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Abstract— A prominent feature of biological organization
in many species of social animals is the ability to achieve
cooperation. However, despite its predominance in natural
evolution, cooperative behaviors come at a cost, typically in
the form of do ut des mechanisms (e.g., reciprocal altruism in
vampire bats) with given thresholds for sharing resources or
communication efforts. In this paper, we investigate the condi-
tions of cooperation through the evolutionary dynamics of the
prisoner’s dilemma (PD) game as well as the learning dynamics
resulting from the corresponding multi-agent reinforcement
learning (MARL) model. In both cases, the interactions in the
population are captured by a regular network and the impact
of the players’ actions is reflected through the evolution of an
environmental resource, which also acts as a feedback on the
dynamics. The following is a list of contributions: i) we provide a
full characterization of the stability properties of the networked
feedback-evolving PD game; ii) we determine a set of threshold
values below which cooperation is promoted; iii) we develop
the corresponding cross-learning model, which is a stateless
MARL model, and we show that this model is equivalent to
the networked PD game with environmental feedback.

I. INTRODUCTION

Since the pioneering work by Smith and Price on evolu-
tionary game theory in 1973 and 1982 [1], [2], the combined
efforts by the research community have led to a more
precise understanding of the dynamics of natural evolution
in terms of the strategic interactions in a population of
decision-makers. Scrupulous attention has been given to the
conditions for cooperation to thrive in a population of selfish
decision-makers. Indeed, the prominent work by Axelrod and
Hamilton was one of the first and more prominent works
to address this topic within the context of the Prisoner’s
Dilemma (PD) game [3].

Understanding the conditions for cooperation to thrive and
prosper has always fascinated scholars, especially when they
rely on the animal kingdom for inspiration. Examples of co-
operative behaviors are frequent in nature, such as reciprocal
altruism in clouds of vampire bats [4] and collective decision-
making in honeybee swarms [5]. However, especially in the
latter case, cooperation is achieved when the resource sharing
is limited to a certain threshold, determining a watershed on
the amount of interactions in the swarm [6].

In the vast body of literature on social dilemmas, the
majority of early studies considered well-mixed populations,
namely, where every member interacts with everyone else.
However, this is a significant limiting assumption, as it is not
able to capture a finer level of interactions. To overcome this
limitation, the contribution in [7] and in [8] were some of the
first attempts to investigate structured populations in the PD
game. The main difference with the classical formulation of

the game dynamics is that players are now edges of a network
and communicate via a number of edges. This results in the
death of players with lower fitness in favor of those with
higher fitness. The means for it to happen is given via a
number of update rules, of which the most popular are: Birth-
Death (BD), Death-Birth (DB) and Imitation (IM) [9], [10].

More recently, the introduction of game-environment feed-
back mechanisms have sparked growing interest in the
research community [11], [12]. The intuition is that the
evolution of the frequencies of strategies is coupled with the
evolution of an environmental resource which in turn acts as
a feedback on the population dynamics. This approach has
led to interesting applications for its ability to capture the
complexity of many real systems in a range of disciplines,
including social sciences, economics and biology [13]–[16].
In the same line of research, we previously investigated
irrational behaviors via prospect theory [17] and the impact
of the interactions on cooperation [18].

Furthermore, motivated by the increasing attention re-
ceived by machine learning (ML), we have studied the
overlap between evolutionary dynamics and multi-agent re-
inforcement learning (MARL). Gaining qualitative insights
into the learning dynamics of MARL is a persistent chal-
lenge. In the past decade, evolutionary dynamics have de-
veloped a range of MARL algorithms, providing a range
of approaches in different circumstances [20]. The formal
link between evolutionary dynamics and MARL was first
established by Börgers and Sarin in 1997 [21]. They demon-
strated a formal relationship between cross learning [19]
and replicator dynamics in formal games where the set of
available actions is discrete. The works that followed, e.g.,
see [22] and [23], extended this link to formal games with
continuous action spaces. Other works also demonstrated
the applicability of this approach to stochastic games with
discrete actions [24]–[26]. More recently, research by Perolat
et al. has shown that replicator dynamics can be used to
develop algorithms under specific design choices [27]. Using
this approach, reinforcement learning agents have mastered
the Stratego game, to name an example.

