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Abstract— This paper presents an algorithmic approach
towards bounding the peak time-windowed average value at-
tained by a state function along trajectories of a dynamical
system. An example includes the maximum average current
flowing across a power line in any 5-minute window. The
peak time-windowed mean estimation task may be posed as
a finite-dimensional but nonconvex optimization problem in
terms of an initial condition and stopping time. This problem
can be lifted into an infinite-dimensional linear program in
occupation measures, where no conservatism is introduced
under compactness and dynamical regularity assumptions. The
peak time-windowed mean estimation linear program is in turn
truncated into a convergent sequence of semidefinite programs
using the moment-Sum-of-Squares hierarchy. Bounds of the
time-windowed mean are computed for example systems.

I. INTRODUCTION

Peak estimation is the practice of finding the maximal
(or minimal) value that a state function p attains along
trajectories of a dynamical system [1]. Examples of peak
estimation problems (or bounding extreme events) include
finding the maximum angular velocity of a motor, bounding
the height of a wave, or determining the distance of closest
approach between two autonomous agents (e.g. aircraft) [2].

In some settings, the instantaneous peak value attained
by a trajectory may offer an incomplete understanding of
the underlying safety properties. As a motivating example,
a synchronous machine (motor) experiences a large current
draw when first turning on, which will dissipate over the
course of its transient response. This initial inrush current
could exceed the rated capacity of the motor by a factor of 5-
6 times without damaging motor operation [3]. The relevant
quantity to measure safety would instead be the component’s
obedience to its thermal limits. These thermal limits can be
associated with the time-windowed average current passing
through the component, where the window’s time horizon is
related to the component’s ability to dissipate heat.

Based on this motivation, we analyze the peak time-
windowed mean-value of p along trajectories evolving ac-
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cording to Ordinary Differential Equation (ODE) dynamics
within a state set X ⊂ Rn. Trajectories can begin within
an initial set X0 ⊆ X and will propagate for T time units.
The peak time-windowed mean estimation problem, given a
state function p, an ODE dynamics function f , and a time
window h ∈ [0, T ], is posed as follows:

Problem 1.1: Find an initial condition x∗
0 and a terminal

time t∗ to supremize
P ∗ = sup

t∗, x∗
0

1

h

∫ t∗

t′=t∗−h

p(x(t′ | x∗
0))dt

′ (1a)

s.t. ẋ(t) = f(t, x(t)) ∀t ∈ [0, T ] (1b)
x(0) = x∗

0 (1c)
t∗ ∈ [h, T ], x∗

0 ∈ X0. (1d)
In the case where h = T , Problem (1) can be interpreted

as a Lagrange-type optimal control problem with a pure stage
cost

∫ T

t′=0
[p(x(t′ | x∗

0))/T ]dt
′ with t∗ = T [4], [5]. In the

limit as h → 0, Problem (1) will approach the instantaneous
peak estimation problem (a free-terminal-time terminal cost
p(x(t∗)) and a zero stage cost) when p is continuous [1].

Figures 1 and 2 illustrate the difference between the instan-
taneous and time-averaged peak. The signal p(t) is plotted in
black over a time horizon of T = 8. The red dotted lines plot
the time-windowed average with h = 1.5. The blue square
at ti = 2.0017 is the instantaneous peak of pi = 1.5435.
The time-windowed average at ti is

∫ ti
t′=ti−1.5

p(t′)dt′ =
0.0173. The blue star at tw = 5.7502 achieves the maximal
time-windowed average peak of pw = 0.9379, while the
instantaneous value of p(ta) is 0.8220. The magenta curve
of Figure 1 is the region that is averaged to produce pw.
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Fig. 1: Comparison of instantaneous peak (square) and time-
windowed average peak (star) of a signal p(t) (black curve)

Problem 1.1 is a finite-dimensional optimization problem
in (t∗, x∗

0) but is generically nonconvex. We will lift the
formulation in (1) into an infinite-dimensional Linear Pro-
gram (LP) in occupation measures. Instances of occupation
measure LP relaxations used for dynamical systems problems
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Fig. 2: Comparison of instantaneous peak (square) to time-windowed average peak (blue star) of a signal p(t) from Figure
1 with stopping time s ∈ {h, t∗, T}. The magenta region highlights p(t) in times [s− h, s]. The time-windowed average
in this range is marked with the black star. The red dotted line depicts all time-windowed averages up to t ≤ s.

includes optimal control [4], instantaneous peak estimation
[1], [6], [7], reachable set estimation [8], and (stochastic)
risk estimation [9]. To the best of our knowledge, the peak
time-windowed mean estimation problem for ODEs has not
been previously considered in the literature.

