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Abstract— This manuscript proposes novel distributed algo-
rithms for solving the dynamic consensus problem in discrete-
time multi-agent systems on three different objective functions:
the average, the maximum, and the median. In this problem,
each agent has access to an external time-varying scalar signal
and aims to estimate and track a function of all the signals
by exploiting only local communications with other agents. By
recasting the problem as an online distributed optimization
problem, the proposed algorithms are derived based on the
distributed implementation of the alternating direction method
of multipliers (ADMM) and are thus amenable to a unified
analysis technique. A major contribution is that of proving
linear convergence of these ADMM-based algorithms for the
specific dynamic consensus problems of interest, for which
current results could only guarantee sub-linear convergence.
In particular, the tracking error is shown to converge within a
bound, whereas the steady-state error is zero. Numerical sim-
ulations corroborate the theoretical findings, empirically show
the robustness of the proposed algorithms to re-initialization
errors, and compare their performance with that of state-of-
the-art algorithms.

I. INTRODUCTION

In the context of multi-agent systems, significant efforts
have been made to develop distributed algorithms that can
solve the dynamic consensus problem. This problem involves
designing local interaction rules that can drive agents to
agree on a common value, which is determined by local
time-varying signals they observe, relying solely on local
computations and peer-to-peer communications. While the
average function has garnered a lot of attention [1]–[4],
with a comprehensive literature review provided by Kia et
al [5], other relevant functions such as the maximum [6]–[8]
and median [9], [10] functions have received less attention.
Dynamic consensus has practical applications in network
parameter estimation and control [11]–[13], resilience against
faults and malicious attacks [14], [15], formation control, and
containment in multi-robot systems [16]–[18], among others.

Main contribution. This manuscript presents a unified
approach to solving the dynamic consensus problem for
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average, maximum, and median functions in the discrete-time
framework, which differs from ad-hoc approaches considered
in the current literature. Numerical simulations reveal that the
proposed algorithms extend the state-of-the-art in different
ways:

• Better trade-off between convergence rate and tracking
error for the dynamic average consensus, when com-
pared to [5] and [19];

• Higher robustness to unexpected spikes in the variation
of the inputs for the dynamic max consensus, when
compared to [6];

• It is the first protocol that solves the dynamic median
consensus in the case of heterogeneous inputs since the
protocol in [10] has been shown to fail in this scenario.

Our approach takes the perspective of online optimization,
where the goal is that of solving a streaming sequence of
problems in real-time [20]–[22]. These dynamic consensus
problems can be formulated as sequences of convex dis-
tributed optimization problems of a similar kind, from which
we derive online protocols that are based on the distributed
operator theoretical (DOT) implementation of the relaxed al-
ternating direction method of multipliers (R-ADMM), which
is called the DOT-ADMM [22]; its theoretical formulation
has been recently described in [23] and it has been applied
to online learning in [22].

Although ADMM-based algorithms are known to converge
sub-linearly for convex problems [24], we prove that the
DOT-ADMM achieves linear convergence for these specific
dynamic consensus problems, which is a major contribution
of the paper. We achieve this by deriving the explicit im-
plementation of its updates and by showing that they are
globally metric subregular [25, Section IV.B]. This, together
with the averagedness property guaranteed by the convexity
of the problem, turns out to be sufficient for global linear
convergence without the strong convexity assumption.

Related literature. We briefly review state-of-the-art pro-
tocols that work in the discrete-time framework and share
characteristics with our proposed protocols, such as ro-
bustness to re-initialization errors and the ability to handle
arbitrary and unbounded reference signals with bounded
derivatives.

(Average) - The protocol proposed by Montijano et al.
in [26], tracks asymptotically the time-varying average with
bounded steady-state error by means of damping factors but
needs knowledge of the reference signals’ derivative. In con-
trast, the multi-stage dynamic average consensus (MSDAC)
protocol proposed by Franceschelli et al. [19] does not re-
quire such knowledge by employing a multi-stage scheme of
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protocol by Freeman et al. [3], and converges asymptotically
with a steady-state error that decreases geometrically with the
number of stages.

