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Abstract— A recent paper has shown that linear oscillators
can be synchronised only if their parameters are exactly the
same. The main reason for this sensitivity lies in the fact that
the oscillator network loses energy whenever the oscillators do
not follow precisely the same output trajectory. This paper
deals with the question how to extend oscillators to make
them synchronisable in a practical sense. The oscillators are
equipped with an energy source that replaces the energy lost
during the synchronisation. It is shown that a power supply
rate exists such that oscillators with different eigenfrequencies
can phase lock, which means that they follow the same
sinusoidal trajectory with some phase gap. For two coupled
oscillators explicit relations for the frequency and the phase
shift of the synchronous behaviour are derived.

I. PRACTICAL SYNCHRONISATION

The synchronisation of multi-agent systems has been in-
vestigated as an important problem of cooperative control.
In the structure of Fig. 1, a networked controller C should
make N agents Pi follow a common trajectory ys(t):

lim
t→∞

|yi(t)− ys(t)| = 0, i = 1, 2, ..., N. (1)

Then the system is said to be asymptotically synchronised.

Fig. 1: Autonomous agents with networked controller

The majority of the papers on this subject has consid-
ered agents with identical dynamics and derived conditions
on the networked controller to satisfy the relation (1) for
arbitrary initial states xi0 of the agents. However, the
recent paper [8] has shown that the synchronisation of
linear oscillators by diffusive couplings is not at all robust

with respect to parameter deviations. If there are two
oscillators with different eigenfrequencies (non-uniform
oscillators), the overall system is asymptotically stable and
not synchronised for any non-trivial trajectory ys(t).

The main reason for this sensitivity is the fact that
the process of synchronisation consumes energy. If the
oscillator agents do not have the same eigenfrequency,
they cannot follow the same sinusoidal trajectory and lose
energy until they have reached their equilibrium state.

This paper proposes a way to extend linear oscillators
with different eigenfrequencies to make them synchronis-
able. The oscillators are equipped with a component that
injects energy persistently. The requirement of asymptotic
synchronisation is released to practical synchronisation,
which requires the agent outputs to follow for t ≥ t̄ a
common trajectory ys(t) with some tolerance ε:

|yi(t)− ys(t)| ≤ ε, t ≥ t̄, i = 1, 2, ..., N. (2)

The oscillators considered in the sequel will satisfy this
requirement in their phase-locking behaviour. The main
result shows that there exists an appropriate power supply
rate such that a network of non-uniform oscillators is
practically synchronised (Theorem 2). Explicit relations
are derived for the frequency and the phase shift of the
synchronous behaviour of two phase-locked oscillators.

Three phenomena in the synchronisation of agents with
parameter deviations. Multi-agent systems with param-
eter deviations may exhibit one of the three behaviours of
Fig. 2. Asymptotic synchronisation is depicted in the upper
subplot. Literature has shown that this behaviour appears
only if the parameter deviations do not touch the common
dynamics of the agents generating the trajectory ys(t).

Oscillator agents with different eigenfrequencies are not
synchronisable. As shown in [8], networks of non-uniform
oscillators are asymptotically stable and behave like the
middle plot in Fig. 2. This paper investigates how such
oscillators can be made practically synchronised to satisfy
the weaker form (2) of synchronisation depicted in the
lowest plot.
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Fig. 2: Three phenomena encountered in the
synchronisation of oscillator agents with parameter

deviations: asymptotic synchronisation (top), asymptotic
stability (middle), and phase locking as a form of

practical synchronisation (bottom)

Literature survey. Most of the papers on the synchroni-
sation of multi-agent systems have considered agents with
identical dynamics (for a survey cf. [9]). As parameter
deviations bring about agents with individual dynamics,
asymptotic synchronisation necessitates that the agents
satisfy the Internal-Reference Principle derived in [3], [7],
[15]. A detailed analysis shows that most of the papers
on the robustness of synchronisation have been concerned
with agents that satisfy this principle for all parameter
deviations. In particular, [13] has proved the robustness
for agents with additive perturbations, whereas [12], [18]
demonstrated the robustness for double-integrator systems.
[16] has considered agents with an uncertain memoryless
nonlinearity. In contrast, if the parameter deviations affect
the diffusive couplings, the overall system generally reacts
with a large robustness [6].

