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Abstract— In this paper we discuss several ISS-like properties
for infinite-dimensional discrete-time systems with inputs. Char-
acterizations of these properties are developed and illustrative
examples are provided. Relations between these properties are
discussed.

I. INTRODUCTION

In many applications the data describing the state of the
art is updated in a discrete time (think on daily update of
Covid-numbers, stock index or opinion of multiple agents).
Such dynamics can be modelled by discrete-time systems.
Modelling evolution processes of large multi-agent systems,
with variable and large number of agents it is sometimes
useful to consider (to overapproximate) them as infinite-
dimensional systems [1], [2].

It is often of interest to study stability properties of
an equilibrium point and in case of external perturbations
also to ask for robust stability. The notion of input-to-
state stability (ISS) is very fruitful in the latter case. It
was introduced originally for continuous-time systems [3]
and then also applied to dynamical systems evolving on a
discrete-time [4], [5]. Other equivalent characterizations to
ISS or weaker properties were introduced for both types
of dynamical systems. Different characterizations of these
properties were developed during the last two decades. In
the case of finite-dimensional systems the ISS-framework is
very well-developed and used in applications [6]. For systems
with infinite-dimensional states the most of related results
appeared during the last decade see, e.g. [7], [8], [9], [2],
[10], but many open problems are still under investigation
[11], [12].

Several works related to the ISS framework for infinite-
dimensional discrete-time systems appeared recently [13],
[14], [15], [16]. In this paper we are going to contribute
more into this research direction.

The next chapter introduces the considered class of sys-
tems and several related notions, see e.g. [17] for the
continuous-time case or [16] for the discrete-time case. Some
preliminary results are collected in Chapter III. Main results
are given in Chapter IV. Several illustrative examples are
provided in Chapter V. Finally, Chapter VI concludes the
paper.
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II. NOTATION AND BASIC NOTIONS

The nonnegative integers and reals are denoted by Z+ and
R+, respectively. The open ball of radius r around 0 in a
normed vector space X is denoted by Br := {x ∈ X : ∥x∥X <
r} (or Br,X ) and its closure is denoted by Br. We denote the
sequence spaces of real numbers by

ℓp(N,R) := {(xn)n ⊂ R : ∥xn∥p =

(
∞

∑
n=0

|xn|p
) 1

p

< ∞}

if 1 ≤ p < ∞ and

ℓ∞(N,R) := {(xn)n ⊂ R : ∥xn∥∞ = sup{|xn| : n ∈ N}< ∞}.

By K ,K∞,K L we denote the classes of comparison
functions, see, e.g., [12], [18] or [19] for definitions.

Definition 1: Let (X ,∥ ·∥X ), (U,∥ ·∥U ) be Banach spaces
and U ⊂ { f : Z+ →U} be a vector space equipped with the
norm ∥u( ·)∥U := supk∈Z+

∥u(k)∥U which satisfies the axiom
of shift invariance: For all u ∈ U and all r ∈ Z+ we have
u(·+ r) ∈ U with ∥u∥U ≥ ∥u(·+ r)∥U .
Now consider a map ϕ : Z+ × X × U → X . The triple
Σ = (X ,U ,ϕ) is called a discrete-time control system if the
following properties hold:

(Σ1) Identity property: For every (x,u)∈ X ×U it holds that
ϕ(0,x,u) = x.

(Σ2) Causality: For every (k,x,u) ∈ Z+×X ×U , for every
ũ ∈ U with u|[0,k] = ũ|[0,k] it holds that ϕ(k,x,u) =
ϕ(k,x, ũ).

(Σ3) Cocycle property: For all k,h∈Z+, for all x ∈ X , u∈U
we have

ϕ(h,ϕ(k,x,u),u(k+ ·)) = ϕ(k+h,x,u).