(Maximum) - Among the three different protocols we have
proposed to solve the dynamic version of the max-consensus
problem [6], [7], [27], the best performing is the self-tuning
dynamic max-consensus (STDMC) protocol, whose steady-
state error can be made arbitrarily small and is decoupled
by design from the tracking error which can be traded-off
for improved convergence time. All these protocols converge
in finite time but require the knowledge of a bound on the
reference signals’ derivative.

(Median) - The only protocol in the current literature that
enables the distributed tracking of time-varying median value
of locally measured signals in the discrete-time framework
has been developed by Vasiljevic et. al in [10], which we
refer to as the dynamic median consensus (DMEC) protocol,
building upon [28]. The protocol of Yu et al. [29], while
relevant, only considers essentially constant reference signals
affected by decaying bias and white noise.

Structure of the paper. Notation and preliminaries are
presented in Section II. The dynamic consensus problems
on the average, maximum, and minimum function are for-
mulated as distributed time-varying optimization problems
in Section III, while operator-theoretical protocols to solve
them are derived and characterized in Section IV. Section V
provides numerical simulations substantiating the theoretical
results and a comparison with state-of-the-art protocols.

II. NOTATION AND PRELIMINARIES

Matrices M ∈ Rn×n are denoted by uppercase letters,
vectors v ∈ Rn by boldface bold letters, scalars s ∈ R
by lowercase nonbold letters, while sets and spaces S are
denoted by uppercase calligraphic letters. The vectors of ones
and zeros are denoted by 1 and 0, respectively.

A. Networks and graphs

We consider networks modeled by graphs G = (V, E),
where V = {1, . . . , n} with n ∈ N is the set of nodes, and
E ⊆ V×V is the set of edges connecting the nodes. A graph
is said to be undirected if for any edge (i, j) ∈ E there is also
(j, i) ∈ E . A path between two nodes i, j ∈ V is a sequence
of consecutive edges πij = (i, p), (p, q), . . . , (r, s), (s, j)
where each successive edge shares a node with its prede-
cessor. An undirected graph G is said to be connected if
there exists a path πij between any pair of nodes i, j ∈
V . The set of neighbors of the i-th node is denoted by
Ni = {j ∈ V : (i, j) ∈ E}.

B. Rate of convergence

A sequence s(k) is said to converge to an interval
[a, b] ⊂ R if there is k∗ ∈ R ∪ {∞} such that

lim
k→k∗

s(k) ∈ [a, b], and s(k) ∈ [a, b] for ∀k ≥ k∗.

The convergence occurs in finite time if k∗ ∈ R and asymp-
totically if k∗ = ∞. Moreover, if a = b = s∗, s(k) is said to

converge to the value s∗. We denote the distance from the
sequence s(k) to the interval [a, b] by

|s(k)− [a, b]| = max{0, a− s(k), s(k)− b}.
Definition 1: Let s(k) be a sequence converging to [a, b]
at k∗. The convergence is Q-linear if there is µ ∈ (0, 1)
such that

lim
k→k∗

|s(k)− [a, b]|
|s(k − 1)− [a, b]| = µ. (1)

The convergence is R-linear if there is a sequence q(k) that
converges Q-linearly to zero such that

|s(k)− [a, b]| ≤ q(k), ∀k ∈ N. (2)

III. PROBLEM STATEMENT

Consider a network of n agents modeled as discrete-time
k ∈ N dynamical systems with scalar state xi(k) ∈ R for
i = 1, . . . , n. The i-th agent has access to a scalar time-
varying reference signal ui(k) ∈ R and interacts with other
agents according to an undirected graph G = (V, E). The
agents can only exchange information about their states xi(k)
but not about the reference signals ui(k) they have access
to, which are assumed to have bounded derivatives but may
be unbounded in value, as formalized next.

