics of the perturbing system (54a) are GES
according to Lemma 1. The nominal system (54b) with ṽ =
0 was proved to be USGES in [12] using the Lyapunov
function

V (ppb) =
1

2
(ppb)

T
ppb . (55)

Therefore, according to [25, Proposition 9] the cascaded
system is USGES if the following two assumptions hold

1) There exist constants c1, c2, η > 0 such that∥∥∥∥ ∂V∂ppb

∥∥∥∥ ‖ppb‖ ≤ c1V (ppb), ∀‖ppb‖ ≥ η, (56)∥∥∥∥ ∂V∂ppb

∥∥∥∥ ≤ c2, ∀‖ppb‖ ≤ η. (57)

2) There exist two continuous functions α1, α2 : R≥0 →
R≥0, such that g(·) satisfies

‖g(·)‖ ≤ α1(‖ṽ‖) + α2(‖ṽ‖)‖ppb‖. (58)

Because ‖∂V/∂ppb‖ = ‖ppb‖, 1) holds with c1 = 2, c2 = η
for any η ∈ R≥0.

Equation (58) is satisfied with α1(‖ṽ‖) = 1, α2(‖ṽ‖) = 0,
because ‖g(·)‖ = ‖RT

p ‖ = 1. As a result, all assumptions of
[25, Proposition 9] are satisfied, and the origin of the closed-
loop path-following system (54a)-(54b) is USGES.

3) Boundedness of Internal States: The proofs in this
section are based on [20]. For brevity, we will omit those
derivations that can be directly found in [20].

We note that the only states that can grow unboundedly
are the angular velocities of the vehicles. Let pi, qi, and ri
denote the roll, pitch, and yaw rate of vehicle i (note that
ωT
i = [pi, qi, ri]). Furthermore, let pd,i = pp(ξ) + Rpp

f
f,i

denote the desired position of vehicle i. Note that because
the path function is C∞ and thanks to the choice of the
path parameter update law (39), the time-derivative of pd,i

is bounded.
First, we investigate the roll rate dynamics. In [20], it

is shown that the roll rate dynamics are always bounded.
Specifically, there exist ax, bx > 0 such that

|pi(t)| ≤ |pi(0)| e−axt +
bx
ax

(
1− e−axt

)
. (59)

Now, we investigate the pitch and yaw rate dynamics. The
closed-loop expression for q̇i and ṙi is[
q̇i
ṙi

]
=

[
0 0 − 1

h
0 1

h 0

](
RT
i µi +Dν(ζr,i) + Cν(ζr,i) (60)

− ωi ×RT
i x2,i

)
.

Note that under the NSB control law, the hand velocity x2,i

converges to ṗd,i−vc. Consider then the following Lyapunov
function candidate

Vωi
(qi, ri) =

1

2

(
q2i + r2i

)
. (61)

In [20], it is shown that the following inequality holds for
the time-derivative of Vωi

V̇ωi ≤− ayq2i − azr2i + ‖x2,i‖ ‖[qi, ri]‖
(
‖ωi‖
h

+ ae

)
+ axyzpiqiri + axy ‖x2,i‖ piqi + axz ‖x2,i‖ piri
+ aye ‖x2,i‖ q2i + aze ‖x2,i‖ r2i + aey ‖x2,i‖2 qi
+ aez ‖x2,i‖2 qi + ‖[qi, ri]‖ ‖µi‖ . (62)

Theorem 4: Let us define

p̄ = bx/ax, x̄2 = max
t∈R≥0

‖ṗd,i(t)− vc‖ , (63a)

ᾱy = ay −
(

1

h
x̄2 +

1

2
|axyz p̄|+ |ayex̄2|

)
, (63b)

ᾱz = az −
(

1

h
x̄2 +

1

2
|axyz p̄|+ |azex̄2|

)
. (63c)

The angular rate dynamics are ultimately bounded if
ax, ᾱy, ᾱz > 0.

