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Abstract— Demand response is expected to play
a fundamental role in providing flexibility for bal-
ancing operations to the grid. On the other hand,
the fast electrification of the transportation sector
calls for new solutions to enforce safe and reliable
grid operation. Here we consider an electric vehicle
charging station that participates in demand response
programs. The demand response program asks for a
change of the charging station load profile in exchange
for a monetary reward. A stochastic receding horizon
scheme that exploits the charging flexibility is then
designed to optimally coordinate vehicle charging.
Numerical simulations show that the proposed ap-
proach ensures substantial cost reduction compared
to simpler benchmarks while maintaining the compu-
tation time feasible for real-world applications.

I. Introduction
Demand Response (DR) involves shifting or shedding

electricity demand to provide services in wholesale and
ancillary power markets. The changes in end-users elec-
trical profiles are induced by either changes of electricity
price over time (price-based schemes) or monetary in-
centives (incentive-based schemes) designed to generate
an electricity reduction with respect to a normal con-
sumption pattern. Such request can occur in consequence
of high wholesale market prices or grid congestion [1].
The fundamental role of DR programs in reaching the
Net Zero Emission 2030 scenario is highlighted in [2]:
“a quarter of the forecasted tenfold increase in energy
system flexibility, defined as the hour to hour change in
output required from dispatchable resources, is projected
to be globally covered via DR by 2030”.

In this context, the transporation sector is expected
to contribute for a worldwide share of 3.5% in total
flexibility provision by 2030, with a forecasted capacity of
50 GW coming from electric vehicles (EVs) [2]. Countries
such as France, Italy, the Netherlands and US are experi-
menting with vehicle-to-grid approaches to allow vehicles
to input electricity into the grid. Another possibility
to unlock the flexibility provision potential of EVs is
through coordinated charging policies in EV charging
stations, as outlined in [3] and empirically demonstrated
in pilot projects [4], [5].
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To increase the DR capacity in accomplish the Net
Zero targets, governments and regulators should acceler-
ate the use of demand-side flexibility to support energy
security and system resilience via the establishment of
novel market designs that reward DR resources and
allow them to compete fairly with supply-side sources of
flexibility [2]. Here we consider an EV charging station
participating in a DR program under an aggregator
that wishes to maintain the balance between supply and
demand. Specifically, we will assume the existence of a
DR contract between the two entities, where the EV
charging station owner gets compensated if it reduces
its power consumption during certain time windows.

Literature review. While DR programs have been ex-
tensively investigated in industrial, commercial and resi-
dential sectors [6], the flexibility provision potential of
the transportation sector has been less explored. The
main challenge addressed is the stochasticity of the
charging process. In [7], the profit maximization of an
EV parking lot under uncertain EV arrival and depar-
ture times is investigated, while [8] proposes a chance
constrained strategy to ensure users satisfaction during
operations under uncertain EV loads. The approach is
extended in [9] to provide a probabilistic guarantee on
the daily profit. Furthermore, [10] and [11] develop real-
time smart-charging algorithms considering expected
electric vehicle fleet connections, while [12] proposes a
two-stage formulation for the management of EV parking
lots, utilizing predicted short-term future information
and long-term estimation from historical data to model
the uncertainties in the charging process.

Main contributions. We consider an EV charging sta-
tion participating in a DR program and we design a
novel online methodology to coordinate the charging of
a fleet of EVs to provide the requested flexibility. The
contribution of the paper is twofold:
1) a stochastic formulation to optimally schedule the

charging process of EVs at a parking lot equipped
with charging stations to ensure participation in DR
programs. To deal with the randomness of the charg-
ing process, we propose a formulation that allows one
to deal with different configurations and scenarios,
with no specific assumptions on probability distribu-
tions;

2) a receding horizon algorithm of the above problem
that takes advantage of the knowledge acquired on-
line. The resulting procedure is based on the solution
of a Mixed Integer Linear Program (MILP), that is
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shown to be feasible for real-world applications.
Paper structure. In Section II, the problem formulation

is introduced. In Section III, a receding horizon algorithm
for participation in DR programs is derived. In Section
IV, numerical results evaluating the effectiveness of the
proposed approach are reported. Finally, conclusions and
future research lines are provided in Section V.