Highlights of contributions. The contribution of this paper
is threefold. First, we provide a full characterization of the
stability properties of the networked feedback-evolving PD
game under any choice of the system parameters. The net-
work topology is captured by a regular network of degree k.
Second, we extend previous works in the literature by giving
a precise equivalent of the thresholds for the most common
update rules, namely, Birth-Death (BD), Death-Birth (DB)
and Imitation (IM). Third, motivated by the popularity of
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MARL, we develop the MARL model corresponding to the
networked PD game with environmental feedback where
we introduce the network topology and the environmental
resource as elements of novelty. We call the proposed model
networked resource-evolving cross learning, in line with the
stateless MARL model called cross learning.

This paper is organized as follows. After the notation, we
introduce our model in Section II. In Section III, we carry
out the stability analysis of this model to fully characterize
the stability properties of this system. In Section IV, we
formulate the corresponding MARL model in the stateless
setting. In Section V, we provide two sets of simulations to
corroborate the theoretical results. Finally, in Section VI, we
draw conclusions and discuss future research.

II. NETWORKED FEEDBACK-EVOLVING PD MODEL

In this section, we introduce the networked PD game
model. The evolution of the frequencies of the strategies
are given by xk and (1 − xk) (because of the conservation
of mass law) representing the portion of the population
choosing to cooperate and to defect, respectively, subject to a
regular network of degree k. The evolution of these frequen-
cies is mutually dependent on an environmental resource n.
This resource evolves over time as a result of the population
dynamics and, in turn, acts as a feedback onto the population
dynamics via the payoff matrix A(n).

In line with the framework originating in [11], let the
environment-dependent payoff matrix be defined as:

A(n) = (1− n)

[
T P
R S

]
+ n

[
R S
T P

]
=

[
T − nδTR P − nδPS

R+ nδTR S + nδPS

]
,

(1)

where δTR = T −R and δPS = P − S, and the parameters
obey the following inequality T > R > P > S. The above
matrix can be given a physical interpretation by considering
the embedded symmetry of the two parts of the matrix: when
the value of the environmental resource is large, players are
incentivized to defect (as each player can attain a portion of
the resource), shifting the matrix towards a PD game (where
defection is the Nash equilibrium). On the other hand, when
the resource is scarce, players will find it more rewarding to
cooperate (shifting the matrix towards the Harmony game,
i.e., cooperation is the Nash equilibrium) [11].

For the evolutionary game dynamics on a regular graph of
degree k can be described by the following transformation
of the payoff matrix A: [aij ] → [aij + bij(k)], where aij
represents the (i, j) entry of the original payoff matrix A
and bij(k) is the players’ interactions parameter whose value
depends on the degree of the network k and on the update
rule chosen. In [9], the authors derive three update rules:

• In the Birth-Death (BD) rule, a node is selected with a
probability proportional to its fitness, and one of its k
neighbors at random is replaced by the offspring:

bij(k) =
aii + aij − aji − ajj

k − 2
.
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Fig. 1. Qualitative classification of the system dynamics in terms of the
possible combinations of payoffs and network thresholds for the DB and
IM update rules (hence, the general terms µ1 and µ2). Locally stable and
unstable points are denoted by a blue circle and an empty circle, respectively.

• In the Death-Birth (DB) rule, a node is selected at
random, and one of its k neighbors replaces it with its
offspring with a probability proportional to their fitness:

bij(k) =
(k + 1)aii + aij − aji − (k + 1)ajj

(k + 1)(k − 2)
.

• The Imitation (IM) rule, a node is randomly chosen to
update its strategy by imitating one of its k neighbours
proportionally to their fitness:

bij(k) =
(k + 3)aii + 3aij − 3aji − (k + 3)ajj

(k + 3)(k − 2)
.

Note that regardless of the update rule chosen, bii(k) = 0.
Under weak selection and pair approximation (see [7], [9]),
the networked PD game model with environmental feedback
resulting from the replicator equation is [18]:

ϵẋ = x(1− x)[(δPS + (δTR − δPS)x)(1− 2n) + b12(k)],
ṅ = n(1− n)[(1 + λ)x− 1],

(2)
where the term n(1 − n) is used to ensure that the state
of the environment is within the domain [0, 1]. Parameter ϵ
denotes the rate at which the population dynamics change
the environment and parameter λ > 0 represents the ratio
between enhancement and degradation effects in the envi-
ronment: when λ < 1, the degradation effect is stronger than
the enhancement effect and vice versa when λ > 1; when
λ = 1, the two effects are balanced.