The infinite-dimensional LP must then be truncated into
a finite-dimensional optimization problem in order to ad-
mit computational solutions. In this work, we will use
the moment-Sum of Squares (SOS) hierarchy to form this
discretization [10], yielding a sequence of Semidefinite
Programs (SDPs) in increasing complexity whose solution
values will converge to the optimal value P ∗ (under com-
pactness, regularity, and polynomial structure conditions).
Alternative methods include gridding (e.g. discrete-time-and-
state Markov Decision Processes) [1], random sampling [11],
and neural network verification [12].

This paper has the following structure: Section II pro-
vides an overview of preliminaries and notation. Section III
proposes an infinite-dimensional LP in occupation measures
that has the same optimal value as the peak time-windowed
average cost problem (under compactness and regularity
assumptions). Section IV truncates the LP into a convergent
sequence of SDP using the moment-SOS hierarchy. Section
V demonstrates this approach on an example system. Section
VI concludes the paper. An extended version of this paper
including stochastic processes, proofs of duality, and non-
mean risk measures is available at [13].

II. PRELIMINARIES

A. Notation and Measure Theory

The n-dimensional real Euclidean vector space is Rn. The
set of natural numbers is N, and the set of k-dimensional
multi-indices is Nk. The set of natural numbers between a
and b is a : b ⊂ N. For a vector x ∈ Rn and a multi-index
α ∈ Nn, exponentiation will be notated by xα =

∏n
i=1 x

αi
i .

The symbol E will denote the expectation of a random
variable, and P will denote the probability of an event.

Let K ∈ Rn be a compact set and consider the vector
space C(K) of continuous functions from K to R. The norm
∥f∥C(K) := max{|f(x)| | x ∈ K} equips C(K) with a
Banach structure [14]. In particular, one can define the dual
space C(K)′ as the space of continuous linear functionals
from C(K) to R with duality notation ⟨f, µ⟩ =

∫
f dµ ∈ R

for f ∈ C(K) and µ ∈ C(K)′. By defining the nonnegative
subcone C+(K) = {f ∈ C(K) | ∀x ∈ K, f(x) ≥ 0}, we
can introduce the Riesz-Markov characterization of Radon

(nonnegative) measures:

M+(K) = {µ ∈ C(K)′ | ∀f ∈ C+(K), ⟨f, µ⟩ ≥ 0}.

In the rest of this work, we adopt the following standard
convention for (partial) derivatives of Radon measures, de-
fined by their action on continuously differentiable functions
as ⟨v, ∂µ/∂xi⟩ = −⟨∂v/∂xi, µ⟩.

The mass of a nonnegative measure µ ∈ M+(K) is
µ(K) = ⟨1, µ⟩. The measure µ is a probability measure if
its mass is 1. Given a point x′ ∈ K, the Dirac delta δx=x′ ∈
M+(K) is the unique probability measure supported only
at x = x′ (∀f ∈ C(K) : ⟨f, δx=x′⟩ = f(x′)). The
pushforward of µ through a map q : K → L is written as as
q#µ ∈ M+(L)is the unique measure satisfying ∀g ∈ C(L) :
⟨g, q#µ⟩ = ⟨g ◦ q, µ⟩. Given measures µ ∈ M+(K) and
ν ∈ M+(L) with support sets K,L, the product measure
µ ⊗ ν ∈ M+(K × L) is the unique measure satisfying
∀f ∈ C(K), g ∈ C(L) : ⟨f · g, µ ⊗ ν⟩ = ⟨f, µ⟩ · ⟨g, ν⟩,
where f · g = K × L ∋ (x, y) 7−→ f(x) · g(y).

