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Abstract— Systems governed by delay differential equations
(DDEs) are distinguished by having infinite-dimensional dy-
namics. This key feature in the context of linear time-delayed
systems reflects itself in the associated operator eigenvalue
problem. Moreover, in numerous applications including power
systems and machining, an accurate description leads to time-
periodic models. To address the stabilization problem of such
systems, we minimize the spectral radius of the discretized
monodromy operator. We propose two approaches to impose
smoothness on the designed periodic feedback gain. In our first
approach, we limit the total variation of the feedback gain
and impose approximate periodicity of the controller gain by
adding regularization terms to the cost function. Conversely,
in the second approach, the feedback gain is constrained to be
characterized by a finite number of harmonics of its Fourier
series representation; hence, smoothness and periodicity are
explicitly encoded in the controller parametrization. We develop
computationally tractable formulations for the derivative of the
spectral radius with respect to the controller parameters, which
are employed by the optimization algorithm. Finally, through a
case study involving a milling machine, we validate the efficacy
and applicability of the presented work.

I. INTRODUCTION

Time delay is a pivotal component within many accurate
system description, such as neural response latency, data pro-
cessing delay, transmission and reception delay, etc. [1][2].
Time delay elements express that the transfer of material,
energy, or information between subsystems mostly occurs
with latency. Moreover, the system behavior can vary with
time. In this research, we are interested in scenarios where
the system model varies periodically. The periodicity can
stem from the periodic variation of the system parameters
[3], the local stability analysis of periodic solutions of non-
linear delay differential equations (DDEs) [4], or directing a
time-invariant system with a time-periodic controller such
as act-and-wait controllers [5]. The combination of delay
and parametric excitation leads us to the study of systems
characterized by Time-Periodic Delay Differential Equations
(TPDDEs). Systems governed with TPDDEs of retarded type
are defined as

ẋ(t) =
m∑
i=1

Ai(t)x(t− τi) +B(t)u(t),

y(t) =
n∑

j=1

Cj(t)x(t− τ̄j),
(1)
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where vectors x(t) ∈ Cd, y(t) ∈ Cp, and u(t) ∈ Cr

stand for the state, the output, and the control input vectors
at time t. The delay variables τi and τ̄j are nonnegative
real values that are associated with the state and output
delays, respectively. The matrix-valued functions Ai : R →
Rd×d for i = 1, . . . ,m, B : R → Rd×r and Cj : R →
Rp×d, for j = 1, . . . , n are real-valued piecewise continuous
functions with period T > 0. It should be noted that the
approach presented in this article is adaptable to situations
with single input delay in the model, as well. This is feasible
as the single delay in the control input can be readily
translated to the output.

In this article, we design a static output feedback con-
troller, described by

u(t) = K(t)y(t) =

n∑
j=1

K(t)Cj(t)x(t− τ̄j). (2)

The function t 7→ K(t) ∈ Cr×p is the time-periodic feedback
gain whose fundamental period is assumed to be that of the
system.

A. Literature Review

As a key aspect, time-delay systems form a class of
infinite-dimensional systems, which leads to rich dynamics
and challenges in analysis and design. Within the framework
of linear time-invariant (LTI) DDEs, the availability of the
characteristic equation in an explicit form has spurred the
development of novel methods not only for analyzing system
stability but also for designing stabilizing controllers to direct
the system behavior in the desired manner [6][7][8][9].

In contrast to LTI DDEs, the currently available methods
for TPDDEs almost exclusively address analysis problems.
Several computational methods have been proposed for sta-
bility analysis, grounded upon Floquet theory and spectrum
approximation of the monodrmoy operator. The typical dis-
cretization techniques include semi-discretization [3] and
spectral methods relying on (Galerkin) projection [10] or
collocation [11]. In [12], an extension to robust stability
analysis of TPDDEs with perturbations on the coefficients
via the notion of pseudospectral radius of the monodromy
operator has been described. In [13] and [14], the stability
analysis of TPDDEs and the computation of H2 norm via
the notion of delay Lyapunov matrix has been conducted,
respectively. However, the computation of delay Lyapunov
matrices is a challenging task, while existing work is limited
to special cases of TPDDEs. To approach the stability
analysis, analytic methods based on averaging have also been
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proposed [15] [16]. Averaging, nevertheless, requires that the
variation of the periodic terms is sufficiently fast compared
to the system dynamics, which is not the case in our targeted
applications.