Notation. The set of natural and real numbers is
represented by N and R, respectively. Given a random
event e, the probability that e occurs is written as P(e),
the probability of its complement is P(e). Consider two
events e and e′, then the joint probability that e and
e′ occur is denoted by P(e, e′), while the conditional
probability that e occurs given e′ is denoted by P(e|e′).
Finally, for a given random variable ξ, its expected value
is denoted as E[ξ].

II. Problem formulation
An EV charging station that aims at minimizing the

daily operating cost of charging incoming vehicles is con-
sidered. We adopt a discrete time setting where the sam-
pling time is denoted by ∆ and suppose that a reference
day is divided into T time steps with the running index
t = 0, . . . , T − 1. In this context, the charging station
is assumed to participate into a DR program to provide
flexibility to the aggregator in exchange for a monetary
incentive. The contract between the aggregator1 and the
charging station is structured as follows:
• the aggregator provides a discounted constant price for

charging stations subscribing to the contract;
• at the beginning of each day, the charging station

communicate a forecast of its daily energy consump-
tion, denoted by by EF(t), t = 0, . . . , T − 1, to the
aggregator. This forecast can result from a day-ahead
planning problem (see, for example, [13]);

• in addition to the energy price, the charging station is
subject to a fee that is proportional to the deviation
between EF (t) and the actual demand profile ES(t).
Roughly speaking, this penalty encourages the EV
charging station to provide a load profile that is as
close as possible to EF (t), hence helping the balancing
operations of the aggregator;

• when needed by grid balancing requirements, the ag-
gregator sends a DR request to the EV charging station
asking for a load reduction or increase over a given time
window. If the charging station provides the requested
flexibility, a monetary reward is granted.

A. Charging station model
We envision the following setup: when a vehicle v

arrives at the charging station at time ta
v , it declares its

requirement in terms of energy to be charged, denoted by
Ef

v . The charging station then computes the time needed
to satisfy such request based on a nominal charging

1For ease of exposition, the aggregator and the electricity retailer
are supposed to be the same entity.

power P0 that is guaranteed throughout. Let τf
v =

⌈
Ef

v

∆P0

⌉
be the number of time slots required to satisfy the request
by charging the EV at nominal power rate, which we
refer to as the fulfillment duration. Thus, if we let Sv(t)
denote the energy charged into the vehicle v at time t,
the following constraints must be enforced

Sv(t) ≤ Ef
v t = ta

v , . . . , T (1)
Sv(td

v) = Ef
v . (2)

where td
v = ta

v+τf
v denotes the departure time of vehicle v.

Note that in principle a vehicle may keep a charging unit
busy for longer time than the actual charging duration.
However, we can neglect this vehicle once its battery level
has reached Ef

v since it will not be charging anymore.
To avoid considering the queuing problem, we assume
that the charging station is equipped with a number of
charging units able to satisfy the incoming vehicles.

Let Pv(t) denote the average charging rate of vehicle v
in the time interval [t, t + 1]. The state of charge evolves
according to

Sv(t + 1) = Sv(t) + ∆Pv(t) t = ta
v , . . . , T − 1. (3)

Finally, it is assumed that the charging power is bounded
by

0 ≤ Pv(t) ≤ P̄ t = ta
v , . . . , T − 1, (4)

where P̄ ≥ P0 denotes the maximum charging power of
a single charging unit.

B. Demand response model
The DR program consists in time windows during

which the power consumption per time step must lie
within predefined bounds. Let R denote the number of
requests in a day, Suppose that the number of requests
in a day is R, tb

r and te
r respectively the start time and

the end time of the request r = 1, . . . , R, and tn
r ≤ tb

r the
notice time, i.e., the time when the aggregator sends the
DR request to the charging station. This is in contrast
with similar works (see for example [14] and [15]) where
the set of DR requests is assumed to be known at the
beginning of the day.