B. Occupation Measures

Consider a dynamical system x(t) ∈ Rn, t ≥ 0. Notice
that, if the initial condition x(0) is set to be a random
variable, or if the dynamics depend on a random control
policy, then the state x(t) will be a random variable at
all times t > 0. In such case, the trajectories and their
probability laws can be encoded over a finite time horizon
T > 0 into a single Radon measure called the occupation
measure. The occupation measure is defined as follows: set
K = [0, T ]×X where X is a compact observation set with
P(x(0) ∈ X) = 1, as well as a stopping time

s ≤ sup{t ∈ [0, T ] | P(x(t) ∈ X) = 1}.

The occupation measure µ ∈ M+(K) is defined through
its duality with functions v ∈ C(K) as ⟨v, µ⟩ =
E
[∫ s

0
v(t, x(t)) dt

]
, i.e. the expected accumulated value of

v along observed trajectories. Given the probability law
µ0 of the initial condition (which could include a Dirac
measure µ0 = δx=x′

0
), the occupation measure is solution

to a Kolmogorov-type PDE of the form

µs − L†µ = δ0 ⊗ µ0 (2)

where µs ∈ M+(K) is an unknown stopping measure
encoding a distribution of time-states (s, x(s)), and the
operator L† encodes the system’s dynamics. In the case of an
uncontrolled ordinary differential equation ẋ(t) = f(t, x(t)),
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the operator L† is obtained by testing (2) against test function
v to derive

⟨v,L†µ⟩ = ⟨v, µs − δ0 ⊗ µ0⟩
= Ex(0)∼µ0

[v(s, x(s))− v(0, x(0))]

= Ex(0)∼µ0

[∫ s

0

d

dt
v(t, x(t)) dt

]
= ⟨Lv, µ⟩.

Applying the chain rule Lv = ∂v/∂t+f⊤grad v yieldsL†µ =
−∂µ/∂t − div(f µ). In the ODE case, equation (2) is called
the Liouville equation, and L is called the generator of the
dynamics f . Any tuple (µ0, µ, µs) satisfying (2) is called a
relaxed occupation measure.

III. TIME-WINDOWED MEAN LINEAR PROGRAM

This section will relax the peak time-windowed average
program in (1) into an infinite-dimensional LP.

A. Assumptions

We introduce the following assumptions:
A1 0 < T < ∞ and sets X0, X are compact.
A2 The objective function p(x) is continuous.
A3 The function x 7→ f(·, x) is Lipschitz within [0, T ]×X .
A4 Trajectories starting from X0 obey a non-return crite-

rion: if ∃(t∗, x∗
0) ∈ [0, T ]×X0 such that x(t∗ | x∗

0) ̸∈ X,
then ∀t ≥ t∗ : x(t | x∗

0) ̸∈ X .
Technicalities of the non-return assumption A4 are ex-

plained further in Remark 1 of [2]. Non-return implies
that all stopped trajectories maximizing the time-windowed
valuation of p will stay in X , and therefore can be tracked
by an occupation measure µ supported in X .

B. Augmented Time

To phrase linear programs for (1), we will first define a
new constant state s to the dynamics (ṡ = 0). The constant
state s will serve as the stopping time t∗ in optimization
problem (1). Since at the stopping time it holds that t =
t⋆ = s, the stopping measure µs of Section II-B can therefore
be decomposed as µs = φ#µτ for some terminal measure
µτ ∈ M+([h, T ] × X) pushed forward through the map
φ = (s, x) 7−→ (s, s, x) i.e. for v ∈ C([h, T ]2 ×X) it holds

⟨v, µs⟩ = ⟨v|t=s, µτ ⟩ =
∫

v(s, s, x) dµτ (s, x). (3)

We thereby define the augmented-time support sets as

Ω+ = {(s, t) ∈ [h, T ]× [0, T ] | t ∈ [s− h, s]} (4a)
Ω− = {(s, t) ∈ [h, T ]× [0, T ] | t ∈ [0, s− h]}. (4b)

C. Infinite dimensional LP

A mean-type time-windowed risk LP from (1) will be
formulated in terms of measures (µ0, µτ , µ+, µ−):

µ0(s, x) ∈ M+([h, T ]×X0) Initial (5a)
µτ (s, x) ∈ M+([h, T ]×X) Terminal (5b)

µ+(s, t, x) ∈ M+(Ω+ ×X) Risk Occ. (5c)
µ−(s, t, x) ∈ M+(Ω− ×X) Past Occ. (5d)