The space X is called the state space, U the input space and
ϕ the transition map.
For a given mapping f : X ×U → X a discrete-time control
system can be described by the recursion

x(k+1) = f (x(k),u(k)), x(0) = x0. (1)

Σ given by (1) is forward complete, that is for any x0 ∈ X
and u ∈ U we have that x(k) ∈ X for all k ∈ Z+. This is
guaranteed by the requirement f : X ×U → X . Recall that
for continuous-time systems like ẋ = f (x,u) the forward
completeness is not always satisfied. We always assume
that Σ has an equilibrium at the origin that is f (0,0) = 0.
The forward completeness and well-posedness may not hold
without the requirement f : X ×U → X as the next example
demonstrates:
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Example 1: For X = ℓ∞(N,R), U = ℓ∞(N,R) and n ∈ N
consider

xn(k+1) =
n

∏
i=1

(xi(k) ·ui(k)), k ∈ Z+ (2)

where x(0) = x0. Now, choose for example xn(0) = 2 and
un(0) = 1 ∀n ∈ N. By our choice of x(0) and u(0) we get

xn(1) =
n

∏
i=1

(xi(0) ·ui(0)) = 2n

and ∥x(1)∥X = ∞. Therefore, the system has finite escape
time with x(1) /∈ X .

The following definition describes some of the properties
used in this work.

Definition 2: We say that Σ defined by (1) is continuous
at the equilibrium point (CEP), if 0 is an equilibrium and
∀ε > 0, h ≥ 1 there is a δ = δ (ε,h)> 0 such that

k ∈ [0,h]∩Z+∧ x ∈ Bδ ∧u ∈ Bδ ,U

=⇒ ∥ϕ(k,x,u)∥X ≤ ε.
(3)

Σ has bounded reachability sets (BRS), if ∀C > 0, τ ∈ N it
holds that

sup{∥ϕ(k,x,u)∥X : x ∈ BC,u ∈ BC,U ,k = 0, ...,τ}<∞. (4)

Σ is called uniformly locally stable (ULS), if ∃σ ,γ ∈ K∞,
r > 0 such that for all x ∈ Br,u ∈ Br,U it holds that

∥ϕ(k,x,u)∥X ≤ σ(∥x∥X )+ γ(∥u∥U ) ∀k ∈ Z+. (5)

Σ has the uniform limit property (ULIM), if ∃γ ∈ K ∪{0}
such that for every ε,r > 0 there exists a τ = τ(ε,r) such
that for all u ∈ U , x ∈ X with x ∈ Br there is a k ≤ τ with

∥ϕ(k,x,u)∥X ≤ ε + γ(∥u∥U ). (6)

Σ has the uniform asymptotic gain property (UAG) if ∃γ ∈
K∞ ∪ {0} such that ∀ε,r > 0 ∃τ = τ(ε,r) < ∞ such that
∀u ∈ U , x ∈ Br

Z+ ∋ k ≥ τ =⇒ ∥ϕ(k,x,u)∥X ≤ ε + γ(∥u∥U ). (7)

Σ is ISS if ∃β ∈ K L , γ ∈ K such that ∀x ∈ X , u ∈ U

∥ϕ(k,x,u)∥X ≤ β (∥x∥X ,k)+ γ(∥u∥U ), k ∈ Z+. (8)

Σ is globally asymptotically stable at zero (0-GAS) if

∥ϕ(k,x,0)∥X ≤ σ(∥x∥X ), x ∈ X , k ∈ Z+, (9)

lim
k→∞

∥ϕ(k,x,0)∥X = 0, x ∈ X . (10)
Remark 1: Due to the causality of Σ we get an equivalent

characterization of the ISS property if we replace ∥u∥U in
(8) with supi=0,...,k−1 ∥u(i)∥U .
Note that ISS implies that for a bounded input any solution is
uniformly bounded in time. As well ISS implies the 0-GAS
property. We will also see that ISS is equivalent to UAG,
CEP and BRS. Hence, the BRS property is equivalent to the
boundedness of f in (1) see [16].

We will consider other stability properties of the ISS
framework as well. Therefore we need a few more defini-
tions, i.e., the definitions of integral ISS (iISS) and later

strong iISS. The latter one was so far neglected in the
literature for discrete-time systems. Later, we will see that it
makes sense to distinguish strong iISS from ISS and iISS.