Practical synchronisation [5], [17] allows for a bounded
deviation of the agent outputs, for which the require-
ment (2) is satisfied. [10] has shown that nonlinear agents
with individual dynamics can be synchronised with ε arbi-
trarily small if the networked controller uses a sufficiently
high feedback gain. For Kuramoto oscillators, the phase-
locking behaviour has been extensively studied in physics
as a form of practical synchronisation [1].

To the knowledge of the author, [8] and [12] are the
only publications that point to the fact that arbitrarily
small parameter deviations of oscillator agents may turn a
synchronised system into an asymptotically stable system,
which is the motivation of this paper.

Aims and results of this paper. The short summary of the
results of [8] on the sensitivity of oscillator networks with
respect to parameter variations in Section II shows that
non-uniform oscillators do not have any synchronous be-
haviour at all. Therefore, the paper introduces in Section III
a class of oscillators that have an internal energy source.
The new freedom can be used to adapt the power supply
rate to the power loss due to the synchronising couplings.
Even unstable oscillators with parameter deviations may
become practically synchronised, as Section IV proves.
The investigations concentrate on two coupled oscillators
to shorten the models and to get explicit solutions.

II. THE LOSS OF SYNCHRONY OF LINEAR OSCILLATOR

NETWORKS DUE TO PARAMETER DEVIATIONS

To summarise results of [8] as the starting point of
the later investigations, consider the coupled harmonic
oscillators shown in Fig. 3. This network consists of the
agents

Pi :

{

ẋi(t) = Aixi(t) + biui(t), xi(0) = xi0

yi(t) = cTi xi(t)
(3)

with the state vector xi ∈ R
ni , the scalar input ui and the

scalar output yi and the parameters

Ai =

(

0 −ω2
i

1 0

)

, bi =

(

0

bi2

)

and cTi = (0 1)

(4)
(i = 1, 2, ..., N), where ωi =

1√
LiCi

denotes the eigenfre-
quency (natural frequency) of the i-th oscillator and bi2 >
0 holds. The resistor network introduces the couplings

u(t) = − 1

R
Ly(t), (5)

which for the two oscillators in Fig. 3 are described by

C : u(t) = − 1

R

(

1 −1

−1 1

)

y(t).

The conductance k = 1
R acts as the coupling strength. For

more than two oscillators the resistor network induces a
symmetric Laplacian matrix L in eqn. (5).

R

I1=u1

L1

C1

I2=u2

C2

L2

V1=y1 V2=y2

P1 P2

Fig. 3: Two coupled oscillators with individual
parameters
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There are two important results of [8], which are
repeated here without proof.

Theorem 1: (Properties of linear oscillator networks)
Consider a connected oscillator network (3) – (5).

• If all oscillators have the same eigenfrequency ω1 =
ω2 = ... = ωN = ω they are said to be uniform and
the network asymptotically synchronises for arbitrary
parameters R and bi2, (i = 1, 2, ..., N).

• If there is a pair of oscillators with ωi 6= ωj , (i 6=
j), the network is said to be non-uniform and it is
asymptotically stable.

Hence, uniform oscillator networks exhibit the be-
haviour shown in the top part of Fig. 2, whereas non-
uniform oscillators eventually approach a stable equilib-
rium point as in the middle part of the figure. The reason
for this behaviour is the fact that the process of synchro-
nisation consumes the energy that the overall system loses
over the resistive coupling network. Therefore, to make
practical synchronisation possible, the oscillators have to
be equipped with a power source.

III. OSCILLATORS WITH INTERNAL POWER SUPPLY

The aim of this paper is to enable the oscillator network
to exhibit some form of synchronisation even if some
components have different eigenfrequencies. Since asymp-
totic synchronisation is impossible due to the violation of
the Internal-Reference Principle, practical synchronisation
is investigated, which for oscillator networks appears as
phase locking.

The new idea is to introduce a power source into each
of the oscillators, which should replace the power lost
for synchronisation. The power is emitted by a voltage-
controlled current source symbolised by the circle with
the arrow in Fig. 4.

IR

V=yLRA

ILICIS

CVC

I

Fig. 4: Oscillator with voltage-controlled current source

If the current source replaces the energy consumed by
the internal resistor RA, the oscillator behaves like the
undamped oscillator considered in Section II. The question
to be answered in the next part of the paper is how to
parameterise the current source in order not only to replace
the energy consumed by RA, but also to replace the energy

consumed by the resistive couplings to make the oscillators
phase lock.