The r-th DR request consists of an upper bound Br

and a lower bound Br delimiting the interval where the
power demand of the charging station must lie during the
DR period, and a reward γr. Let ES(t) be the energy
consumed by the charging station in the time interval
[t, t + 1]. We define the violation δr associated to the r-
th DR period as

δr = max
t=tb

r,...,te
r

{ES(t) − ∆Br, ∆Br − ES(t), 0}, (5)

that denotes the maximum deviation around the bounds.
Then, the monetary DR reward γr is modeled as a
piecewise affine function (PWA) of the violation δr

γr = max
{

min
d=1,...,D

(αr,dδr + βr,d) , 0
}

, (6)
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Fig. 1. Main axis: DR signal over time. Secondary axis: DR reward.

where αr,d, βr,d are given parameters. In (6), D denotes
the number of functions in the PWA, αr,D ≤ αr,D−1 ≤
. . . ≤ αr,1< 0 and βr,d > 0, d = 1, . . . , D. If the charging
station energy demand ES(t) stays within the interval
[∆Br, ∆Br] for t = tb

r, . . . , te
r then the maximum reward

is provided. If the overall demand is outside [∆Br, ∆Br]
then the incentive decreases as a function of the violation
incurred during the DR period, according to (6). This
modeling choice allows one to encourage the charging
station to adapt its consumption profile without giving
rise to power peaks during the DR period.

A schematic representation of the DR scheme in place
is reported in Fig. 1.

C. EV stochastic charging process description
It is assumed that the statistics of the number of daily

incoming vehicles is described by a fixed distribution
whose independent sampling provides realizations for
different days. During each day, a similar hypothesis is
enforced for the charging period (ta

v , τf
v ) with respect to

each vehicle v. Hence, the charging process realization
of a vehicle v can be drawn from the same couple of
random variables

(
ta, τf

)
. This restriction is uniquely

used to streamline the presentation; the probabilistic
computations below can in fact accommodate for any
daily EV behavior (for example, working days, holidays,
strikes, etc.) once the corresponding probability distribu-
tions are made available. Finally, we focus on probability
distributions having bounded support.

Let EU(t) be the profile generated by considering an
uncoordinated charging strategy at constant nominal
power P0. Clearly, such a profile cannot be known in ad-
vance due to the uncertainty affecting vehicles. However,
since all the EVs are charged by using the same power
rate P0, the energy drawn at each time step depends only
by the number of connected vehicles at that time step.
Let H(t) be the number of vehicles that are charging at
time t. Then, the distribution of H(t) is given by

P(H(t)=n) =
N∑

m=n

P(H(t)=n|N =m) P(N = m)

where
P (H(t) = n|N = m) =

=
(

m

n

)
P

(
ta ≤ t, td > t

)nP
(

ta ≤ t, td > t
)m−n

.

and N̄ denotes the upper bound of the daily number
of incoming vehicles which is assumed to be known.
The interested reader may refer to [16] for a detailed
derivation of this probability. Finally, let us define

EF(t) = E[EU(t)] = ∆P0

N∑
n=N

nP (H(t) = n) .

III. Receding horizon formulation
Let V(t) be the set of electric vehicles that are in charge

at present time t,

V(t) =
{

v ∈ N : ta
v ≤ t, Sv(t) < Ef

v

}
. (7)

The set of DR requests R(t) to beconsidered in the
optimization horizon is defined as

R(t) = {r ∈ N : tn
r ≤ t, te

r ≥ t} , (8)

and comprises requests that have been not expired (te
r ≥

t) and have been actually announced by the aggregator
(tn

r ≤ t).

A. Objective function
Optimization is performed over a shrinking horizon,

starting from the current time step t up to the end of the
day. The objective function J(t) represents the operation
cost of the charging station and comprises three terms

J(t)=
T −1∑
k=t

(
|E[ES(k|t)]−EF(k)|cd︸ ︷︷ ︸

Deviation cost

+ E[ES(k|t)]cg︸ ︷︷ ︸
Electricity cost

)
−

∑
r∈R(t)

γ̃r︸ ︷︷ ︸
DR reward

,

(9)
where γ̃r is the decision variable concerning the reward
of the r-th DR request, cd is the unitary cost for the
deviation around the profile EF(k) and cg is electricity
price of the energy purchased from the grid. In (9), all the
quantities are computed according to the expected value
of the energy consumed E[ES(k|t)] under the information
available at time t.