Assumption 1: There exists a finite bound σ ∈ [0,∞) such
that all reference signals observed by the agents satisfy

|ui(k + 1)− ui(k)| ≤ σ, ∀i = 1, . . . , n.

The dynamic consensus problem consists in the design
of proper local interaction rules to enable the tracking of
a function obj(u(k)) of the time-varying reference signals
ui(k) ∈ R stacked into u(k) ∈ Rn. In particular, we are
mainly interested in the following three functions: the aver-
age and maximum functions, which are defined by

avg(u(k)) =
1

n

n∑
i=1

ui(k), max(u(k)) = max
i=1,...,n

ui(k),

and the median function, which, letting u1(k), . . . , un(k) be
sorted in ascending order, is defined by

med(u(k)) =

{
un+1

2
(k) if n is odd

1
2 (un

2
(k) + un

2 +1(k)) if n is even
.

Letting x(k) be the vector stacking all agents’ states and
obj ∈ {avg,max,med} be the function to be tracked, we
will characterize the performance of the proposed protocols
in terms of the tracking error e(k) = ||x(k)− obj(u(k))1||.
A. Optimization problem description

The dynamic consensus problems on average, maximum,
and median functions can be recast as distributed time-
varying optimization problems of the following type

x∗(k) = argmin
x1,...,xn

n∑
i=1

1

p
|xi − ui(k)|p

s.t. xi = xj ∀ (i, j) ∈ E
xi ∈ Xi,k ∀ i ∈ V.

(3)
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Indeed, we have the following basic result.

Proposition 1: Consider a network of n agents interacting
according to an undirected graph G = (V, E) and consider
the optimization problem in eq. (3). If G is connected then
there exists x∗

k ∈ R such that x∗(k) = x∗
k1. Moreover:

i) If p=2 and Xi,k=R, then x∗
k=avg(u(k));

ii) If p=2 and Xi,k={x≥ui(k)}, then x∗
k=max(u(k));

iii) If p=1 and Xi,k=R, then x∗
k=med(u(k)).

Proof: The optimization problem is separable over the
single components xi, which are constrained to be all equal,
i.e., xi = xj for any i, j ∈ V due to the connectedness of
graph G. Thus, there exists x∗

k ∈ R such that x∗
i (k) = x∗

k for
all i ∈ V . Letting X̃k = X 1

k ∩ · · · ∩ Xn
k , x∗

k is then solution
of the following optimization problem,

x∗
k = argmin

x∈X̃k

{
1

p

n∑
i=1

|x− ui(k)|p
}
. (4)

i) If Xi,k = R then X̃k = R, and if p = 2 the solution x∗
k

to problem (4) is the average avg(u) (cfr. [30]);
ii) If Xi,k = {x ≥ ui(k)} then X̃k = {x ≥ max(u(k))},

and if p = 2 the solution x∗
k to problem (4) is the

maximum max(u) (cfr. [31]);
iii) If Xi,k = R then X̃k = R, and if p = 1 the solution x∗

k

to problem (4) is the median med(u) (cfr. [28]).

IV. ADMM PROTOCOLS FOR DYNAMIC CONSENSUS

The implicit updates of the distributed operator theoretical
alternating direction method of multipliers (DOT-ADMM)
applied to a distributed optimization problem in the form of
eq. (3) over a network G = (V, E) are given by (cfr. [23,
Section III-B] or [22, Section III]),

xi(k)=argmin
xi∈Xi,k

{
gi,k(xi)+

ρηi
2

x2
i−xi

∑
j∈Ni

zij(k−1)

}
(5a)

zij(k)=(1−α)zij(k−1)+α(2ρxj(k)−zji(k−1)). (5b)

where gi,k(xi) =
1
2 |xi − ui(k)|p; xi ∈ R with (i, j) ∈ V are

the primary variables tracking the objective function; zij ∈ R
with (i, j) ∈ E are auxiliary variables maintained by agent i
and sent to agent j; α ∈ (0, 1) and ρ > 0 are free parameters.
We provide in the following lemmas the explicit updates
of the internal variable xi(k) in eq. (5a) for each objective
function of interest.