The few work on control of TPDDEs include [17][18],
where a time-invariant feedback gain is computed by stability
optimization. Next, the so-called act-and-wait controller [5]
is a powerful time-periodic control scheme that induces a
finite-dimensional monodromy operator. However, its appli-
cation is limited to LTI systems with input and output delay.
Finally, some literature has been devoted to the stabilization
of TPDDEs, where controller parameters are tuned with the
aid of stability charts [5][19]. Such an approach is insightful
but restricts to problems with a small number of controller
parameters.

Since DDEs fall within the scope of infinite-dimensional
systems, a finite-dimensional approximation, followed by a
controller design using techniques for finite-dimensional sys-
tems (see, e.g., the LQR controllers synthesized in [19]) may
lead to a high-dimensional controller or an approximation
of a distributed delay controller. In contrast, this article fits
within the direct optimization framework towards the design
of controllers with a prescribed-order or structure [20], where
stability, robustness and performance criteria of the closed-
loop system are directly optimized as a function of the
available controller parameters.

B. Contributions

In this article, we propose a design approach to syn-
thesize the feedback controller (2), relying on minimizing
the spectral radius of the (discretized) monodromy operator.
We propose two approaches to impose smoothness on the
designed periodic feedback gain:

1) As our first approach, we limit the total variation of
the feedback gain and impose approximate periodicity
of the controller gain by adding regularization terms
to the cost function.

2) In our second approach, we confine the periodic gain to
functions that specifically contain a designated number
of harmonics within their Fourier series expansion.
Imposing such a structure on the feedback gain induces
smoothness and periodicity explicitly.

We introduce computationally tractable formulas for the
derivative of modulus of a simple Floquet multiplier with
respect to the controller parameters. These derivatives are
exploited in solving the formulated nonsmooth optimization
problems, grounded upon minimizing the spectral radius of
the induced discretized monodromy operator. Finally, we
study the efficacy and applicability of our work through a
case study of a milling machine.

II. PREMILINARIES

In what follows, we give a brief overview of Floquet
theory for TPDDEs. For more detailed information, the
reader can consult with the referred monographs [21][22].

A. Definitions

The closed-loop system dynamics formed from directing
the system (1) with the control input (2) is expressed as

ẋ(t) =
m∑
i=1

Ai(t)x(t− τi)+

n∑
j=1

B(t)K(t)Cj(t)x(t− τ̄j), t ≥ t0,

x(t) = ϕ(t− t0), t ∈ [t0 − τmax, t0],

(3)

where we define t0 as the start time, τmax as the largest
delay component considering delays present both in output
and state, and ϕ ∈ X = C([−τmax, 0],Rd) as the initial
condition, where the set X represents the space of continuous
functions from [−τmax, 0] to Rd. This introduced Cauchy
problem has a unique solution in the interval [t0 − τmax, t]
that we denote by x(t; t0, ϕ). The corresponding state at time
t ≥ t0 is then given by the function segment xt(t0, ϕ) ∈ X ,
defined by

xt(t0, ϕ)(σ) := x(t+ σ; t0, ϕ), σ ∈ [−τmax, 0],

Definition 1 (Solution operator): We denote the solution
operator with T (t, t0) : X → X as the strongly continuous
semigroup that maps the initial function ϕ at time t0 onto
the state at time t ≥ t0, which can be stated as

T (t, t0)ϕ = xt(t0, ϕ).
The spectrum of the solution operator T (T, 0) is an at most
countable compact set in C possibly with accumulation point
zero. This spectrum is equal to the spectrum of the solution
operator T (t0 + T, t0), for all t0 ∈ R. This leads us to the
definition the monodromy operator for TPDDEs.

Definition 2 (Monodromy operator): The monodromy
operator is defined as U := T (T, 0), where T is the
fundamental period. Any nonzero member of the spectrum
of the monodromy operator is called a Floquet multiplier.