B. Charging station energy demand
Let N(t) = na be the number of vehicles arrived at

the charging station up to time t. The expected value of
the energy demand at time k ≥ t is given by

E[ES(k|t)] =
∑

v∈V(t)

∆Pv(k) + E[EU(k)|t, na], (10)

where

E[EU(k)|t, na] = ∆P0

N∑
n=N

nP(H(k)=n|N(t)=na, ta >t).

(11)
Here the computation of P(H(k) = n|N(t) = na, ta > t)
is borrowed from [16]. Note that in (10) the term involv-
ing vehicles in V(t) is related to EVs whose departure
time is known. Hence, the expectation operator for the
energy consumed by these vehicles is not needed since
concerns deterministic quantities.
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C. DR constraints
For each request r ∈ R(t) the related reward γ̃r is

constrained as follows

zDR
r ∈ {0, 1} (12)

0 ≤ γ̃r ≤ MzDR
r (13)

γ̃r ≤ αr,dδ̃r + βr,d, ∀d ∈ {1, . . . , D} (14)
δ̃r ≥ δr,tz

DR
r (15)

δ̃r ≥ E
[

max
k=tb

r,...,te
r

{ES(k|t)}
]

− ∆Br − M(1 − zDR
r ) (16)

δ̃r ≥ ∆Br − E
[

min
k=tb

r,...,te
r

{ES(k|t)}
]

− M(1 − zDR
r ), (17)

where δ̃r is the forecast of the violation in the r-th
DR period. Binary variables zDR

r represent the choice of
the charging station in complying with the DR request
(zDR

r = 1) or not (zDR
r = 0). In (13) the reward is

constrained to be positive, while in (14) the epigraph
formulation of the DR reward is reported. In (15)-(17)
the formulation of the forecast of DR violation is derived.
Finally, M > 0 denotes a parameter that is big enough
to avoid inconsistencies in the formulation, while δr,t

represents the past DR violation up to time t which is
defined as

δr,t =
{

max
k=tb

r,...,t−1
{ES(k)−∆Br, ∆Br −ES(k), 0} if t > tb

r,

0 else.

Note that, the constraints defined in (12)-(17) admit at
least a feasible solution. In fact, it is easy to see that by
setting zDR

r = γ̃r = δ̃r = 0, such constraints are satisfied.
Constraints defined in (16)-(17) involve the expected

value of the maximum of a set of random variables whose
number of elements amounts to the length of the related
DR request. However, computing such expectation is not
a trivial task since the energy consumed at each time step
is highly correlated to the ones at previous time steps. To
handle such an aspect we propose a heuristic approach.
From the Jensen’s inequality one has

max
k=tb

r,...,te
r

{
E

[
ES(k|t)

]}
≤ E

[
max

k=tb
r,...,te

r

{ES(k|t)}
]

(18)

min
k=tb

r,...,te
r

{
E

[
ES(k|t)

]}
≥ E

[
min

k=tb
r,...,te

r

{ES(k|t)}
]

. (19)

By using approximations introduced in (18)-(19), the
overall computation results to be simplified since the
expectations are computed separately. On the other
hand, the performance of the receding horizon algorithm
may be reduced. To deal with this issue, forecasts will
be penalized by multiplicative constants µhigh

r ≥ 1 and
µlow

r ≥ 1 to approximate constraints (16)-(17) as

δ̃r ≥ µhigh
r · E[ES(k|t)] −∆Br − M(1 − zDR

r ) (20)
δ̃r ≥ ∆Br − µlow

r · E[ES(k|t)] −M(1 − zDR
r ), (21)

where k = tb
r, . . . , te

r. Note that the approximations are
tight if one sets those parameters as

µhigh
r =

E[maxk=tb
r,...,te

r
{ES(k|t)}]

maxk=tb
r,...,te

r
{E[ES(k|t)]} (22)

µlow
r =

mink=tb
r,...,te

r
{E[ES(k|t)]}

E[mink=tb
r,...,te

r
{ES(k|t)}] . (23)

However, computing µhigh
r and µlow

r as in (22)-(23) is
again not tractable. Hence, we estimate µlow

r and µhigh
r

by taking into account the past peak values occurred in
the most recent DR periods. The estimation procedure
is reported in Algorithm 1, where µlow

r and µhigh
r are

obtained by considering the ratio between the average of
the peak values of the energy consumed in the last L DR
requests and the last te

r − tn
r +1 forecasts (i.e., E[ES(k|t)]

for t = tn
r , . . . , te

r) obtained in (20)-(21). Clearly, the
performance of the optimization routine depends on
how many samples one considers in the estimation, as
discussed in Section IV.