The mean-type measure program for (1) is:
Problem 3.1: Find an initial measure µ0, a terminal mea-

sure µτ , a risk occupation measure µ+, and a past occupation
measure µ− to supremize:

p∗ = sup ⟨p, µ+⟩/h (6a)

s.t. φ#µτ = δt=0 ⊗ µ0 + L†(µ− + µ+) (6b)
⟨1, µ0⟩ = 1 (6c)
⟨1, µ+⟩ = h (6d)
Support constraints in (5). (6e)

The sum µ−+µ+ serves as the relaxed occupation measure
for dynamics with generator L as in Section II-B. The mean
value of p is only evaluated in the range t ∈ [s − h, s],
which is enforced by the Ω+ support constraint in (5b).
Constraint (6d) ensures that trajectories defined in µ+ will
be recorded for exactly h time units, ensuring that these
trajectories are well-defined when taking the time-windowed
average operation.

Lemma 3.2: Under only Assumption A4, program (6) is
an upper-bound on (1) (p∗ ≥ P ∗).

Proof: This proof will construct feasible measures in
(5) from a feasible point (t∗, x∗

0) ∈ [h, T ]×X0 of (1). The
initial measure µ0 may be set to µ0 = δs=t∗, x=x0 . Letting
x(t∗) represent the probability distribution of the process
at time t∗, the terminal measure may be chosen as µτ =
δs=t∗, x=x(t∗). Defining µ(t, x) as the occupation measure of
the process x(t) between times 0 and t∗, let µ[0,t∗−h](t, x)
and µ[t∗−h,t](t, x) refer to the restrictions of µ in times
[0, t∗ − h] and [t∗ − h, t∗] respectively. The decomposed
relaxed occupation measures may therefore be chosen as
µ− = δs=t∗ ⊗ µ[0,t∗−h] and µ+ = δs=t∗ ⊗ µ[t∗−h,t∗]. Note
that constraint (6d) is satisfied because µ+ is defined over
exactly h time units.

Because there exists an injective map between feasible
point (t∗, x∗

0) from (1) and feasible measures (5) for (6b)-
(6e) such that the cost is preserved, the optimal value p∗ for
(6) must therefore be an upper-bound for (1) as p∗ ≥ P ∗.

The main result of our paper is the following theorem:
Theorem 3.3: Under Assumptions A1-A4, there is no

relaxation gap (p∗ = P ∗).
Proof: Let (µ0, µτ , µJ) (with µJ ∈ M+([h, T ] ×

[0, T ]×X)) satisfy

φ#µτ = δt=0 ⊗ µ0 + L†µJ . (7)

By Assumptions A1-A4 and Theorem 3.3 of [1], every
feasible tuple (µ0, µτ , µJ) satisfying (6b)-(6e) is supported
on the graph of stochastic trajectories of L.

As such, there exists a decomposition of µJ into µ− and
µ+ through the (s, t) temporal supports in (4) subject to the
requirement (6d). Such a decomposition may be achieved
through the restriction procedure from Theorem 3.1 of [15],
in which µ+ is chosen to maximize ⟨t, µ+⟩ such that µ+ +
µ− = µJ , ⟨1, µ+⟩ = h under (5c)-(5d). It therefore holds
that the tuple (µ0, µτ , µ− + µ+) is supported on the graph
of a stochastic process, and all measures satisfy the support
constraints in (5). Specifically, extremal trajectories can be
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found among Dirac measures that correspond to single initial
conditions in Problem 1.1. Given that µ0 is a probability
distribution by (6c), the term ⟨p, µ+⟩/h in the objective (6a)
evaluates to the integral in (1a). The absence of a relaxation
gap is therefore proven under A1-A4.

IV. TIME-WINDOWED AVERAGE FINITE TRUNCATION

The infinite-dimensional LPs presented in Section III must
be truncated into finite-dimensional programs in order to be
computationally tractable. This section will first present the
moment-SOS hierarchy of SDPs for truncation of measure
LP, and will then apply this hierarchy towards grid-free
truncation of (6) (see [10] for more details).