Definition 3: Σ given by (1) is called iISS if ∃α,µ ∈K∞,
β ∈ K L such that ∀x ∈ X , u ∈ U , k ∈ Z+

α(∥ϕ(k,x,u)∥X )≤ β (∥x∥X ,k)+
k−1

∑
i=0

µ(∥u(i)∥U ). (11)

In finite dimensions we have the equivalence between iISS
and 0-GAS if f is continuous, see [20]. It follows immedi-
ately from the definition that iISS implies 0-GAS in infinite
dimensions. But 0-GAS does not imply iISS anymore. We
will see this in the Example 2. For the next chapter we also
need

Definition 4: Σ is norm-to-integral ISS if ∃α,ψ,σ ∈ K∞

such that ∀x ∈ X , u ∈ U , k ∈ Z+ holds
k

∑
i=1

α(∥ϕ(i,x,u)∥X )≤ ψ(∥x∥X )+ k ·σ(∥u∥U ). (12)

Furthermore, an iISS and ISS Lyapunov function is defined
as

Definition 5: A continuous function V : X →R+ is called
iISS Lyapunov function for (1) if ∃ψ1,ψ2,σ ∈ K∞ and a
positive definite function α such that

ψ1(∥x∥X )≤V (x)≤ ψ2(∥x∥X ), x ∈ X (13)

V ( f (x,u))−V (x)≤−α(∥x∥X )+σ(∥u∥U ), x ∈ X ,u ∈U
(14)

holds. V is called ISS Lyapunov function if, in addition,
α ∈ K∞. V is called a noncoercive ISS Lyapunov function
if (13) is replaced with 0 <V (x)≤ ψ2(∥x∥X ), x ∈ X \{0}.

III. PRELIMINARY RESULTS

In this section, we will repeat some results from the
literature which will be useful for the next chapters. For
dim(X)< ∞ the following Theorem was stated in [20]

Theorem 1: Let dim(X)< ∞. Then,
Σ is iISS if and only if it admits an iISS Lyapunov

function.
For dim(X) = ∞ the next result was shown in [16].

Theorem 2: Σ is ISS ⇐⇒ Σ is ULIM, ULS, BRS.
This result will be useful in the proof of Theorem 5. We also
know from [16] the following

Proposition 1: Σ is norm-to-integral ISS =⇒ Σ is CEP
and BRS.
and

Theorem 3: Σ is ISS ⇐⇒ Σ is norm-to-integral ISS.
Combining Proposition 1 and Theorem 3 shows

Proposition 2: Σ is ISS =⇒ Σ is CEP and BRS.
We have also shown in [16]

Theorem 4: ∃ noncoercive ISS Lyapunov function V for
Σ =⇒ Σ is ISS.
The next characterization will also be useful for the proof of
Proposition 3

Lemma 1: Σ is ULS ⇔ ∀ε > 0 ∃δ > 0 such that

∥x∥X ≤ δ , ∥u∥U ≤ δ , k ∈ Z+ ⇒∥ϕ(k,x,u)∥X ≤ ε. (15)
This result was already proven in [16] and therefore, the
proof is omitted here.
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IV. MAIN RESULTS

In this section, we show the equivalence of ISS and iISS if
UAG holds. This result is given in Theorem 6. To this aim,
we first show that UAG and CEP imply ULIM and ULS
in Proposition 3. Then, we are going to show that ISS is
equivalent to UAG, CEP and BRS as stated in Theorem 5.
Afterwards, we prove in Proposition 4 that ISS implies iISS
and in Proposition 5 iISS implies CEP and BRS.

Proposition 3: Σ is UAG and CEP =⇒ Σ is ULIM and
ULS

Proof: Let Σ be UAG and γ ∈K∞∪{0} the correspond-
ing function from Definition 2. Let ε,r > 0 be arbitrary and
choose τ = τ(ε,r) such that (7) holds for all k ≥ τ . Then,
define τULIM = τ +1. Thus, ∥ϕ(k,x,u)∥X ≤ ε + γ(∥u∥U ) is
valid for k = ⌈τ⌉ ≤ τULIM which shows ULIM.