Let {µi}∞i=1 be the Floquet multiplier and let {ϕi}∞i=1 be
the corresponding set of (generalized) eigenfucntions. Then,
any solution x(t; 0, ϕ) can be decomposed as

x(t; 0, ϕ) =

∞∑
i=1

cix(t; 0, ϕi),

where {ci}∞i=1 depend on ϕ. Hence, all solutions can be de-
composed in elementary solutions. Note that these solutions
emanating from an eigenfunction have the form x(t; 0, ϕ) =
ρi(t)e

γit, where ρi(t) is T-periodic and eγiT = µi [23].
Proposition 1: The zero solution of (3) is asymptotically

stable if and only if the modulus of all Floquet multipliers
of the corresponding monodromy operator is smaller than 1.

B. A Collocation-Based Solver for Computing the Dominant
Floquet Multiplier

As discussed previously, TPDDEs are characterized by
having infinite-dimensional dynamics. Accordingly, compu-
tation of all the infinitely many eigenvalues of the mon-
odromy operator is infeasible. In this subsection, we present
the solver introduced in [12] to compute the eigenvalues of
the discretized monodromy operator, as it forms the basis
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−τmax 0

ϕ

T − τmax T

UϕUϕ = µϕ

Fig. 1. This figure illustrates how the solution x in blue emanating from
an eigenfunction of the monodromy operator ϕ in red is linked via the
corresponding Floquet multiplier for the scenario where T > τmax and
|µ| > 1.

for the further developments. Subsequently, in Section III,
we solve a reduced-control problem, namely, we design a
controller to relocate all the Floquet multipliers within the
unit disk.

Fig. 1 represents a solution emanating from an eigen-
function ϕ of the monodromy operator. We can state that
the value µ is the nonzero eigenvalue of the monodromy
operator if and only if there exists an eigenfunction ϕ such
that Uϕ = µϕ. This can also be equivalently expressed as

x(σ + T ; 0, ϕ) = µϕ(σ), for all σ ∈ [−τmax, 0]. (4)

Our approach is based on approximating the solution cor-
responding to an eigenfunction of the monodromy operator,
i.e, we approximate the solution [−τmax, T ] ∋ t 7→ x(t; 0, ϕ)
such that (4) holds. Note that such a solution corresponds
to an elementary solution as was introduced earlier. The
solution is approximated with a piecewise polynomial and
three constraints are imposed: continuity, collocation con-
straints for differential equation (3), and finally, expression
(4). Writing these constraints together results in a linear
finite-dimensional generalized eigenvalue problem.

As sketched in Fig. 2, we subdivide the intervals
[−τmax, 0] and [0, T ] into Nτ and NT subintervals, respec-
tively. Each subinterval is represented by Ωj . The solution
can be approximated via a piecewise polynomial p defined
as

x(t; 0, ϕ) ≈ p(t) =

N∑
j=1

pj(t)χΩj
(t),

where N := NT + Nτ is the total number of subintervals,
pj is the polynomial approximating the solution over jth
subinterval, and finally, χΩj

represents the corresponding
indicator function. Let us define the polynomial pj with
a polynomial of degree M ∈ N for j = 1, . . . , N and
t ∈ [−τmax, T ] as

pj(t) =

M∑
s=0

v(j)s T (j)
s (t),

where {T (j)
s (t)}Ms=0 is the chosen polynomial basis, and

v
(j)
s ∈ Cd are the associated coefficients corresponding to jth

subinterval. In this article, we employ Chebyshev-distributed
grid points over the subinterval Ωj = [aj , bj ] and Chebyshev
polynomials to approximate the solution [24]. We define
a generic mesh as αℓ = − cos(πℓΓ ) over the subinterval

Ωj , whose inverse in the original time coordinate can be
calculated as ϑj

ℓ = fj(αℓ) =
1
2 (aj+bj)+

αℓ

2 (bj−aj) for ℓ =
1, . . . ,Γ, where{

Γ = M + 1, if Ωj ⊂ [−τmax, 0],

Γ = M, if Ωj ⊂ [0, T ].