III. STABILITY ANALYSIS

In this section, we investigate the stability of system (2).
We provide an initial result in the following lemma.
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Lemma 1: Consider system (2). This system has 7 fixed
points, as listed in Table I.

Proof: The proof is straightforward and we refer the
reader to [18].

Remark. A physical interpretation of these equilibria is
to have full cooperation or full defection in a depleted or
replete environments, or the case of mixed populations in an
intermediate environment.

Now, we investigate the stability of the fixed point stated in
the above lemma. To this end, we consider the three update
rules introduced in the previous section and formulate the
corresponding thresholds. To this end, let the threshold for
the BD, DB and IM rules be, respectively:

µBD:=1− δPS/δTR, (3)

µDB1:=
T − P +

√
(P − T )2 − 4δTR(δPS − δTR)

2δTR
, (4)

µDB2:=
T − P − Sλ+Rλ+

√
α

2(δTR + δPSλ)
, (5)

µIM1:=
−(T − 2R+ P ) +

√
γ

2δTR
, (6)

µIM2:=
−(T − 2R+ P + 2pλ− sλ−Rλ) +

√
β

2(δTR + δPSλ)
, (7)

where α = (P − T + Sλ− Rλ)2 − 4(δTR + δPSλ)(δTR −
δPS)(λ − 1), β = (T − 2R + P + 2Pλ − Sλ − Rλ)2 −
4(δTR+ δPSλ)(3P +3R−S− 5T )(1−λ), γ = (T − 2R+
P )2 − 4δTR(3P + 3R− S − 5T ).

A major difference with the standard PD game is that the
DB and IM rules have now two thresholds. Figure 1 depicts
the system dynamics for the DB and IM rules.

Theorem 1: Consider system (2) and the BD update rule.
All fixed points are unstable regardless of the value of k. The
system exhibits closed periodic orbits centred at the fixed
point VII.

Proof: To study the stability of this system, we derive
the Jacobian:

J(x, n) =

[
J11 J12
J21 J22

]
,

where J11 = (1−2x)[(δPS+(δTR−δPS)x)(1−2n)+b12]+
x(1 − x)(1 − 2n)(δTR − δPS), J12 = −2x(1 − x)[δPS +
(δTR − δPS)x], J21 = n(1 − n)(1 + λ) and J22 = (1 −
2n)[(1 + λ)x− 1]. Linearizing the Jacobian about point VII
yields:

J(x, n) =

[
0 −2λ(δTR+δPSλ)

(1+λ)3
1+λ
4 0

]
.

The eigenvalues of the above Jacobian have no real part,
indicating that the point VII is a center. A similar conclusion
can be drawn for the other fixed points.

Theorem 2: Consider system (2) under the DB update
rule. The stability of this system can be fully characterized

by parameters δPS , δTR, k as in the following.
Case 1: δTR > δPS .

a) When k < µDB1, the trajectories converge to point IV.
b) When µDB2 > k > µDB1, they converge to point VI.
c) When k > µDB2, they converge to point VII.

Case 2: δTR < δPS .
a) When k < µDB1, the only stable point is point IV.
b) When k > µDB1, all fixed points are unstable.

Case 3: δTR = δPS .
a) When k < µDB1, the only stable point is point IV.
b) When k > µDB1, the trajectories are closed periodic

orbits centred at point VII.
Proof: The proof is divided into three parts. In the first

part, we analyze whether the fixed points exist in the given
domain. In the second part, we study the stability of each
point. In the third part, the results of the first two parts are
combined to determine the stability property of the system.
This proof only contains three points: IV, VI, and VII. For
the sake of conciseness, we restrict the proof to Case 1, i.e.,
δTR > δPS . This proof relies on an assumption k ≥ 3, which
must be true when we use the DB update rule.

Part 1. Only points VI and VII need to be analysed to see
if they are in the domain of available values. For point VI,
the condition for its existence is

0 ≤ −(b12(k)− δPS)/(δPS − δTR) ≤ 1.