Lemma 1 (Average): The explicit DOT-ADMM update in
eq. (5a) which solves the “dynamic average consensus”
problem over a connected network G is given by

xi(k) =
ui(k) +

∑
j∈Ni

zij(k − 1)

1 + ρηi
.

Proof: According to Proposition 1, the dynamic av-
erage consensus problem corresponds to the cost functions
gi(xi) =

1
2 (xi−ui(k))

2 without constraints Xi,k = R. Then,
the function fi(xi) to be minimized in eq. (5a) is quadratic,

fi(xi) =
1

2
ax2

i − bxi + c (6)

where a = 1+ρηi and b = ui(k)+
∑

j∈Ni
zij(k−1). Since

fi is strongly convex, we can compute its unique minimizer
by finding the stationary point of the derivative ∂fi = axi−b
that is xi = b/a, which concludes the proof.

Remark 1: The algorithm provided by Lemma 1 is a special
case of the algorithm proposed in [30], which addresses
the more complicated scenario of asynchronous, noisy and
unreliable communications.

Lemma 2 (Maximum): The explicit DOT-ADMM update in
eq. (5a) which solves the “dynamic maximum consensus”
problem over a connected network G is given by

xi(k) = max

{
ui(k),

ui(k) +
∑

j∈Ni
zij(k − 1)

1 + ρηi

}
.

Proof: According to Proposition 1, the dynamic max-
imum consensus problem corresponds to the cost func-
tions gi(xi) = 1

2 (xi − ui(k))
2 with constraint sets

Xi,k = {x ≥ u(ik)}. Then, the function fi(xi) to be mini-
mized in eq. (5a) is quadratic as in eq. (6) where a = 1+ρηi
and b = ui(k)+

∑
j∈Ni

zij(k−1). Due to the constraint set,
we derive the KKT conditions are as follows [32, Chapter 5].

(stationarity) axi − b− λ = 0 (7)
(complementary slackness) λ(ui(k)− xi) = 0 (8)

(primal feasibility) ui(k)− xi ≤ 0 (9)
(dual feasibility) λ ≥ 0. (10)

By substituting the value of xi obtained from eq. (7) into eq.
(9) one gets λ ≥ aui(k)−b. To ensure that also (8) and (10)
are satisfied, it must be λ = max {aui(k)− b, 0}. Substi-
tuting this value into eq (7) yields xi = max{ui(k), b/a},
completing the proof.

Lemma 3 (Median): The explicit DOT-ADMM update in
eq. (5) which solves the “dynamic median consensus” prob-
lem over a connected network G is given by

xi(k) = ui(k) +max{θ−i − ui(k), 0}+min{θ+i − ui(k), 0}

where

θ±i (k) =

∑
j∈Ni

zij(k − 1)± 1

ρηi
.

Proof: According to Proposition 1, the dynamic me-
dian consensus problem corresponds to the cost functions
gi(xi) = |xi − ui(k)| without constraints Xi,k = R. Then,
the update in eq. (5a) can be rewritten as follows,

xi(k) = prox1/ρηi
gi,k

( 1

ρηi

∑
j∈Ni

zij(k − 1)
)
.

where the proximal operator is defined by proxλf (y) :=

argminx{f(x) + 1
2λ ||x− y||2}. Exploiting the composi-

tion property, i.e., proxgi,k(v) = ui(k) + prox|·|(v − ui(k))
(see [32, Section 2.2]), and the specific form of the
proximal operator associated to the absolute function, i.e.,
proxλ|·|(v) = max{v − λ, 0}+min{v + λ, 0} (see [32, Sec-
tion 6.3.2]), the thesis follows.
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We next prove that the convergence rate of the ADMM
protocols for the estimate of the average, maximum, and
median values is R-linear according to Definition 1. More
precisely, Theorem 1 proves that the error converges R-
linearly to an upper bound that depends on the bound σ ≥ 0
on the reference signals’ derivatives as well as on the topo-
logical network structure. Consequently, Corollary 1 remarks
that for constant reference signals the error converges to zero.