Let us define MT := NTM and Mτ := Nτ (M + 1) that
stand for the number of collocation points in the interval
[0, T ] and [−τmax, 0], respectively. For simplicity of rep-
resentation in the later use, let us store all the collocation
points in the interval [0, T ] from left to right in θℓ for ℓ =
1, . . . ,MT and store all the collocation points in the interval
[−τmax, 0] from left to right in θℓ for ℓ = MT+1, . . . ,MT+
Mτ . Furthermore, we store the unknown coefficients from
left to right in the compact form V ∈ CN(M+1)d. The
solution of the Cauchy problem is approximated by imposing
the following three constraints:

• Consider the subinterval Ωj = [aj , bj ] ⊂ [0, T ]. We
impose continuity conditions on aj as the breaking
points of the subintervals, which read as

pj−1(aj) = pj(aj), for j = 2, . . . , NT . (5)

The polynomials p1 and pNT+Nτ
have to be continuous

at t = 0, which can be written as

pNT+Nτ
(0) = p1(0). (6)

• We impose collocation conditions on the DDE (3). Take
I to signify the interpolation operator,

I : [−τmax, T ]× N → Rd×N(M+1)d,

(t,κ) 7→ I(κ)(t),where I(κ)(t)V = p(κ)(t),

which returns the value for the κth derivative (κ ≥ 0)
of the piecewise polynomial p at time t. We rewrite (3)
with the use of interpolation operator for ℓ = 1, . . . ,MT

as follows:(
I(1)(θℓ)−

m∑
i=1

Ai(θℓ)I(0)(θℓ − τi)−

n∑
j=1

B(θℓ)K(θℓ)Cj(θℓ)I(0)(θℓ − τ̄j)
)
V = 0. (7)

• Finally, we require the solution to be an eigenfunction
of the discretized monodromy operator for ℓ = MT +
1, . . . ,MT +Mτ as

I(0)(θℓ + T )V = µI(0)(θℓ)V.

Writing all the constraints together gives rise to the following
linear general eigenvalue problem:

M(µ)V := (AM − µBM )V = 0, (8)

where the pair (µ, V ) stand for the right eigenpair of
the pencil (AM ,BM ). In [12], it has been indicated that
det(AM −µBM ) = 0 can be rearranged as det(µI−UM ) =
0, where UM is the induced discretized monodromy operator.

6877



Ω1 Ω2 . . . ΩNT

T0
p1 p2 . . . pNT

ΩNT+Nτ. . .ΩNT+1

pNT+Nτ
. . .pNT+1

−τmax

Fig. 2. Division of the domain [−τmax, T ] into N subintervals, where N := Nτ +NT .

Note that the accuracy of the approximated dominant
Floquet multiplier is impacted by the number of collocation
points; unnecessarily choosing large MT , nevertheless, leads
to increased computational costs. As we rely on the eigevalue
solver in the control design discussed in what follows, we
determine the number of collocation point a priori (i.e., for
the open loop system) such that the large Floquet multipliers
are accurately approximated, and re-evaluate this choice a
posteriori (for the synthesized controller).

III. OPTIMAL TIME-PERIODIC FEEDBACK GAIN DESIGN

The stabilization problem of a system in the form (3)
corresponds to designing the feedback gain K such that all
Floquet multipliers are confined to the open unit disk. The
problem of moving the unstable Floquet multipliers into the
unit disk, as well as the problem of increasing the decay rate
of solutions of a stable system towards the zero equilibrium,
leads us to the optimization problem of minimizing the
spectral radius of the monodromy operator as a function of
the controller variables. Meanwhile, from an implementation
perspective, there are restrictions on the extent to which the
feedback gain changes throughout the period. This can be
imposed in two ways:

1) The first approach entails incorporating a regularization
term limiting the total variation of the feedback gain.

2) In the second technique, we impose smoothness ex-
plicitly by parametrizing the controller in the form of
a truncated Fourier series, considering only the first
few harmonics.

A. Controller Design Based on Limiting the Total Variation
of the Feedback Gain

The optimization problem is introduced as in (9).