Again, let Σ be UAG and γ ∈K∞∪{0} the corresponding
function from Definition 2. Let ε,r > 0 be arbitrary and
τ = τ( ε

2 ,r). Let δ1 be arbitrary with γ(δ1) ≤ ε

2 . From (7)
it follows that ∀x ∈ Br, u ∈ Bδ1 we get

∥ϕ(k,x,u)∥X ≤ ε

2
+ γ(∥u∥U )

≤ ε

2
+ γ(δ1)

≤ ε (⋆)

for k ≥ τ . Now, we will use the CEP property. It follows that
∃δ2 > 0 such that (3) holds with h = τ where we set δ = δ2.
With (⋆) and (3) we get ∀ε > 0 ∃δ > 0 with δ =
min{r,δ1,δ2} such that ∀x ∈ Bδ , u ∈ Bδ ,U , k ∈ Z+ follows
∥ϕ(k,x,u)∥X ≤ ε . This is equivalent to the ULS property due
to Lemma 1 which finishes the proof.

Theorem 5: Σ is ISS ⇐⇒ Σ is UAG, CEP and BRS.
Proof: (⇒) We already know from Proposition 2 that

ISS implies CEP and BRS. Therefore, it is only left to show
that ISS implies UAG. Suppose there are β ∈K L and γ ∈
K such that (8) holds. Let ε > 0, r > 0 be arbitrary. Then,
we define

τ = τ(ε,r) := min{τ̄ ∈ Z+ : β (r, τ̄)≤ ε}.

Now, ∀u ∈ U , x ∈ Br, k ∈ Z+ with k ≥ τ we get

∥ϕ(k,x,u)∥X ≤ β (∥x∥X ,k)+ γ(∥u∥U )

≤ β (r,τ)+ γ(∥u∥U )

≤ ε + γ(∥u∥U ).

This shows UAG.
(⇐) Follows from Proposition 3 and Theorem 2.

Theorems 2 and 5 imply the following
Corollary 1: Σ is UAG, CEP and BRS ⇐⇒ Σ is ULIM,

ULS, BRS.
Now, consider the linear continuous-time system

Σc,lin : ẋ(t) = Ax(t)+Bu(t)

where A generates a C0-semigroup (T (t))t≥0 on an Banach
space X and B is a linear operator from a Banach space U to
the extrapolation space X−1. It holds that ISS is equivalent
to iISS if B is bounded. iISS implies ISS if B is unbounded.

The converse direction is open, see [10]. We recall that if f
is Lipschitz continuous on bounded balls of Rn ×Rm then
the ISS property of ẋ = f (x,u), x(0) = x0 implies the iISS
property, see [12].
For a discrete-time system (1) we do not need such regularity
assumptions to prove this implication even for the general
case dim(X)≤ ∞. This result is stated as

Proposition 4: Σ is ISS =⇒ Σ is iISS.
Proof: Suppose that there are β ∈ K L and γ ∈ K

such that (8) holds. We will use Remark 1 to get our
implication. It follows

∥ϕ(k,x,u)∥X ≤ β (∥x(0)∥X ,k)+ γ( sup
i=0,...,k−1

∥u(i)∥U )

≤ β (∥x(0)∥X ,k)+
k−1

∑
i=0

γ(∥u(i)∥U )

≤ β (∥x(0)∥X ,k)+
k−1

∑
i=0

µ(∥u(i)∥U ),

where µ ∈ K∞. In the second step we have used that
supi=0,...,k−1 ∥u(i)∥U ≤∑

k−1
i=0 γ(∥u(i)∥U ). Since γ ∈K we can

find a µ ∈K∞ in the last step such that γ(r)≤ µ(r) ∀r ∈R+.
This shows iISS with α(r) = id(r) ∀r ∈ R+.