Theorem 1: Consider a network G = (V, E) executing the
protocol in eq. (5) to solve the dynamic consensus problem
on the function obj ∈ {avg,max,med} in the case of time-
varying reference signals ui(k) with bounded derivative
σ ≥ 0 as in Assumption 1. If the graph G is connected,
the tracking error e(k) = ||x(k)− obj(u(k))1|| converges
R-linearly to an interval [0, ε], where ε ∝ σ

√
|E|.

Corollary 1: Consider the set-up of Theorem 1 when the
reference signals are constant, i.e., σ = 0. If the graph G
is connected, the tracking error e(k) = ||x(k)− obj(u)1||
converges R-linearly to zero.

Proof of Theorem 1: Let x ∈ Rn, z ∈ R|E| be the vectors
stacking xi ∈ R and zij ∈ R with j ∈ Ni, respectively.
From the component-wise DOT-ADMM updates in eq. (5),
one can notice that x(k), z(k) are time-varying functions of
z(k − 1),

x(k) = Fk(z(k − 1)),

z(k) = Tα
k (z(k − 1))

where the explicit forms of Fk : R|E| → Rn are given
component-wise by Lemmas 1-2-3 when the function to be
tracked is the average, maximum or median, respectively, and
where Tα

k is a convex combination of the identity operator
Id and the function Tk : R|E| → R|E|, as follows

Tα
k := (1− α)Id+ αTk,

Tk := 2ρPAFk − P Id,
(11)

with P ∈ {0, 1}|E|×|E| being a permutation matrix swapping
(i, j) ∈ E with (j, i) ∈ E and A ∈ {0, 1}|E|×n being
a block diagonal matrix where each block is the vector
1ηi

. By further defining the projection operator over a
non-empty, closed and convex set X , by projX (y) =
arginfx∈X ||x− y||2, the thesis follows by two intermediate
results:

a) There exist δ ∝ σ
√

|E| such that the distance of z(k)
from the set of fixed points of Tk given by

d(k) :=
∣∣∣∣∣∣z(k)− projfix(Tk)

(z(k))
∣∣∣∣∣∣

converges Q-linearly to [0, δ];
b) There exist c ≥ 0 such that

|e(k)− [0, cδ]| ≤ c|d(k)− [0, δ]|.
Indeed, if claim a) holds then |d(k)− [0, δ]| converges
Q-linearly to zero and, in turn, e(k) converges R-linearly
to [0, ε] where ε = cδ ∝ σ

√
|E|, completing the proof.

Proof of claim a): Since the updates z(k) = Tα
k (z(k−1))

are the result of the application of the Peaceman-Rachford

operator to the dual problem in eq. (3), the operator Tα
k is

α-averaged as long as the costs are convex [33, p. 28] as it is
the case for the average, the maximum, and the median. By
construction, the fixed points of Tα

k coincide with those of
Tk, and thus for any fixed point ẑ ∈ fix(Tk), α-averagedness
of Tα

k implies that

||Tα
k (z)− ẑ||2 ≤ ||z − ẑ||2 − 1− α

α
||z − Tα

k (z)||2. (12)

Moreover, since both Fk and Tk are piece-wise affine as
previously pointed out, the map Tα

k is piece-wise affine too,
and thus also globally metric subregular [25, section IV.B],
i.e., there is a constant γ > 1/2α such that, cfr. [25, eq. (8)],

dTk
(z) :=

∣∣∣∣∣∣z − projfix(Tk)
(z)