The oscillator depicted in Fig. 4 has the following
model (with the agent index i omitted). The capacitor, the
inductor and the resistor have the current-voltage relations

IC(t) = CV̇C(t) (6)

V (t) = LİL(t) (7)

IR(t) =
1

RA

VC(t). (8)

The voltage-controlled current source generates the cur-
rent IS(t) that is proportional to the voltage VC

IS(t) = αVC(t). (9)

Kirchhoff’s laws yield

VC(t) + V (t) = 0 (10)

IS(t) + IC(t) + I(t) + IR(t)− IL(t) = 0. (11)

The current I(t) is introduced to represent the couplings.
From eqns. (6) and (11) one obtains

V̇C(t) =
1

C
IL(t)−

1

C
I(t)− 1

C
IR(t)−

1

C
IS(t)

and with eqns. (8) and (9) the first state equation

V̇C(t) =

(

− α

C
− 1

RAC

)

VC(t) +
1

C
IL(t)−

1

C
I(t).

Equations (7) and (10) lead to the second state equation

İL(t) = − 1

L
VC(t). (12)

In summary, the circuit has the model (3) with

A =

(

2δ 1
C

− 1
L 0

)

, b =

(

− 1
C

0

)

, cT = (−1 0) (13)

x =

(

VC(t)

IL(t)

)

, u(t) = I(t), y(t) = −VC(t)

and

δ = −1

2

(

α

C
+

1

RAC

)

. (14)

The current source replaces the energy loss of the
resistor RA if its parameter is chosen to be α = −1/RA.
Then the isolated oscillator (I(t) = 0) maintains a
steady oscillation. In physics, such circuits are called self-
sustained oscillators [11].

The following investigations will be made for

α < − 1

RA

(15)

for which the oscillator (3), (13) is unstable because the
persistent energy input exceeds the energy loss in the
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resistor RA and its output has an exponentially increasing
magnitude. The characteristic polynomial

det

(

λ− 2δ − 1
C

1
L λ

)

= λ2 − 2δλ+
1

LC
= 0

leads to the eigenvalues

λ1/2 = δ ±
√

δ2 − 1

LC
,

which have positive real part δ if the inequality (15) is
satisfied. The eigenvalues are complex conjugate for δ2 <
1

LC , i. e. if α satisfies the relation

(

α+
1

RA

)2

<
4C

L
.

The eigenvalues λ1/2 are depicted in the root locus of
Fig. 5 in dependence upon δ for L = 100mH and
C = 10µF. For δ = 600 1

s
the eigenvalues are marked

by ∆ to characterise the dependency. The double eigen-
value λ1/2 = 1000 rad

s
marked by ✷ is obtained for

δ =
1√
LC

= 1000
1

s
.

The parameter δ is called the power supply rate. It fixes
the parameter α of the current source due to eqn. (14).

Fig. 5: Eigenvalues of an isolated oscillator in
dependence upon δ

IV. PHASE LOCKING OF UNSTABLE OSCILLATORS

A. Coupled oscillators

To emphasise the main ideas, this section is restricted
to two oscillators. The diffusive couplings

u1(t) =
1

R
(y1(t)− y2(t)) = −u2(t)

lead to the overall system

Σ̄ :







































ẋ(t) =











2δ − 1
RC1

1
C1

1
RC1

0

− 1
L1

0 0 0
1

RC2

0 2δ − 1
RC2

1
C2

0 0 − 1
L2

0











x(t)

y(t) =

(

cT 0
T

0
T cT

)

x(t)
(16)

with x(t) = (xT
1 (t),x

T
2 (t))

T and y(t) = (y1(t), y2(t))
T.

The two oscillators have individual parameters Li and Ci,
but a common power supply rate δ.

B. Power balance of two coupled oscillators

The energy

vi(xi(t)) =
1

2
Cix

2
i1(t) +

1

2
Lix

2
i2(t)

of an isolated oscillator (ui(t) = 0) is monotonically
increasing if the current source satisfies the condition (15):

v̇i(t) = Cixi1(t)ẋi1(t) + Lixi2(t)ẋi2(t)

= 2δCix
2
i1(t) ≥ 0.