Minimize
K

P
(
U(K)

)
+ λ1

∫ T

0

w(t)
∥∥∥K̇(t)

∥∥∥2
Fr

dt,

Subject to : K(0) = K(T ),

(9)

where P
(
U(K)

)
stands for the spectral radius of the mon-

odromy operator, ∥∗∥2Fr represents the square Frobenius
norm of the matrix ∗, and the parameter λ1 penalizes the total
variation of the feedback gain. Function w represents the
time-continuous weight function. Discretizing the eigenvalue
problem as outlined in Section II induces a discretization of
the controller gain K into

K := [K1, . . . ,Kℓ, . . . ,KMT
],

where Kℓ = K(θℓ) stands for the approximated value of K
at time instants t = θℓ. These time instants correspond to the
MT collocation points in the interval [0, T ], which remains

constant during the optimization. In light of this definition,
the discrete form of the infinite-dimensional optimization
problem (9) is formulated as

Minimize
K

P
(
UM (K)

)
+ λ1R1(K) + λ2R2(K), (10)

where R1 and R2 are regularization functions defined as

R1(K) :=

MT−1∑
i=1

wi
∥Ki+1 −Ki∥2Fr

(θi+1 − θi)
,

R2(K) := ∥KMT
−K1∥2Fr .

The constant λ2 is the penalty parameter for inducing ap-
proximate periodicity in the discretized form of the feedback
gain. Note that

P
(
UM (K)

)
= max {|µ| : det

(
M(µ;K)

)
= 0},

where we make the dependency of M on the feedback matrix
K explicit, i.e.,

M : C× Rr×pMT → CN(M+1)d×N(M+1)d,

(µ,K) 7→ M(µ,K).

The spectral radius of the discretized monodromy operator is
in general a nonsmooth function of the gain parameters due
to the maximum operator in P(UM ). It may even fail to be
locally Lipschitz continuous if a dominant Floquet multiplier
corresponds to a defective multiple eigenvalue. However,
it is almost everywhere differentiable since the dominant
Floquet multiplier is almost everywhere simple, which im-
plies differentiability. This considerable merit enables us to
solve the optimization problem via a MATLAB software
package named HANSO (Hybrid Algorithm for NonSmooth
Optimization) [25]. HANSO solves nonsmooth optimization
problems by the BFGS algorithm with weak Wolfe line
search, possibly combined with the gradient sampling algo-
rithm. Since HANSO only necessitates evaluating the objec-
tive function and its gradient almost everywhere, providing
computationally tractable formulation for the gradient of the
objective function, wherever the dominant Floquet multiplier
is simple, is sufficient. If the dominant Floquet multiplier
is simple, the gradient of the objective function defined as
F = P(UM ) + λ1R1 + λ2R2 is computed as

∇KF(K̃) =

∇K |µ| (K̃) + λ1∇KR1(K̃) + λ2∇KR2(K̃), (11)

where ∇K denotes the gradient with respect to vec(K),
which represents the vectorized form of K. The only chal-
lenging term in the above representation is ∇K |µ| (K̃). The
following proposition is introduced to compute the gradient
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of a simple eigenvalue with respect to parameters of the
feedback gain Kℓ ∈ Rr×p. In what follows, we define the
derivative of a simple eigenvalue with respect to feedback
gain Kℓ evaluated at K̃ as the matrix of the same dimensions
as Kℓ such that:

∂µ(K̃)

∂Kℓ
:=


∂µ(K̃)

∂K1,1(θℓ)
. . . ∂µ(K̃)

∂K1,p(θℓ)

...
. . .

...
∂µ(K̃)

∂Kr,1(θℓ)
. . . ∂µ(K̃)

∂Kr,p(θℓ)

 (12)

Proposition 2: Consider the linear eigenvalue problem
derived in (8). Let K̃ represent a specific feedback gain and
µ̃ be a simple eigenvalue with W̃ , Ṽ ∈ CN(M+1)d as left and
right eigenvectors, respectively, such that W̃ ∗M(µ̃; K̃) = 0
and M(µ̃; K̃)Ṽ = 0, where W̃ ∗ stands for the complex
conjugate transpose of W̃ . Let W̃ be partitioned with block
W̃i ∈ Cd for i = 1, . . . , N(M + 1). We store all the blocks
W̃i for i = Nτ (M + 1) +NT + 1, . . . , N(M + 1) in vector
Z̃ ∈ CMT d. We denote with Z̃ℓ ∈ Cd as ℓth block of the
partitioned vector Z̃. It holds for ℓ = 1, . . . ,MT that