Now, it would be nice to have some kind of backward
direction in Proposition 4. For this purpose, we first show
the following

Proposition 5: Σ is iISS =⇒ Σ is CEP and BRS.
Proof: Suppose that Σ is iISS, i.e. there are β ∈ K L

and α,µ ∈ K∞ such that (11) holds. Since α ∈ K∞ we
know that the function α is invertible and α−1 ∈ K∞. Thus,
we use α−1 on both sides of (11), ∥u(i)∥U ≤ ∥u∥U , define
ψ(∥x0∥X ) := β (∥x0∥X ,0) and get

∥ϕ(k,x,u)∥X = α
−1(α(∥x(k)∥X ))

≤ α
−1

(
β (∥x0∥X ,k)+

k−1

∑
i=0

µ(∥u(i)∥U )

)

≤ α
−1

(
β (∥x0∥X ,0)+

k−1

∑
i=0

µ(∥u∥U )

)
= α

−1 (ψ(∥x0∥X + k ·µ(∥u∥U ))

≤ α
−1(2ψ(∥x0∥X )+α

−1(2k ·µ(∥u∥U ))≤ ε.

We have used that α(a+ b) ≤ α(2a)+α(2b) holds for all
α ∈ K∞, a,b ≥ 0 in the fifth step. Since α−1,ψ,µ ∈ K∞

we can choose δ = δ (ε,k) > 0 small enough such that for
∥x∥X ≤ δ and ∥u∥U ≤ δ , we get ∥x(k)∥X ≤ ε .
As this bound holds for each k we can choose δ̃ =
mink∈[0,h]∩Z+

δ (ε,k) such that Σ is CEP. BRS follows as each
x(k) from the upper computation is bounded.

Theorem 6: Σ is ISS ⇐⇒ Σ is iISS and UAG.
Proof: (⇒) Follows from Theorem 5 and Proposition

4.
(⇐) Follows from Proposition 5 and Theorem 5.

The results of Theorem 2, 5, 6, Corollary 1 and Proposition
4 are summarized in figure 1.

Now, we use Proposition 5 to show that 0-GAS does not
imply iISS in infinite dimensions.
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iISS ISS
ULIM,
ULS,
BRS

iISS,
UAG

UAG,
CEP,
BRS

0-GAS

dim(X)
< ∞

dim(X)
= ∞

0-GAS

Fig. 1. Some equivalences and implications

Example 2: Let X = ℓ∞(N,R), U = R. Consider

xn(k+1) = n
√

xn(k) ·u(k) ∀k ∈ Z+,n ∈ N, i.e.

xn(k+1) = (xn(0))
1

nk ·
k

∏
ℓ=0

(u(ℓ))
1

nk−l

with x(0) = x0 ∈ X . This system is obviously 0-GAS.
Now, take ε = 1

2 and any δ > 0. Choose xn(0) = δ for all
n ∈ N and u(0) = δ . For the first time step we get

xn(1) = (xn(0))
1
n · (u(0))

1
n = δ

2
n ∀n ∈ N.

It follows ∥x(1)∥X = 1 if δ ≤ 1 and ∥x(1)∥X = δ 2 if δ > 1.
In both cases we have ∥x(1)∥X > ε . Therefore, the system is
not CEP and hence it is not iISS by Proposition 5.
This is also summarized in figure 1.

V. STRONG INTEGRAL ISS
In this section, we will give the definition of strong

iISS for discrete-time systems which was introduced for
continuous-time systems, see [21]. Furthermore, we show
by examples that the class of ISS systems is a strict subset
of the class of systems which are strongly iISS, that the
class of systems which are strongly iISS is a strict subset
of iISS systems and that this classes can not be equal. We
couldn’t find any reference in the literature which shows this
for discrete-time systems.

Definition 6: Σ is strongly iISS if ∃α,µ ∈ K∞, γ ∈ K ,
β ∈ K L , R > 0 such that ∀u ∈ U , x ∈ X , k ∈ Z+ the
following properties hold:

1) (11) holds,
2) ∥u∥U < R =⇒ (8) holds.

By Proposition 4 follows that the class of systems which are
ISS is a subset of the class of systems which are iISS.
Now, let X = R and U = R. Then, consider the system

x(k+1) =
1
2
· x(k) ·u(k) ∀k ∈ Z+, i.e.

x(k+1) =
1

2k+1 x0 ·
k

∏
l=0

u(l), (16)

where x(0) = x0.
First, choose u(l) = 4 ∀ l ∈ Z+. It follows

x(k) =
1
2k x0 ·

k−1

∏
l=0

4 = 2k · x0,

where limk→∞ |x(k)|= ∞. This shows that (16) is not ISS.
Next, we show that (16) is iISS. For this purpose we need
the following result

Lemma 2: For all a,b ∈ R+, r ≥ 1 holds

1) tanh(a ·b)≤ tanh(a2)+ tanh(b2),
2) tanh(ar)≤ a.