∣∣∣∣∣∣ ≤ γ||z − Tα
k (z)||, (13)

where dTk
(z) denotes the distance of z from fix(Tk). Note

that for z = z(k), then d(k) ≡ dTk
(z(k)). The following

chain of inequality holds

dTk
(z(k))2

(i)

≤
∣∣∣∣∣∣z(k)−projfix(Tk)

(z(k−1))
∣∣∣∣∣∣2

(ii)

≤ dTk
(z(k−1))2− 1−α

α
||z(k−1)−z(k)||2

(iii)

≤ dTk
(z(k−1))2− 1−α

αγ2
dTk

(z(k−1))2

where (i) holds by definition of the projection operator; (ii)
holds by averagedness in eq. (12); and (iii) holds by global
metric subregularity in eq. (13). Thus, we can write

dTk
(z(k)) ≤ µ dTk

(z(k − 1)), µ :=

√
1− 1− α

αγ2
, (14)

where µ ∈ (0, 1) for any choice of α ∈ (0, 1) and γ ≥ 1/2α.
Eq. (14) means that the application of map Tα

k reduces
the distance to its set of fixed points fix(Tα

k ) ≡ fix(Tk).
However, the set of fixed points at k is different from that at
k− 1, thus we further need to characterize how the distance
dTk

(z(k)) is compared to dTk−1
(z(k − 1)). By substituting

the optimal solution x∗(k) = Fk(z(k − 1)) = obj(u(k))1
given by Proposition 1 into eq. (11), the set of fixed points
at time k results in

fix(Tk) = {z ∈ Rn |Mz = ρ obj(u(k))1},

where M = (I+P )/2 is such that1 M2 = M and M† = M .
Since fix(Tk) is an affine set, by [34, section 6.2.2] the
projection onto it of any z is given by

projfix(Tk)
(z) = z −M† (Mz − ρ obj(u(k))1)

= z −
(
M†Mz − ρ obj(u(k))M†1

)
= (I −M)z + ρ obj(u(k))1

(15)

1It follows by the facts that P is symmetric P⊤ = P , row-stochastic
P1 = 1, and a permutation of order 2, i.e., P 2 = I
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Thus, the following chain of inequalities holds

dTk
(z(k))

(i)

≤µdTk
(z(k−1))

=µ
∣∣∣∣∣∣z(k−1)−projfix(Tk)

(z(k−1))
∣∣∣∣∣∣

≤µ
∣∣∣∣∣∣z(k−1)−projfix(Tk)

(z(k−1))±projfix(Tk−1)
(z(k−1))

∣∣∣∣∣∣
(ii)

≤ µ
∣∣∣∣∣∣z(k−1)−projfix(Tk−1)

(z(k−1))
∣∣∣∣∣∣

+µ
∣∣∣∣∣∣projfix(Tk)

(z(k−1))−projfix(Tk−1)
(z(k−1))

∣∣∣∣∣∣
(iii)

≤ µ
(
dTk−1

(z(k−1))+||ρ(obj(u(k))−obj(u(k−1)))1||
)

(iv)

≤ µ
(
dTk−1

(z(k−1))+ρσ||1||
)

(v)

≤µ
(
dTk−1

(z(k−1))+ρσ
√
|E|

)
where (i) holds with µ ∈ (0, 1) by eq. (14); (ii) follows by
triangle inequality; (iii) by the specific form of the projection
onto an affine set in eq. (15); (iv) by the assumption on the
boundedness of the reference signals’ derivative; (v) holds
since |E| is the number of components of z(k). Recalling
that d(k) ≡ dTk

(z(k)), letting τ := ρσ
√
|E| yields

d(k) ≤ µ(d(k − 1) + τ). (16)

Moreover, iterating eq. (16) over k yields

d(k) ≤ µkd(0) + τµ

k−1∑
i=0

µi ≤ µkd(0) +
τµ

1− µ

where the last inequality follows by the limit for k → ∞ of
the geometric series with µ ∈ (0, 1). Thus, it holds

lim
k→∞

d(k) ≤ τµ

1− µ
=: δ (17)

i.e., d(k) converges to the interval [0, δ], and, moreover,

∃k∗ ∈ R ∪ {∞} :