∇Kℓ
µ(K̃) =(

B(θℓ)
T ¯̃Zℓ

)(
Ṽ T [

∑n
j=1 Cj(θℓ)I(0)(θℓ − τ̄j)]

T
)

W̃ ∗BM (K̃)Ṽ
, (13)

where ¯̃Zℓ stands for the complex conjugate of Z̃ℓ. In the
scenarios where the feedback gain is expected to remain
constant throughout the period, (13) for ℓ = 1, . . . ,MT is
updated as

∇Kℓ
µ(K̃) =∑MT

ℓ=1

(
B(θℓ)

T ¯̃Zℓ

)(
Ṽ T [

∑n
j=1 Cj(θℓ)I(0)(θℓ − τ̄j)]

T
)

W̃ ∗BM (K̃)Ṽ
.

Proof: Consider feedback gain Kℓ ∈ Rr×p. The
derivative of a simple eigenvalue with respect to a scalar
variable Kℓz,q , namely zth row and qth column entry of Kℓ

where z = 1, . . . , r and q = 1, . . . , p is calculated via the
following well-known formula from [26]:

∂µ(K̃)

∂Kℓz,q

= −
W̃ ∗ ∂M(µ̃;K̃)

∂Kℓz,q
Ṽ

W̃ ∗ ∂M(µ̃;K̃)
∂µ Ṽ

.

It directly follows from (8) that W̃ ∗ ∂M(µ̃;K̃)
∂µ Ṽ =

−W̃ ∗BM (K̃)Ṽ , and the only contribution to the matrix
∂M(µ̃;K̃)
∂Kℓz,q

is via (7). Note that since the only constraint

depending on K is (7), if we partition vector W̃ in blocks
of size d, only the block vectors from the index Nτ (M +
1)+NT +1 appear in the derivative. We store them in vector
Z̃ ∈ CMT d. Note that Z̃ℓ ∈ Cd represents the ℓth block of

partitioned vector Z̃. It is straightforward to write

W̃ ∗ ∂M(µ̃; K̃)

∂Kℓz,q

Ṽ

= Z̃∗
ℓB(θℓ)e

p
ze

r
q
T

n∑
j=1

Cj(θℓ)I(0)(θℓ − τ̄j)Ṽ

=
(
epz

TB(θℓ)
T ¯̃Zℓ

)(
Ṽ T [

n∑
j=1

Cj(θℓ)I(0)(θℓ − τ̄j)]
T erq

)
.

Putting together the formulas for derivatives with respect to
each entry of Kℓ yields the formula for the derivative with
respect to all the elements of the matrix Kℓ as

W̃ ∗ ∂M(µ̃; K̃)

∂Kℓ
Ṽ =

(
B(θℓ)

T ¯̃Zℓ

)(
Ṽ T [

n∑
j=1

Cj(θℓ)I(0)(θℓ − τ̄j)]
T
)
.

Proposition 3: The gradient of the modulus of a simple
eigenvalue is calculated as

∇K |µ| (K̃) =
Re

(
µ(K̃)∗∇Kµ(K̃)

)
|µ| (K̃)

,

where Re(∗) stands for the real part of ∗.
Proof: Consider |µ|2 (K̃) = µ(K̃)µ(K̃)∗. We can write

∇K |µ|2 (K̃) =µ(K̃)∗∇Kµ(K̃) + µ(K̃)∇Kµ(K̃)∗

=2Re(µ(K̃)∗∇Kµ(K̃)).

Following this, we can write:

∇K |µ| (K̃) =
∇K |µ|2 (K̃)

2 |µ| (K̃)
=

Re
(
µ(K̃)∗∇Kµ(K̃)

)
|µ| (K̃)

.

B. Controller Design Based on the Truncated Fourier Series
of the Feedback Gain

In this section, we restrict the time-periodic gain matrix
to a function having a prescribed number of harmonics in
its Fourier series expansion. Consider that the feedback gain
can be represented as

K(t) = K0 +

ι∑
h=1

(
Kcos

h cos(
2hπt

T
) +Ksin

h sin(
2hπt

T
)
)
.