A. Moment-SOS Background

Problem (6) involves infinite-dimensional decision vari-
ables (namely Radon measures) as well as infinite-
dimensional linear constraints of the form Aµ = b such as
the Kolmogorov equation (6b). To cope with such infinite
dimension, the moment-SOS framework consists of three
steps: (i) testing infinite dimensional constraints against
polynomials, (ii) representing Borel measures µ ∈ M+(X)
with their moments yα = ⟨xα, µ⟩ and (iii) truncating the
degree of both moment variables and constraints to a finite
value k < ∞. The sufficiency of testing over polynomials
in step (i) is ensured through the Stone-Weierstraß theorem.
Step (ii) is made possible by Putinar’s Positivstellensätz [16,
Lemma 3], which characterizes moment sequences among
multi-indexed real sequences:

Lemma 4.1 (Putinar’s Positivestellensätz): [16]] Let
g1, . . . , gm ∈ R[x] define a Basic Semialgebraic (BSA) set

X = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Let y = (yα)α∈Nn ∈ RNn

be a multi-indexed real sequence
with associated Riesz linear functional

Ly =

{
R[x] −→ R∑
α pα xα 7−→

∑
α pα yα.

Then, assuming the Archimedean property for basic semi-
algebraic sets (gm(x) = R2 − x⊤x, which is equivalent to
compactness of X up to adding a redundant ball constraint to
its description), there exists a Radon measure µ ∈ M+(X)
such that ∀α ∈ Nn, yα = ⟨xα, µ⟩ if and only if the
following quadratic forms are nonnegative:

Qy = p 7→ Ly(p
2) ≥ 0, Qgiy = p 7→ Ly(gi p

2) ≥ 0. (8)

Notice that when the conditions of Lemma 4.1 are met, it
holds that ∀p ∈ R[x], Ly(p) = ⟨p, µ⟩. Hence, Lemma 4.1
means that it is possible to replace Radon measures in (6)
with real sequences y complemented with appropriate posi-
tivity constraints on (Qy, Qg,y).

Step (iii) truncates infinite dimensional moment sequences
to finite size moment vectors. For a degree k ∈ N and a
polynomial g ∈ R[x], let Mk(gy) be the symmetric square
matrix of size

(
n+k−⌈deg g/2⌉

n

)
defined by

Mk(gy)α,β = Ly(g(x)x
α+β) =

∑
γ gγyα+β+γ . (9)

The finite-dimensional matrix Mk(gy) is equal to the top
corner of the inifinite-dimensional matrix representing the
quadratic form Qgy in the basis of monomials. The degree-
k truncation of a measure LP in step (iii) involves replacing
each measure variable by a sequence of (pseudo)-moments y
up to degree 2k, imposing that Mk(y) and Mk(giy) are each
Positive Semidefinite (PSD) matrices, and replacing linear
constraints in measures Aµ = b with a finite number of
constraints in the pseudo-moments (e.g. Ly(⟨xα, b−Aµ⟩) =
0, ∀|α| ≤ k). Each degree-k truncation may be solved by
SDP algorithms, and the process of increasing k → ∞ to
achieve better bounds is the moment-SOS hierarchy.

B. Peak Time-Windowed Mean Moment-SOS Programs

In order to apply the Moment-SOS hierarchy, assumptions
of polynomial structure must be imposed:

A5 Both p(x) and f(t, x) are polynomial maps.
A6 The sets X0, X each have an Archimedean BSA repre-

sentation:

X = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
X0 = {x ∈ Rn | g01(x) ≥ 0, . . . , g0ℓ(x) ≥ 0}.

To each degree k ∈ N and function f with generator Lf ,
the associated dynamics degree k̃ ≥ k can be defined as

k̃ =

⌈
max

v∈R2k[t,x]

deg(Lfv)

2

⌉
= k +

⌈
deg(f)− 1

2

⌉
. (10)

In addition, for y = (yα)|α|≤2k ∈ Nn
2k and g ∈ R2k[x], let

k̂ = k− ⌈deg(g)/2⌉ and define the localizing matrix Mk(g y)
as the matrix representation of Qgy in a basis of Rk̂[x]. We
define the following polynomials:

gh(s) = (T − s)(s− h)

g+(s, t) = (s− t)(t− s+ h)

g−(s, t) = (s− t− h)t

so that it holds

[h, T ] = {s ∈ R | gh(s) ≥ 0}
Ω+ = {(s, t) ∈ R2 | gh(s) ≥ 0, g+(s, t) ≥ 0}
Ω− = {(s, t) ∈ R2 | gh(s) ≥ 0, g−(s, t) ≥ 0}.