This result confirms that oscillators with δ > 0 have an
ever increasing magnitude of their oscillations.

For two coupled oscillators the energy balance is as
follows:

v(x(t)) = v1(x1(t)) + v2(x2(t))

=
1

2
C1x

2
11(t) +

1

2
L1x

2
12(t) +

1

2
C2x

2
21(t) +

1

2
L2x

2
22(t)

v̇(t) =

C1x11ẋ11 + L1x12ẋ12 +
1

2
C2x21ẋ21 +

1

2
L2x22 cotx22

= − 1

R
(x11(t)− x21(t))

2 + 2δC1x
2
11(t) + 2δC2x

2
21(t).

The first term

v̇neg(t) = − 1

R
(y2(t)− y1(t))

2 (17)

is non-positive and describes the energy consumption for
synchronising the oscillators. The second term

v̇pos(t) = 2δC1y
2
1(t) + 2δC2y

2
2(t) (18)

is non-negative and represents the power input into the
oscillators by the current sources. These terms play against
one another. A sinusoidal trajectory with constant mag-
nitude is reached if the power balance over one period
of the oscillation is zero. Then the power input precisely
compensates the power loss for the synchronisation.

Figure 6 shows an example. Two oscillators with C1 =
C2 = 10µF, L1 = 100mH, L2 = 120mH and δ = 0.5
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Fig. 6: Behaviour of the coupled oscillators (top) and
change of the internal energy (bottom)

are coupled and start their movement with similar initial
states x10 = (1, 0)T and x20 = (0.9, 0)T. They move
along nearly the same trajectory, but lose energy as the
curve v(t) in the second subplot shows. The energy change
is depicted on the bottom part of the figure. The solid
line v̇ is the sum of the two dashed lines, where the curve
below the time axis is v̇neg(t) and the curve above the
axis v̇pos(t). On the long run, the internal energy v(t)
decreases, which shows that for δ = 0.5 the power input
into the two oscillators is too weak to get phase locking.
The coupled oscillators are asymptotically stable.

C. Determination of the required power input

This section develops a method to determine the power
supply rate δ such that the coupled oscillators receive
precisely that amount of power that is necessary to force
them to follow a common trajectory with some phase
shift. The idea is explained by using Fig. 7. Two coupled
oscillators have two eigenvalue pairs, one that should lie
on the imaginary axis of the complex plane to define a
sinusoidal synchronous trajectory and another one with
negative real part that characterises the transient behaviour.
The following analysis concerns the first eigenvalue pair.

-jws

Im

Re

jws

d

d

Fig. 7: Eigenvalues of the coupled oscillators in
dependence upon δ

For δ = 0 the eigenvalues depicted by the small
squares in Fig. 7 have negative real part which lead to
the asymptotically stable behaviour shown in the middle
of Fig. 2. By increasing δ these eigenvalues are moved
towards the imaginary axis, where they should be placed
as the two crosses at the points ±jωs. The problem is how
to get the corresponding value of δ, which is denoted by δc.

Determination of the critical power supply rate δc. To
find an analytical expression for δc, the assumption

C1 = C2 = C (19)

is made and the abbreviation β = 1
L1C

+ 1
L2C

introduced.
The model (16) has the characteristic polynomial

p(λ) = λ4 + a3λ
3 + a2λ

2 + a1λ+ a0

with the coefficients

a0 =
1

L1L2C2

a1 = −2δβ +
β

RC
(20)

a2 = 4δ2 − 4δ

RC
+ β

a3 = −4δ
1

RC
+

1

RC
. (21)

When applying the Routh-Hurwitz stability criterion, the
principal minor

D3 = a1a2a3 − a21a4 − a23a0
!
= 0

has to be zero for the required eigenvalue pair on the
imaginary axis. One gets a2a3 − a1a4 = −2βδ+ β

RC and
D3 = 0 if and only if

−16RCδ3 + 24δ2 −
(

8

RC
+ 2RCβ − 8R

βL1L2C

)

δ

+ β − 4

βL1L2C2
= 0 (22)

holds. The critical power supply rate δc is a positive zero
of this polynomial.
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Theorem 2: (Phase-locking behaviour)
For the power supply rate δc satisfying eqn. (22) the
two coupled oscillators have an eigenvalue pair on the
imaginary axis and exhibit phase-locking behaviour.