Proof: The first estimate follows by

tanh(ab)≤ tanh(max{a2,b2})≤ tanh(a2)+ tanh(b2).

The second estimate follows by noticing that tanh(ar)≤ a if
a > 1 and tanh(ar)≤ tanh(a)≤ a if a ≤ 1.

Now, we can define α ∈ K∞ by

α(x) := max{tanh(x), log(x)}.

1 2 3 4 5

0.5

1

1.5

2 α(x)

Thus, if α(x) = tanh(x) and by using Lemma 2 and |u|∞ :=
supl=0,...,k−1 |u(l)|, we get

α(|x(k)|) = α(| 1
2k · x0 ·

k−1

∏
l=0

u(l)|)

= tanh(
1
2k · |x0| ·

k−1

∏
l=0

|u(l)|)

≤ tanh(
[

1
2k · |x0|

]2

)+ tanh(

[
k−1

∏
l=0

|u(l)|

]2

)

≤ tanh(
[

1
2k · |x0|

]2

)+ tanh(|u|2k
∞ )

≤ 1
2k · x0 + |u|∞

≤ 1
2k · |x0|+

k−1

∑
l=0

|u(l)|,
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If α(x) = log(x) we compute

α(|x(k)|) = α(| 1
2k · x0 ·

k−1

∏
l=0

u(l)|)

= log(
1
2k · |x0| ·

k−1

∏
l=0

|u(l)|)

= log(
1
2k · |x0|)+ log(

k−1

∏
l=0

|u(l)|)

= log(
1
2k · |x0|)+

k−1

∑
l=0

log(|u(l)|)

≤ 1
2k · |x0|+

k−1

∑
l=0

|u(l)|.

Thus, we get the same estimation in both cases. By defining
β (|x0|,k) := 1

2k · |x0| and µ(|u(l)|) := |u(l)| we get that (16)
fulfills (11). Therefore, it is iISS.
Now, we show that (16) is strongly iISS. Therefore, choose
|u(l)|< R < 2 and it follows

x(k) =
1
2k · x0 ·

k−1

∏
l=0

u(l)<
(

R
2

)k

· x0.

By defining β (|x0|,k) :=
(R

2

)k · |x0| and γ(|u|)= |u| with |u|=
maxk∈Z+ |u(k)|, we get

|x(k)|<
(

R
2

)k

· x0

≤
(

R
2

)k

· |x0|+ |u|

≤ β (|x0|,k)+ γ(|u|),

which shows (8). Therefore, (16) is strongly iISS.
Now, let X = R and U = R. Consider the system

x(k+1) = ρ(x(k))+u(k), ∀k ∈ Z+, (17)

where ρ(r) := r · (1− exp(−|r|)) is continuous and strictly
increasing function and the initial condition is x(0) = x0.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6
id(x)
ρ(x)

First, we show again that (17) is not ISS. We use that
g : R→ R, g(x) := |x| · exp(−|x|) has a local maximum for
x =±1 and g(±1) = exp(−1).

Furthermore, we choose u(k) = 1 ∀k ∈ Z+. Thus, we com-
pute

|x(k)|= |x(k−1)| · (1− exp(−|x(k−1)|))+1
= |x(k−1)|− |x(k−1)| · exp(−|x(k−1)|)+1
≥ |x(k−1)|− exp(−1)+1

= |x(k−1)|+ exp(1)−1
exp(1)

≥ ·· · ≥ |x0|+ k · exp(1)−1
exp(1)

.

It follows limk→∞ |x(k)| ≥ limk→∞ |x0| + k · exp(1)−1
exp(1) = ∞.