D. Receding horizon procedure
The proposed receding horizon strategy relies on the

solution of an optimization problem at each time step t.
The power command for the EVs in V(t) are obtained as
the solution of the following problem

Problem 1:

P ∗
v (t) = arg min

Pv(t):v∈V(t)
J(t)

s.t. (1) − (4), (9) − (15), (20), (21).
This optimization problem is a MILP, where the num-

ber of binary variables is equal to the number of DR
requests falling inside the optimization horizon. Since
in real-world scenarios the number of requests per day
amounts to at most few units, the proposed procedure
is computationally feasible even for large-scale problem
instances (i.e., large EV population and/or small dis-
cretization step).

Algorithm 2 provides a sketch of the overall receding
horizon procedure. At each time step t, the procedure is
based on two main steps: i) all the problem quantities

Algorithm 1: Estimation of µhigh
r and µlow

r .
Data: For the past L requests: energy consumed ES

l (k)
and forecasts ES

l (k|t), for l = 1, . . . , L;

1 set µhigh
r =

L∑
l=1

max
k=tb

l
,...,te

l

{ES
l

(k)}(te
l

−tn
l

+1)

L∑
l=1

te
l∑

t=tn
l

max
k=tb

l
,...,te

l

{E[ES
l

(k|t)]}

;

2 set µlow
r =

L∑
l=1

te
l∑

t=tn
l

min
k=tb

l
,...,te

l

{E[ES(k|t)]}

L∑
l=1

min
k=tb

l
,...,te

l

{ES
l

(k)}(te
l

−tn
l

+1)

;

3 return µhigh
r , µlow

r ;
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Algorithm 2: Receding horizon algorithm.
Data: Prices cd and cg, DR daily program, and

distributions on the EV charging process.
1 Compute EF(k) for k = 1, . . . , T ;
2 Set t = 1;
3 while t ≤ T do
4 na = |{v : ta

v ≤ t}|;
5 compute V(t) as in (7);
6 compute R(t) as in (8);
7 solve Problem 1 and get P ∗

v (t), ∀v ∈ V(t);
8 Sv(t + 1) = Sv(t) + ∆P ∗

v (t), ∀v ∈ V(t);
9 t = t + 1;

10 end

Fig. 2. Charging process distributions. Top panel: Arrival time
distribution. Bottom panel: Fulfillment time distribution.

are updated on the basis of the information available at
time t; ii) Problem 1 is solved and the first command of
the optimal solution is applied.

IV. Numerical Simulations
To test the performance of the presented approach,

simulations have been carried out by using probability
distributions estimated from real data. Specifically, the
ones concerning arrival time and fulfillment time have
been estimated by using the historical data in [17].
The sampling time has been set to 10 minutes and
experiments have been run for a duration of 100 days.
Concerning EV charging, the related nominal charging
power P0 has been set to 7.4 kW, while the maximum
charging power rate P̄ has been fixed to 22 kW. Vehi-
cles are assumed to follow the distributions reported in
Fig. 2. Concerning the daily number of incoming vehicles,
a Gaussian distribution with mean 175 and standard
deviation 9 has been considered.

For each day, the deviation price cd is set to 0.20
e/kWh, the grid price cg is set to 0.05 e/kWh and 1
DR request per day has been considered. The beginning
time of each request has been generated according to a
uniform distribution ranging from 9 AM to 3 PM, while
the related length is uniformly drawn in the interval
[9, 12] time steps. The charging station can be noticed
of the DR request in a time window of [0, 2] time steps
before the request begins. For each request, the related

TABLE I
Parameters of the DR requests.