Proof: Using the identities described in [20], we can
derive the following (looser) upper bound on V̇ωi

V̇ωi
≤ −αyq2i − αzr2i +G (x2,i,ωi,µi) , (64)

where

αy=

(
ay−

(
1

h
‖x2‖+

1

2
|axyz||pi|+ |aye| ‖x2‖

))
, (65a)

αz=

(
az−

(
1

h
‖x2‖+

1

2
|axyz||pi|+ |aze| ‖x2‖

))
, (65b)

and G(·) represents the terms that grow at most linearly
with qi and ri. Note that the two following limits

lim
t→∞

αy ≥ ᾱy, lim
t→∞

αz ≥ ᾱz, (66)

hold for αy and αz . Therefore, if ᾱy, ᾱz > 0, then there
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exists a finite time T after which αy, αz > 0.
First, let us investigate the candidate Lyapunov function

for t < T . Since αy and αz may be negative, we cannot
prove boundedness. However, note that the derivative of the
Lyapunov function in (64) has the following form

V̇ωi
≤ k ‖ω̂i‖2 +G(·), (67)

where ω̂i := [qi, ri]
T, k is a positive constant, and G(·)

grows at most linearly with ‖ω̂i‖. We can therefore conclude
that the dynamics of qi and ri are forward complete [26].

For t ≥ T , V̇ωi
has the following form

V̇ωi
≤ −αyq2i − αzr2i +G(·) (68)

For sufficiently large angular velocities, the quadratic term
will dominate the linear term G(·), and q and r will remain
bounded.

The angular rate dynamics are thus ultimately bounded.

F. Simulation results

To validate the theoretical results, we perform a simulation
where the proposed algorithm is applied to a fleet of three
LAUVs [27]. In the simulated scenario, the vehicles should
follow a continuous, differentiable spiral while avoiding
collision with a stationary cylindrical-shaped obstacle with
radius 10 m, base circle in the xy-plane and origin [x, y] =
[100,−10]. All position variables are here given in meters.
The spiral path is given by

pp(ξ) = pp,0 +
[
ξ,−40 cos( π

100ξ), 20 sin( π
100ξ)

]T
, (69)

where
pp,0 =

[
0,−40, 35

]T
. (70)

The barycenter relative formation is given by

pff,1 =

 0
10
5

 , pff,1 =

 0
−10

5

 , pff,1 =

 0
0
−10

 , (71)

and we want the collision avoidance task to ensure a safe
distance of 10 m both between vehicles in the fleet and
external obstacles. Therefore, the avoidance radius of the
cylinder, ro, is 20 m. The vehicles are subject to an unknown
ocean current

vc =
[
0 0.25 0.05

]T
m/s. (72)

The initial position of the barycenter is pb =
[−5, −100, 18]T and the relative positions are

σ2,1 =

 0
−15
−7

 , σ2,2 =

 0
15
−7

 , σ2,3 =

 0
0
14

 . (73)

The resulting North-East trajectory of the mission is shown
in Figure 5. The vehicles avoid the obstacle with a margin
and return to the desired path. Figure 4(a) shows that the
angular velocities remain bounded, in accordance with The-
orem 4. Figure 4(b) shows that the fleet converges to the de-
sired formation while the obstacle avoidance mode is active.

Except for during the inter-vehicle collision avoidance, the
convergence seems linear, which can be expected because the
task velocity is saturated by v2,max. Figure 4(c) shows that
the inter-vehicle COLAV task activates when the distance
between vehicles is below dCOLAV , and the distance does
not decrease further. Because the obstacle avoidance radius
ro was chosen 10m wider than the obstacle, the obstacle
is avoided with a 10m margin. Figure 4(d) shows that the
path-following error initially increases as the fleet avoids
the obstacle because the x- and y-components of vLOS,d
and v̇LOS,d are replaced with vOA,d and v̇OA,d given by
(42), (43). As expected from Theorem 3, the error converges
to zero after the obstacle is passed when the LOS task is
activated again.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an extended NSB method
for double-integrator systems. The dynamics of the
vehicles are controlled directly in task space such that
the closed-loop behaviors of the tasks can be interpreted
as mass-spring-damper-systems. Consequently, the control
gains can be chosen such that the closed-loop system is
critically damped. The method was proved to render the task
error dynamics globally exponentially stable. The method
was then demonstrated in a case study of formation path
following with underactuated AUVs. We defined the second-
order kinematic tasks for collision avoidance, formation
keeping, and path following. To force a bounded velocity,
we introduced a saturation term to the formation-keeping
acceleration. The closed-loop formation-error system with
the reformulated formation-keeping acceleration was proved
to be UGAS. The closed-loop path-following system was
proved to be USGES. Simulation results demonstrate the
effectiveness of our approach. Possible future work includes
verifying the presented results through experiments.
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