The degree-k moment truncation of (6) from Problem 3.1
will be posed in terms by forming finite-vector pseudomo-
ment sequences y as (µ0, µτ , µ+, µ−) → (y0, yτ , y+, y−).
The restriction of the Liouville relation in (6b) as parame-
terized by α ∈ N, β ∈ N, γ ∈ Nn is:

Liouαβγ = Lyτ (tα+βxγ)− Ly0(sαδβ=0x
γ)

− Ly++y−(L̂(sαtβxγ)). (11)

The degree-k truncation of Problem 3.1 is
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Problem 4.2: Find pseudo-moment sequences y0, yτ ∈
RNn+1

2k , y+, y− ∈ RNn+2
2k to maximize

p⋆k = max
y0,yτ ,y+,y−

Ly+(p)/h (12a)

s.t. Liouαβγ(y
0, yτ , y+, y−) = 0 (12b)

∀(α, β, γ) ∈ Nn

Ly0(1) = y00 = 1 (12c)

Ly+(1) = y+0 = h (12d)
Mk(1 y•) ⪰ 0, Mk(ghy

•) ⪰ 0, (12e)
∀• ∈ {0, τ,+,−}

Mk(g−y
−) ⪰ 0, Mk(g+y

+) ⪰ 0. (12f)
The degree-truncated Liouville relation in (12b) is de-

fined by
(n+2+2k̃

2k̃

)
< ∞ scalar linear equality con-

straints. Constraints (12c) and (12d) are scalar linear equality
constraints, and the Linear Matrix Inequality (LMI) con-
straints (12e), (12f) have size at most

(n+2+k̃
k̃

)
< ∞. The

finite-dimensional Problem 4.2 may therefore be solved by
SDP optimization methods, such as interior-point programs.

Theorem 4.3: Under Assumptions A1-A6, the objectives
of (12) will satisfy p∗k ≥ p∗k+1 ≥ p∗k+2 . . . and will converge
to the optimal solution of Problem 3.1 as limk→∞ p∗k = p∗.

Proof: See Appendix C of [13].

C. Computational Complexity

The per-iteration complexity of solving an SDP derived
from the degree-k Moment-SOS hierarchy in n variables is
O(n6k) and O(k4n) [10]. This scaling is due to the

(
n+k
k

)
size of PSD localizing matrix constraints. Table I reports the
size of the maximal-size PSD matrix constraints (for each
pseudo-moment sequence) from Problem 4.2. The scaling of
solving Problem 4.2 by interior-point methods will therefore
grow in a jointly polynomial manner as (n+2)6k̃ or k̃4(n+2).

TABLE I: Size of PSD matrices needed to represent formu-
lation (12) of Problem 4.2 at degree k

Measure µ0 µτ µ+ µ−
Constraint Mk(y

0) Mk(y
τ ) Mk̃(y

+) Mk̃(y
−)

PSD Size
(n+1+k

k

) (n+1+k
k

) (n+2+k̃

k̃

) (n+2+k̃

k̃

)

V. NUMERICAL EXAMPLE

MATLAB (2023b) code to generate all examples is
publicly available1. Dependencies include Gloptipoly [17],
YALMIP [18], and Mosek [19].

A. Two-Dimensional Flow System

The Flow system from [20]:

ẋ =

[
x2

−x1 − x2 +
1
3x

3
1

]
. (13)

This example involves time-windowed peak mean estima-
tion of the function p(x) = −x2 with an evaluated time
window of h = 1 and a time horizon of T = 5. The
considered state set is X = [−3, 3]2, and the set of initial

1https://doi.org/10.3929/ethz-b-000662948

conditions is the disc X0 = {x ∈ R2 | (x1 − 1.5)2 + x2
2 ≤

0.42}. Solving Problem 4.2 results in the upper bounds
p∗1:5 = {2.4192, 0.9094, 0.5667, 0.5628, 0.5624}. The peak
instantaneous value of p(x) is upper-bounded by 0.5734
(solving the peak estimation routine from [6] at k = 4).