Therefore, (17) is not ISS.
But (17) is iISS. This can be shown through the existence
of an iISS - Lyapunov function, see [20].
We choose V (x) = |x|. By choosing ψ1(|x|) = |x| = ψ2(|x|)
we get the bounds for V (x). Then, we compute

V ( f (x(k),u(k)))−V (x(k)) = | f (x(k),u(k))|− |x(k)|
= |ρ(x(k))+u(k)|− |x(k)|
≤ |ρ(x(k))|+ |u(k)|− |x(k)|
= |x(k) · (1− exp(−|x(k)|))|+ |u(k)|− |x(k)|
= |x(k)| · (1− exp(−|x(k)|))+ |u(k)|− |x(k)|
= |x(k)|− |x(k)| · exp(−|x(k)|)+ |u(k)|− |x(k)|
=−|x(k)| · exp(−|x(k)|)+ |u(k)|
=−α(|x(k)|)+σ(|u(k)|),

where we choose α(r) := r · exp(−r) as positive definite
function and σ(r) := r, r ≥ 0, σ ∈ K∞. This shows that
V (x) = |x| is an iISS Lyapunov function and by Theorem
1 we get that (17) is iISS.
Furthermore, we demonstrate that (17) is not strongly iISS.
We assume that ∃0 < R < 1 such that (17) would be strongly
iISS. Then, we can choose u(k) = R

2 ∀k ∈ Z+. Notice that
R
4 < 1

4 . Now, we compute the distance d(x0,ρ(x0)) with
|x0|> 1. It follows

d(x0,ρ(x0)) = |x0 −ρ(x0)|= |x0 · exp(−|x0|)|.

We also know that minx∈R |x · exp(−|x|)|= 0 and
maxx∈R |x · exp(−|x|)| = exp(−1). Because of the mean
value theorem we know that there is a x0 with R

4 =
d(x0,ρ(x0)). With this x0 we get

x(1) = x0 − x0 · exp(−|x0|)+
R
2
= x0 +

R
4
> x0.

It follows d(x(1),ρ(x(1)))< d(x0,ρ(x0)) =
R
4 and therefore,

x(2) = x(1)− x(1) · exp(−|x(1)|)+ R
2

≥ x(1)− R
4
+

R
2

= x0 +2 · R
4
.

Following this approach we get x(k)≥ x0+k · R
4 which means

limk→∞ |x(k)|=∞. This shows that there can not exist a R> 0
such that (17) is strongly iISS.
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Fig. 2. Relationship between ISS, strong iISS, iISS and 0-GAS

These two examples and Proposition 4 show that the class of
systems that are ISS is a strict subset of the class of systems
that are strong iISS and the same holds for the class of
systems that are strong iISS and iISS. A graphical illustration
is given in figure 2. Furthermore, these two examples can be
easily extended to infinite dimensions and the relationship
can be seen in a similar way.

VI. CONCLUSIONS

We have introduced the iISS and strong iISS properties
for infinite-dimensional discrete-time systems. Then we have
shown that ISS of a system Σ implies iISS for discrete-
time systems if dim(X) ≤ ∞. We could not find any results
about this in the literature in the case of infinite-dimensional
continuous-time systems if the operator f is nonlinear.

Furthermore, we have shown some discrete-time counter-
parts of the results from [17], e.g. Proposition 3 and Theorem
5 with the same approach. Hence, we have shown that ISS
is equivalent to iISS and UAG.

We have seen that the class of systems that are ISS is a
strict subset of the class of systems that are strongly iISS. We
have also seen that the class of systems that are strongly iISS
is a strict subset of the class of systems that are iISS. Our
examples are for finite dimensions but they can be extended
into infinite dimensions as well by using xn(k+1)= 1

2 ·xn(k) ·
u(k) for all n ∈ N in (16) and analogously in (17).

In our future work we plan to study, if 0-UGAS is
equivalent to the iISS for dim(X) =∞ like in the continuous-
time case for bounded bilinear and non-autonomous bilinear
systems, see [22] and [23].

Recall that ISS and iISS are equivalent for bounded linear
systems in the continuous-time case, see [23] and [10] and
we are going to study such systems in the discrete-time case.
We also plan to derive Lyapunov characterizations of strong
iISS and other ISS-like properties, similarly to [21] and [9]
for the continuous-time case and we will investigate further
characterizations of ISS-like properties like iISS, see [24].
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