αr,d -4 -6 -6.67

βr,d γr 1.10 γr 1.17 γr

TABLE II
Average daily cost for each estimation time window.

Number of requests 10 20 30 40 50

Average daily cost [e] 230.26 229.69 229.57 229.81 229.89

upper and lower power bounds have been set to 60%
and 40% the mean value of EF(t) in the considered time
interval, respectively. Finally, the maximum reward has
been setup according to the formula

γr = k · (te
r − tb

r) · max
t=tb

r,...,te
r

{EF(t) − ∆Br, ∆Br − EF(t)},

where k = 0.5 e/kWh whereas three thresholds have
been considered in (6), whose coefficients αr,d and βr,d

are reported in Tab. I. Note that, in this simulation
setup, the notice time ranges in a small interval. This
choice puts the system in stressful conditions where
the charging station needs to react almost instantly to
the requests of the aggregator. However, as reported
in the following, the proposed procedure is capable of
managing this kind of requests showing the possibility
to be adapted to tertiary reserve market frameworks.

Concerning the estimation of µhigh
r and µlow

r , they have
been computed online during a simulation of 100 days.
In particular, to evaluate the sensitivity of the algorithm
performance with respect to L, the same simulation has
been run considering a number of past requests ranging
from 10 to 50 with a step size of 10. To make comparison
between different time windows, the average daily cost
of the proposed receding horizon algorithm (RH) have
been taken into account. The results of such costs are
summarized in Tab. II. One may note that the overall
cost is not very sensitive to variations of the sample size.
In the remainder, we fix the sample size for estimation
to 30 requests since it leads to the lowest cost.

To validate the effectiveness of the proposed proce-
dure, we compare its performance against three bench-
marks:
• nominal charging policy (NCP): all the vehicles

are charged at nominal charging power rate P0;
• receding horizon procedure with no information

(NI): a receding horizon algorithm which does not
consider any future load forecast;

• omniscient oracle optimization (OR): a one-shot
optimization problem that knows the realization of
all random variables. This amounts to an a-posteriori
optimization performed at the end of the day. OR
is clearly an optimistic, non-causal benchmark that
cannot be implemented in practice.
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TABLE III
Average daily cost for all the strategies.

RH NCP NI OR

Cost [e] 229.57 351.39 265.29 177.79

Fig. 3. Energy profiles of the charging station during day 64:
energy forecast, proposed strategy and OR. The DR time interval
is denoted by the gay area, while power limits are represented by
the gray shaded area.

The average daily cost performance for each procedure
are summarized in Tab. III. The proposed procedure out-
performs the NCP and NI of about 52.04% and 15.03%,
respectively. Instead, considering the algorithm behavior
with respect to the OR, the obtained daily cost is on
average 52.48e above. Moreover, the number of satisfied
requests amounts to 74 for the proposed procedure and
to 100 for the OR. Finally, in Fig. 3 the energy profiles
over one day of the charging station under the proposed
procedure and under the OR benchmark are compared.
In the considered day, the time when the request is
noticed is exactly the same one where the DR request
starts. Here, it can be noticed that the information used
by the receding horizon procedure makes it possible to
coordinate the EV charging in order to properly track the
declared consumption profile and fulfill the DR request
even if the related notice time was short. In fact, the
solution obtained is fairly close to the one obtained by
the OR.

Finally, thanks to the estimation procedure to compute
µhigh

r and µlow
r presented in Algorithm 1, the resulting

procedure features feasible run times with nice scalability
properties. The time needed to run Algorithm 2 takes on
average 31 seconds per day2.

V. Conclusions
A receding horizon approach to manage a charging

station participating in DR programs has been proposed.
The proposed procedure is able to exploit online infor-
mation to schedule the EV charging such that the ag-
gregated power consumption tracks the declared profile
and stays within prescribed bounds during DR windows.
Moreover, the approach is shown to outperform other
optimization strategies that are blind to the information

2Simulations run on an i7-11700K@3.6GHz with 32GB RAM.

about the uncertainty in the charging process. Finally,
the overall computational performance results to be fea-
sible for real-time applications.

Future directions may involve the extension of the
framework to energy communities or reserve market, as
well as the validation of the proposed solutions in real
world scenarios.
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