For C = 10µF, L1 = 100mH, L2 = 120mH and
R = 200Ω the polynomial

−0.03δ3 + 24δ2 − 4060δ+ 15152 = 0

with β = 1,833,333 leads to three roots of the polynomial
including the real positive solution δc = 3.817. Figure 8
depicts the behaviour of the two coupled oscillators for
this power supply rate. The power required to bring the
two oscillator outputs near together is precisely replaced by
the power input from the voltage-controlled current source.
The lower part of the figure illustrates that the area under
the positive and under the negative parts v̇neg(t) or v̇pos(t),
respectively, are identical. The two oscillators phase-lock.

Fig. 8: Behaviour of the coupled oscillators (top) and
change of the internal energy (bottom) for δc = 3.817

For the given parameters, the coupled oscillators have
the eigenvalues

λ1/2 = ±j957.4 and λ3/4 = −492.32± j816.5. (23)

That is, the trajectory around which the two oscillators
phase lock has the frequency 957.4 rad

s
. For comparison,

the eigenfrequencies of the two oscillators are

ω1 =
1√
L1C1

= 1000 and ω2 =
1√
L2C2

= 912.9.

To shift these eigenfrequencies of the isolated oscillators
towards the common frequency of the phase-locking trajec-
tory requires a persistent activity of the coupling network,
which is responsible for the energy consumption.

D. Frequency of the synchronous trajectory

Although the synchronous trajectory

ys(t) = V̄ sin(ωst+ φ) (24)

is not asymptotically followed by both oscillators, the
question arises what is its frequency ωs. For the critical
power supply rate δc, the purely imaginary pair ±jωs of
eigenvalues can be obtained from the coefficients a1 and
a3 of the characteristic polynomial as ω2

s = a1/a3. With
eqns. (20) and (21) and the assumption (19) one gets

ω2
s =

−2δβ + 1
RC2 β

−4δ + 2
RC

=
1

2
β

and

ωs =

√

1

2
(ω2

1 + ω2
2). (25)

For the example oscillators, this result coincides with the
first eigenvalue pair in eqn. (23).

Lemma 1: (Synchronous frequency) Two oscillators
with different parameters and the power supply rate δc
phase-lock on a sinusoidal trajectory (24) with the fre-
quency ωs given in eqn. (25).

It is interesting to see that the common frequency is not
the arithmetic mean of the individual frequencies.

E. Phase shift in the phase-locking behaviour

Phase-locking means that the two oscillator outputs
have the same magnitude and frequency, but a phase
shift ∆φ = φ1 − φ2. After the transient behaviour has
vanished asymptotically, the outputs are represented by

y1(t) = Y sin(ωst+ φ1) (26)

y2(t) = Y sin(ωst+ φ2). (27)

The power loss and the power input over one period T =
2π
ωs

of the oscillation are equal

∫ t1+T

t1

v̇neg(t) dt+

∫ t1+T

t1

v̇pos(t) dt = 0. (28)
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With eqns. (17) and (18) this balance can be used to get

φ1 − φ2 = 2 arcsin
√
δRC. (29)

Lemma 2: (Phase shift) Phase-locking oscillators have
the property of practical synchronisation with the phase
shift (29).

For the example with δ = 3.817, C = 10µF and R =
200Ω shown in Fig. 8 the phase shift is

∆φ = 2 arcsin
√
3.817 · 0.00001 · 200

= 0.176 rad = 10o.

V. CONCLUSIONS

The idea of this paper was to extend linear oscillators
by internal power sources to overcome the impossibility
to synchronise linear oscillator networks with parameter
variations. Theorem 2 shows that for a specific power
supply rate unstable oscillators with different parameters
are made to phase-lock, which is a behaviour of practical
synchronisation.

From a more general viewpoint, there are several fun-
damental differences in the synchronisation of identical
agents and the synchronisation of agents with parameter
deviations. Whereas the interactions among the agents
deceases for identical agents, they remain active for non-
identical agents. This activity is associated with energy loss
in the system that has to be compensated for by persistent
energy inputs.

The presented results are restricted to two coupled os-
cillators, but they pave the way to the analysis of oscillator
networks with more agents.
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