In this scenario, the variables of optimization problem are the
coefficients in the Fourier series, which can be represented
in the compact form

K =
[
K0 Kcos

1 Ksin
1 . . . Kcos

ι Ksin
ι

]T
.

With regard to the above explanation, the optimization prob-
lem is stated as

Minimize
K

P
(
UM (K)

))
.
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The gradient of a simple eigenvalue with respect to elements
of K evaluated at K̃ reads as

∇K |µ|(K̃) = [∇K0
|µ|(K̃) ∇Kcos

1
|µ|(K̃) ∇Ksin

1
|µ|(K̃)

. . . ∇Kcos
ι

|µ|(K̃) ∇Ksin
ι
|µ|(K̃)]T .

The benefit of enforcing smoothness and periodicity through
parameterization, rather than regularization terms, lies not
only in bypassing the challenge of determining the proper
penalty parameters but also in dealing with significantly
fewer optimization variables. In the following section, a case
study on the milling operation is presented to provide a
further detailed comparison and to discuss the strengths and
weaknesses of each method.

IV. CASE STUDY

The milling operation is typically subject to self-excited
vibrations, which can result in poor surface finish and
dimensional inaccuracies. Moreover, high levels of vibration
or operating at resonant frequencies accelerate tool wear and
even lead to tool breakage. The reason for such regenerative
chatter can be attributed to the instability of the equilibrium
of the corresponding nonlinear model. The behavior of the
motion of the workpiece around the periodic solution results
in a system of TPDDEs. By employing the two methods
proposed in this article, we aim to reduce such vibrations
through designing a locally stabilizing feedback.

In what follows, we give a brief overview of a milling
model with a rigid tool and a flexible workpiece. The reader
can refer to [3][12][27] for more details. Consider a TPDDE
of the form

mxζ̈(t) + cxζ̇(t) + kxζ(t) = G(t)(ζ(t− τ)− ζ(t)) + kau(t),

(14)
where the coordinate ζ describes the motion of the workpiece
along the x axis around a periodic orbit. Parameters mx, cx,
and kx stand for the modal mass, damping coefficient,
and spring stiffness, respectively. The τ -periodic function
G represents the directional cutting coefficient. Equation
(14) in its open-loop mode represents a specific case of
TPDDEs where the delay and period are identical, defined
by τ = 60

zΩ with z denoting the total number of cutting
teeth and Ω indicating the spindle speed. The constant ka
is an approximation of the actuator transfer function, which
converts the input voltage to the output force. The control
law

u(t) = K(t)y(t) =
[
K1(t) K2(t)

] [ζ(t− τ)

ζ̇(t− τ)

]
characterizes the input voltage of the actuator, which is
strategically positioned on the workpiece holder to com-
pensate the vibrations. We employ the numerical dataset
of the milling model provided in [12] as mx = 1 kg,
cx = 40 Ns

m , kx = 106 N
m , and z = 2. Moreover, based

on the provided stability charts, we set the axial depth
of the cut and the spindle speed equal to 1.5 mm and
5000 rpm, respectively. Under such operating conditions, the
milling machine experiences unstable regenerative chatter.
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Fig. 3. Temporal behavior of the τ -periodic function G across two periods.

We approximate the transfer function between the output
force and the input voltage with ka ≈ 23.3588 [27]. The
temporal behavior of the function G over two time periods
is sketched in Fig. 3. We take M = 20, and we choose the
length of the subintervals such that the first discontinuity
point is identical to the first break point. This gives us
five subintervals, four of which are of equal length. The
spectral radius of the open-loop system is 1.3847, indicating
instability within the system.

First, we attempt to suppress regenerative chatter through
stabilization of (14) with a time-constant feedback gain. The
dominant Floquet multiplier with such controller is located
outside of the unit disk at 1.2976 + 0.4789i. Therefore,
obtaining stability within the TPDDE necessitates a time-
varying feedback gain.