As T > R > P > S holds and δPS < δTR. The equation
above yields δPS ≤ b12(k) ≤ δTR. As for point VII, the
condition for its existence is

0 ≤ (b12(k)+ δTR + b12(k)λ+ δPSλ)/2(δTR + δPSλ) ≤ 1,

for which we have b12(k) ≤ (δTR + δPSλ)/(1 + λ).
Part 2. To study the stability of this system, we derive the

Jacobian as in the proof of Theorem 1. Linearizing about
point IV yields:

J(x, n) =

[
δTR − b12(k) 0

0 −λ

]
,

which is asymptotically stable when b12(k) ≥ δTR and
unstable otherwise (since one of the two eigenvalues would
be positive). Linearizing the Jacobian about point VI yields:

J(x, n) =

[ −(δPS−b12)(δTR−b12)

δTR−δPS

−b12(δPS−b12)(δTR−b12)

(δTR−δPS)2

0
δTR+δPSλ−b12λ−b12

δTR−δPS

]
,

where b12 in place of b12(k) for conciseness. This is asymp-
totically stable when

δTR + δPSλ− b12(k)λ− b12(k)

δTR− δPS
≤ 0,

which translates into b12(k) ≥ (δTR + δPSλ)/(1 + λ), and
unstable otherwise, since one of the two eigenvalues would
be positive. The other eigenvalue −(δPS−b12(k))(δTR−b12(k))

δTR−δPS

is always less than or equal to 0 when point VI exists. Finally,
linearizing the Jacobian about point VII yields:

J(x, n) =

[
λb12(δPS−δTR)

(1+λ)(δTR+δPSλ))

−2λ(δTR+δPSλ)

(1+λ)3

((δTR+δPSλ)2−b212(1+λ)2)(1+λ)

4(δTR+δPSλ)2
0

]
,
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TABLE I
LIST OF ALL THE FIXED POINTS FOR SYSTEM (2).

# x n

I 0 0
II 1 0
III 0 1
IV 1 1
V (b12(k) + δPS)/(δPS − δTR) 0
VI −(b12(k)− δPS)/(δPS − δTR) 1
VII 1/(λ+ 1) (b12(k) + δTR + b12λ+ δPSλ)/2(δTR + δPSλ)

from which it is evident that the top-left element is always
less than 0 since δPS < δTR. Similarly, the top-right element
is always less than 0. The bottom-left element is greater
than 0 if b12(k) ≤ (δTR + δPSλ)/(1 + λ) which is the
condition of existence of point VII in the given domain.
Therefore, according to the three equation above, point VII
is asymptotically stable when it exists.

Part 3. By combining the results obtained in Part 1 and 2,
it can be shown that point VII exists and is asymptotically
stable when b12(k) ≤ (δTR + δPSλ)/(1 + λ), which leads
to k > µDB2. Similarly, point VI is asymptotically stable
when δTR > b12(k) ≥ (δTR + δPSλ)/(1 + λ), which leads
to µDB1 < k < µDB2. Finally, point IV is asymptotically
stable when δTR ≤ b12(k), which leads to k < µDB1. This
concludes the proof.

Theorem 3: Consider system (2) under the IM update rule.
The stability of this system can be fully characterized by
parameters δPS , δTR, k as in the following.
Case 1: δTR > δPS .

a) When k < µIM1, the trajectories converge to point IV.
b) When µIM2 > k > µIM1, they converge to point VI.
c) When k > µIM2, they converge to point VII.

Case 2: δTR > δPS .

a) When k < µIM1, the only stable point is point IV.
b) When k > µIM1, all fixed points are unstable.

Case 3: δTR = δPS .

a) When k < µIM1, the only stable point is point IV.
b) When k > µIM1, the trajectories are closed periodic

orbits centred at point VII.
Proof: The proof of Theorem 3 is analogous to the

proof of Theorem 2, and it only differs on the calculation of
b12(k), resulting in different threshold values.