Figure 3 visualizes trajectories (cyan) of system (13)
starting from the black-circle initial set X0. The dark blue
curve is a trajectory extracted from moments of the k = 4
solution, with a maximal (sampled) time-windowed p(x)
value of 0.5600. A feasible trajectory extracted from the
moment matrix solution (second largest eigenvalue ≤ 10−3)
starts at x∗

0 ≈ [1.4900,−0.3940] (blue circle) and reaches a
time-windowed extremum at x∗

p ≈ [0.4125,−0.5371] (blue
star) at time t∗p ≈ 2.1537. The window for averaging over
p(x) begins at time t∗p−h = 1.1537 time units, which yields
a spatial location of x(t∗p−h | x∗

0) ≈ [0.9683,−0.5351] (blue
triangle). The magenta region between the blue triangle and
the blue star is the portion of the trajectory that is time-
averaged (times 1.1537 to 2.1537).

-0.5 0 0.5 1 1.5 2 2.5

x1

-1

-0.5

0

0.5

1

x 2

Fig. 3: Trajectories of (13) starting from the black-circle
initial set X0, with a near-optimal region highlighted for
p(x) = −x2, h = 1.

Figure 4 displays (in cyan) evaluations of the time-
averaged costs (1/h)

∫ t

t′=t−h
p(x(t′ | x0))dt

′ along trajecto-
ries from Figure 3 (where x0 ∈ X0 is the randomly sampled
initial condition). The blue curve is the time-windowed
average value of p along the near-optimal trajectory from
Figure 3, which achieves its largest value at the blue star
(time t∗p ≈ 2.1537). The red dotted line above all sampled
objective curves is the d∗4 = 0.5628 bound.

1 1.5 2 2.5 3 3.5 4 4.5 5

time (t)
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-0.5

0

0.5

M
ov

in
g

A
ve

ra
ge

of
p

Fig. 4: Evaluation of time-windowed mean of p(x) =
−x2, h = 1 along trajectories in Figure 3.
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Fig. 5: Trajectories of Twist system (14) starting from the
gray-sphere initial set X0.

1 1.5 2 2.5 3 3.5 4 4.5 5

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 6: Evolution of time-windowed mean of p(x) = x3, h =
1 along trajectories in Figure 3.

B. Three-Dimensional Twist System

The Twist system from [2] is

ẋi(t) =
∑

j Aijxj −Bij(4x
3
j − 3xj)/2, (14)

A =

−1 1 1
−1 0 −1
0 1 −2

 B =

−1 0 −1
0 1 1
1 1 0

 . (15)

This example involves finding bounding the time-averaged
value of p(x) = x3 for parameters of X = [−1, 1]3, h =
1, T = 5. Trajectories start in the initial set X0 =
{x ∈ R3 | (x1 + 0.75)2 + (x2 − 0.4)2 + (x3 + 0.1)2 ≤
0.22}. Figure 5 plots trajectories of (14) in cyan using the
same coloring convention as in Figure 3. Solving Problem
4.2 at degrees k ∈ 1..4 results in the bounds p∗1:4 =
[0.4687, 0.3497, 0.3475, 0.3470]. At the degree k = 4 re-
laxation, the approximately-optimal parameters of x∗

0 ≈
[−0.8705, 0.5586,−0.1027], x∗

p ≈ [0.4593, 0.2197, 0.3043],
and t∗p ≈ [1.8315] are recovered. Figure 6 plots the time-
windowed values of p along trajectories.

VI. CONCLUSION

This paper focuses on bounding the time-windowed aver-
age value of a state function p(x) (Problem 1.1), rather than
the previously considered instantaneous value of p(x) [1],
[6]. The peak time-windowed average estimation problem
is converted into an infinite-dimensional LP in measures
(Problem 4.2), which is in turn truncated into a sequence

of SDPs using the moment-SOS hierarchy (Problem 4.2).
There is no relaxation gap between the LP and the original
problem under A1-A4 (Theorem 3.3), and under the further
imposition of A5-A6, the sequence of SDPs will converge in
objective to the true peak time-windowed average (Theorem
4.3). The key insight was in adding an extra time variable
s subject to the augmented-temporal support constraints in
(4). Future work will involve conditions for peak-minimizing
control of the time-windowed averaged (risk) value of p.
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