{
d(k) > δ if k < k∗

d(k) ∈ [0, δ] otherwise
. (18)

We now show that d(k) converges Q-linearly to [0, δ] for
k ∈ [0, k∗), such that d(k) > δ and d(k− 1) > δ, as follows

|d(k)−[0,δ]|
|d(k−1)−[0,δ]| ≤

µd(k−1)+µτ−δ

d(k−1)−δ
≤µ(d(k−1)−δ)

d(k−1)−δ
=µ.

Proof of claim b): Since x(k) is an internal variable of
the update of z(k), then one can show that the error e(k)
can be upper-bounded as follows, cfr. [23, eq. (18)],

e(k) ≤ cd(k), for some c > 0.

Due to eq. (17), in the limit of k → ∞ it holds

lim
k→∞

e(k) ≤ lim
k→∞

cd(k) ≤ cδ,

i.e., e(k) converges to the interval [0, cδ], and, in turn,

|e(k)− [0, cδ]| ≤ c|d(k)− [0, δ]|, k ∈ [0, k∗).

V. NUMERICAL SIMULATIONS

A. Linear convergence and robustness to re-initialization
We substantiate the linear convergence rate and the ro-

bustness to re-initialization by simulating a network of n = 5
agents interacting according to a line graph when the function
to be tracked varies with the maximum rate. Agents’ states
and reference signals are initialized as follows

x(0) = [0, 0.5, 1 , 1.5, 2]⊺, u(0) = [0, 0, 0, 2, 2]⊺.

In order to facilitate the interpretation of this simulation,
let us consider the simple yet not trivial scenario where
Assumption 1 holds with maximum derivative σ = 0.01 and
where the reference signals are time-varying according to

u(k + 1) =


u(k) + σ if k ∈ (0, 150]

u(k) if k ∈ (150, 300]

u(k)− σ if k ∈ (300, 600]

.

Note that more challenging behavior of the reference signals
can be addressed, as shown next in Section V-B. We also
simulate the unexpected disconnection of the 5-th agent from
the network at time k = 450. Thus, from k ≥ 450 the
network consists of only 4 agents and the function to be
tracked is affected by an abrupt change.

Fig. 1 shows the results of the simulation when the
function to be tracked is either the average, the maximum,
or the median, i.e., obj ∈ {avg,max,med}. One can verify
that the agents recover the tracking with linear convergence
every time the objective function changes behavior, i.e.,
at k = {150, 300, 450}, thus corroborating the results in
Theorem 1 and Corollary 1. We note that at k = 450 the
discontinuous change of the objective function due to the
disconnection of agent 5 does not disrupt the function of the
algorithm, which is able to recover the tracking with linear
convergence without requiring any re-initialization process.

.
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1

2

3

4

Step k

x
(k
)

avg(u(k)) max(u(k)) med(u(k))

.
0 150 300 450 600

10−12

10−9

10−6

10−3

100

Step k

|e(
k
)
−

ε|

Fig. 1: Evolution of a network, with n = 5 agents in a line
configuration, running the protocol in eq. (5) designed with
α = 0.5 and ρ = 2. The parameter ε denotes the empirical
bound on the tracking error e(k) characterized in Theorem 1.
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(a) The protocol in eq. (5) is designed with
α = 0.8 and ρ = 2; the MSDAC protocol
in [19] is designed with m = 40 stages,
α = 0.49 and ε = 0.027; the protocol in [5,
eq. (31)] is designed as in [5, Table 3].
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(b) The protocol in eq. (5) is designed with
α = 0.95 and ρ = 10; the STDMC protocol
in [6], [7] is designed with αMAX = 0.1 and
αMIN = 10−8.
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(c) The protocol in eq. (5) is designed with
α = 0.95 and ρ = 0.01; the protocol
in [10] is designed with α = 2, β = 0.001,
γ = 0.0005, and κ = 0.1.