Remark. We can provide a physical interpretation of the
above results. In the case of low connectivity, namely, when
the node degree k is small, cooperation is the stable strategy
in a replete environment. As the connectivity of the network
increases above a certain threshold, the value parameters in
the payoff matrix determine different behaviors. Specifically,
if the sum of the anti-diagonal of A(n) is greater than
the sum of the diagonal of A(n), the population dynamics
converge to an equilibrium in mixed strategies. It is worth
noting that the internal fixed point exists only if (x⋆, n⋆) ≤
[0, 1]2, i.e., the values of x, n must be between 0 and 1.

IV. MULTI-AGENT REINFORCEMENT LEARNING

In this section, we first introduce a common state-less
model called cross learning and show the link between this
model and evolutionary dynamics. Then, we extend this
model to the networked PD game with environmental feed-
back. We call our proposed approach networked resource-
evolving cross learning (NRE cross learning).

Cross learning, a specific type of finite action-set learning
automata, is one of the most basic stateless reinforcement
learning algorithms which uses an approach that consists of
policy iteration. The basic idea is to start with a random
policy to explore the environment and learn from the actions.
The policy is then updated based on the reinforcement signal
obtained by the environment, which enables the agent to
learn the optimal policy and maximize the expected reward.
At the start of an epoch t, the agent randomly selects an
action a(t) from the set of available actions A. This choice
is based on the probability vector π(t), which is referred to
as strategy. After the action a(t) is selected, the environment
provides a reinforcement signal r(t) in the form of a reward.
Using this reward r(t), the automaton updates the policy π(t)
to the new policy π(t+ 1). The update rule is given below.

πi(t+ 1)← πi(t) +

{
αr(t)(1− πi(t)) if a(t) = i,

−αr(t)πi(t), otherwise,
(8)

where the reward signal is normalized, i.e., r(t) ∈ [0, 1],
in order to guarantee policy validity. Parameter α represents
the step size of the learning. We now present the following
lemma to prove the equivalence between evolutionary dy-
namics and cross learning in the two-player case, where a
population represents a player and the corrsponding proba-
bility of choosing one of the two actions [20].

Lemma 2: Consider a cross learning model in a PD game
between two players. If α → 0, then the trajectory of cross
learning converges to the trajectory of the PD game resulting
from the replicator dynamics.

Proof: Consider the replicator equation, given two
players x and y, and the corresponding payoff matrices A
and B. The change in strategy of player x over time can
then be written as:

dxi

dt
= xi[

∑
j aijyj −

∑
i xi

∑
j aijyj ]

= xi[(Ay)i − x⊤Ay]. (9)
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Similarly, the change of player y over time can then be
written as:

dyi
dt

= yi[(Bx)i − y⊤Bx]. (10)

Then, we consider a learning system using the same
matrices A and B, and let π := [π1, π2]

⊤ and σ := [σ1, σ2]
⊤

denote the policies of two agents. We now calculate the
expected change in the policy of player 1 as:

E(∆πi(t)) = πi(t+ 1)− πi(t)

= πi(t)α[E(ri(t))(1− πi(t))−
∑

j ̸=i(rj(t)πj(t))]

= πi(t)α[E(ri(t))−
∑

(rj(t)πj(t))]

= πi(t)α[(Aσ)i −
∑

((Aσ)jπj)]

= πi(t)α[(Aσ)i − π⊤Aσ]. (11)

Similarly, the expected change in the policy of the other
player can be derived as:

E(∆σi(t)) = σi(t)α[(Bσ)i − σ⊤Bπ]. (12)

If we treat the distribution of actions in the policy and the
population distribution equally, it can be seen that equations
(9)-(10) are equivalent to equations (11)-(12) but scaled by
α. This concludes the proof.

To model the environmental feedback, we add a resource
factor n to adjust the reward r(i) of the environment when
action i is taken. Meanwhile, every time the environment
receives a stimulus from the agent’s action, this resource
factor changes as a result. To ensure that the agent can
learn the best action in a competitive setting, the agent plays
the game with a mirror copy of itself, which imitates the
current policy of the agent in each game they play. The new
environment is given below:

R(t) = [aij(t) + bij(t, k)], (13)
n(t+ 1)← n(t) + n(t)(1− n(t))[(1 + λ)a(t)− 1],(14)

where R(t) represents the reward matrix. We denote the
actions of each player by a(t), using 1 and 0 for cooperation
and defection, respectively.