To have a well-designed time-periodic feedback gain
through solving the optimization problem (9), proper values
for the penalty parameters have to be chosen. To this aim,
we study the trade-off between the spectral radius of the
discretized monodromy operator and the smoothness of the
feedback gain. Considering the objective function (10), the
regularization term R2 can be viewed as constraining the
variation between the endpoint and the start point of each
period. Accordingly, we can write F = P(UM ) + λ1

(
R1 +

βR2

)
. Therefore, we assess the impact of the selected values

of λ1 on the balance between the smoothness indicator term,
denoted as R̄ = (R1 + βR2

)
and P(UM ), where β is

held constant at 102. Fig. 4 illustrates that small values of
λ1 decrease P(UM ) at the cost of increasing R̄, resulting
in significant variations in the designed gain. Conversely,
for sufficiently large values of λ1, this approach mimics
the design of a time-constant feedback gain. Based on the
provided explanation, we set λ1 = 1e−10 and λ2 = 1e−8.
Note that solving the optimization problem involves solving
the generalized eigenvalue problem (8) iteratively. Since we
are only interested in the dominant eigenvalue, we exploit
eigenvalue solvers suitable for large-scale matrices [28].
The dominant Floquet multiplier with such a controller is
positioned at 0.4508.

As our second proposed approach, we employ the first
five terms to describe the Fourier series of the feedback
gain (i.e., the constant term, the two terms corresponding to
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Fig. 4. Assessment of the balance between the spectral radius of the
discretized monodromy operator and the smoothness indicator term.

the fundamental harmonic and the two terms corresponding
to the second harmonic). This adjustment is necessary as
the system could not be stabilized using only the first
three terms. The dominant Floquet multiplier of the closed-
loop system with such a controller design is positioned at
0.6102+ 0.1175i. Table I outlines the spectral radius values
corresponding to different optimal feedback gain design
scenarios. Note that abbreviations TC, TV, and FR stand
for the time-constant feedback gain, feedback gain design
based on limiting the total variation, and feedback gain
design based on the truncated Fourier series, respectively.
The temporal behavior of the feedback gain for the three
different design scenarios is sketched in Fig. 5. The FR
method exhibits smooth behavior, whereas the feedback gain
designed using the TV method experiences minor fluctua-
tions, particularly at the breakpoints of the subintervals. On
the other hand, the flexibility of the TV method allows us to
have a smaller spectral radius, which results in more rapid
vibration suppression.

To validate the obtained results, we investigate the so-
lutions of the TPDDE using dde23, a solver in MATLAB
for DDEs with constant delays. The temporal behavior of
the displacement and velocity is sketched in Fig. 6 and 7,
respectively. The four different scenarios include OP, TC,
TV, and FR, where OP stands for open-loop. The simulation
results reveal that the regenerative chatter cannot be mitigated
using a time-constant feedback gain, whereas the other two
design methods can provide the system with asymptotic
stability. Furthermore, the TV method, due to its flexibility in
the controller design, leads to quicker vibration suppression
in comparison to the FR method.

V. CONCLUSIONS AND FUTURE WORK

In this article, we discussed that the stabilization prob-
lem of TPDDEs demands further attention. Moreover, with
the aid of time-periodic feedback, better performance and
adaptability are expected in various applications, compared
to time-invariant one. We proposed two methods to design a
stabilizing time-periodic feedback gain, rooted in minimizing
the spectral radius of the monodromy operator. The proposed
FR method is more straightforward, since it deals with fewer
optimization variables and does not require determining
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Fig. 5. Temporal behavior of the optimal feedback gain over a time period.

0 0.05 0.1 0.15 0.2
-1

0

1

O
P

10
6

0 0.05 0.1 0.15 0.2
-2

0

2

T
C

10
4

0 0.05 0.1 0.15 0.2
-20

0

20

T
V

0 0.05 0.1 0.15 0.2

Time(s)

-20

0

20

F
R

Fig. 6. Temporal behavior of the displacement of the workpiece tool in
the milling operation simulated with dde23 for different control scenarios.
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Fig. 7. Temporal behavior of the velocity of the workpiece tool in the
milling operation simulated with dde23 for different control scenarios.

penalty parameters. The TV method, nevertheless, owing to
its liberty in the controller design, can provide the system a
smaller spectral radius, as long as suitable penalty parameters
are chosen. As part of our forthcoming endeavors, we aim to
expand our research towards more general structured periodic
feedback controllers and to encompass TPDDEs subjected to
perturbations in system parameters.
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