Fig. 2: Comparison of the protocol in eq. (5) (orange) with the state-of-the-art (blue) on a network with n = 101 agents.

B. Comparison with the state-of-the-art
We compare our protocols to those proposed by Van Scoy

et al. in [5], [35], by Franceschelli et al. in [19], by Deplano
et al. in [6], [7] and by Vasiljevic et al. in [10] by considering
a network of n = 101 agents interacting according to a
random topology. The agents’ states are initialized uniformly
within the interval [0, 2], and the objective function to be
tracked is given by

obj(u(k)) = 20 sin

(
k

100

)
. (19)

This scenario is similar to simulations in [19, Fig. 3], [7,
Fig. 4 ], [10, Fig. 10], thus making the comparison fair.

Dynamic average consensus. Fig. 2a shows the results
of the comparative simulation with the MSDAC protocol
proposed by Franceschelli et al. in in [19] and the protocol
proposed by Van Scoy in [35], which has been included
in the recent review [5] due to its robustness to initial
conditions and its accelerated convergence time. In order
to get a reasonable tracking error, we have designed the
MSDAC protocol with a large number of stages equal to
m = 40, thus yielding to a delayed tracking of the time-
varying average of about 70 time steps. A similar effect arises
also with the protocol in eq. (5), which is, however, much
smaller. The design of the protocol in [35] has been carried
out according to [5, Table 3], which optimizes the asymptotic
convergence rate over the set of connected undirected graphs.
Nevertheless, Fig. 2a reveals that all protocols have similar
convergence rates. Moreover, the protocol in [35] does not
guarantee that all agents achieve a good estimation of the
time-varying average value, in contrast to the proposed
protocol.

Dynamic max-consensus. To our knowledge, the only
protocol in the current literature to solve the dynamic max-
consensus problem in discrete-time multi-agent systems has
been developed by Deplano et al. in [7], then extended in [6].
Fig. 2b shows the results of the comparative simulation with
the STDMC Protocol in [6], [7] in the case the agents do
not know a correct upper bound to the derivative of the
reference signals. This scenario emphasizes the disadvantage
of the STDMC Protocol, i.e., the requirement that the bound
σ on the reference signals’ derivative is known locally by
the agents. Indeed, every time the reference signal decreases
at a rate greater than expected, the track is lost by STDMC
Protocol, while this is not the case for our protocol in eq. (5),
which maintains the tracking all the time.

Dynamic median consensus. Fig. 2c shows the results
of the comparative simulation with the protocol proposed
by Vasiljevic et. al in [10], which fails in the proposed
scenario, while the proposed protocol succeeds. Even though
we have exhaustively tried all combinations of the tuning
parameters for the protocol in [10], it never worked. In our
opinion, this is because the authors of [10] have considered
reference signals with very similar behavior, i.e., they are
all equal up to a constant factor (see Fig. 4 in [10]). This
scenario is very similar to that considered in [29], which
is, however, a much simpler set-up than the one considered
in this manuscript. Indeed, in our simulations, the inputs
have all different behaviors, which may be the reason for
the failure of the protocol in [10]. This proves the protocol
proposed in this work for the dynamic tracking of the median
value is the first in the current literature which can actually
deal with heterogeneous time-varying reference signals.
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VI. CONCLUSIONS

A unified analysis technique is employed to prove the
linear convergence of original local interaction protocols
that solve the dynamic consensus problem on the average,
maximum, and median functions. The central feature of this
technique is the use of the metric subregularity property [25,
section IV.B] which is inherent in the proposed protocols
due to their piece-wise affinity. Future research will focus
on characterizing the linear convergence rate µ in eq. (14),
which is closely correlated to the constant γ of metric
subregularity. This would allow for the exploration of optimal
parameter designs in terms of convergence time and tracking
error.
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