Starting with the result from Lemma 2, we can calculate
the expected change of the policy in the new environment:

E(∆πi(t)) = πi(t)α[(R(t)σ)i − π⊤R(t)σ]. (15)

In view of the identical policy adherence of agent 2 to that
of agent 1 at each step, upon incorporating the equation (13),
we can deduce the following:

E(∆π1(t)) = π1(t)α[(Aσ)1 − π⊤Aσ + b12(k)], (16)

which is same as population dynamics for system (2) scaled
by α. Analogously, the expected change of the environment
factor n can be calculated as:

E(∆n(t)) = n(t)(1− n(t))[(1 + λ)π1(t)− 1], (17)

which is the equivalent to the environmental feedback in
the second equation of system (2). The NRE cross learning
algorithm is shown in Algorithm 1.

Algorithm 1: NRE Cross Learning

Input: reward matrix A, node degree k, step size α,
change rate ϵ, ratio λ, time horizon T , initial (π, n)
Output: updated π′, updated n′

1 : for step t = 1 . . . , T do
2 : act1 = randomly choose action from (0,1) with

probability (1− π,π).
3 : act2 = randomly choose action from (0,1) with

probability (1− π,π).
4 : r = Reward(A, k, n, act1, act2) by (13)
5 : π′ = UpdatePolicy(r, α, π, ϵ) by (8)
6 : n′ = UpdateEnvironment(act1, λ) by (14)
7 : end for
8 : return π′, n′

V. NUMERICAL ANALYSIS

In this section, we present two sets of simulations to
corroborate the theoretical results. In all three examples, we
set ϵ = 1, λ = 2 and keep them constant.

In the first set of simulations, we consider system (2)
under the DB update rule.In the first example, we set k =
3 < µDB1 = 3.21. According to Theorem 2, the only
asymptotically stable point is (x⋆, n⋆) = (1, 1), regardless
of the values of R,S, T, P . For the sake of completeness,
since δTR > δPS the system exhibits the behavior shown
in Fig 1, bottom-right. As it can be seen in Fig. 2, all the
trajectories converge to this equilibrium point.

In the second example, we set k = 4 and k = 6 to show the
system dynamics in Case 1b) and Case 1c) of Theorem 2. In
the first case, we have that µ1 < k < µ2, and all trajectories
converge to the fixed point VI, mixed populations in a replete
environment as shown in Fig 3 (left). In the second case we
have k > µ2, and the only stable equilibrium is the internal
fixed point, i.e., point VII. Figure 3 (right) depicts this case.

In the second set of simulations, we turn our attention
to the proposed NRE cross learning algorithm. In the third
example, we set k = 3 and k = 4 corresponding to Case
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Fig. 2. Example 1. The first plot (left) shows the evolution of cooperators
and the environment over time. The second plot (right) shows the phase
plane dynamics in the x-n plane for system (2): the blue arrows indicate
the direction of the dynamics and the blue circle denotes the stable point.
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Fig. 3. Example 2. Both plots shows the phase plane dynamics in the x-n
plane, when k = 4 (left) and k = 6 (right).
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Fig. 4. Example 3. Both plots shows the phase plane dynamics in the x-n
plane, when k = 3 (left) and k = 4 (right). In both cases, δTR > δPS .
The arrows show the direction of the policy trajectories.

1a) and Case 1b) of Theorem 2. Figure 4 (left) and (right)
depict the situation where the policy trajectories converge
to the asymptotically stable point (x⋆, n⋆) = (1, 1), and the
situation where the policy trajectories converge to point VI,
respectively. This shows that the policy trace of our proposed
multi-agent reinforcement learning model approximates the
corresponding dynamical system.

VI. CONCLUSION

The scope of this work is to study the impact of structured
population in feedback-evolving games via evolutionary
game dynamics and multi-agent reinforcement learning. In-
deed, we have investigated the impact of players’ interactions
in the form of a regular network. Motivated by the interest of
the control community in multi-agent reinforcement learning,
we have developed a stateless model that is able to capture
the dynamics of the networked PD game. We envision two
paths for future directions of research: i) on the evolutionary
game theory path, we will focus on multi-regular graphs and
the considerable complexity that this extension brings to the
system dynamics; ii) on the machine learning path, we will
focus on the extension of our proposed model to consider
tabular Q-learning for real-world problems.
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