
Gradient Tracking with Multiple Local SGD for
Decentralized Non-Convex Learning

Songyang Ge1 and Tsung-Hui Chang1

Abstract— The stochastic Gradient Tracking (GT) method
for distributed optimization, is known to be robust against the
inter-client variance caused by data heterogeneity. However,
the stochastic GT method can be communication-intensive,
requiring a large number of communication rounds of message
exchange for convergence. To address this challenge, this
paper proposes a new communication-efficient stochastic GT
algorithm called the Local Stochastic GT (LSGT) algorithm,
which adopts the local stochastic gradient descent (local SGD)
technique in the GT method. With LSGT, each agent can
perform multiple SGD updates locally within each communi-
cation round. Although it is not known previously whether
the stochastic GT method can benefit from the local SGD,
we establish the conditions under which our proposed LSGT
algorithm enjoys the linear speedup brought by local SGD.
Compared with the existing work, our analysis requires less
restrictive conditions on the mixing matrix and algorithm
stepsize. Moreover, it reveals that the local SGD does not only
reserve the resilience of the stochastic GT method against the
data heterogeneity but also speeds up reducing the tracking
error reduction in the optimization process. The experimental
results demonstrate that the proposed LSGT exhibits improved
convergence speed and robust performance in various hetero-
geneous environments.

I. INTRODUCTION

In recent years, the rapid advancement of information
technology has led to the constant generation of data from
various sources, including a wide range of sensors in dai-
ly life and the vast number of users on the internet. To
instantaneously process real-time large-scale data, the con-
cept of distributed optimization has emerged, utilizing the
collective computational and communicational capabilities
of a network. The application of distributed optimization is
relevant to numerous areas of science and engineering, such
as machine learning, signal processing, and control systems
[1]–[7]. In such applications, the optimization problem in
an N -agent network is often expressed as the sum of local
objective functions below

min
y∈Rp

F (y) ,
1

N

N∑
n=1

fn(y), (1)
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where y ∈ Rp is the parameter vector to optimize and each
fn : Rp → R is a smooth and possibly non-convex local
cost function of agent n, ∀n ∈ [N ] , {1, . . . , N}. For
a statistical learning problem, one may assume fn(y) =
Eξ∼Dn [`n(y, ξ)] where `n is a loss function of y, and the
data sample ξ is randomly drawn from a local dataset Dn.

The challenge of solving the distributed problem (1) lies in
coordinating the cooperation among distributed agents with
potentially disparate data, while minimizing computational
and communication costs and ensuring accurate and efficient
resolution of the optimization problem. A range of algo-
rithms and techniques have been developed to achieve this
goal, including distributed gradient descent (DGD) [8], de-
centralized stochastic gradient descent (DSGD) [9], [10], D2

[11], and the gradient tracking (GT) method [12]–[16]. The
DGD algorithm leverages consensus gradient descent (GD)
to address the problem (1). However, when local datasets of
agents have different statistical properties, DGD cannot attain
an optimal solution. This limitation arises due to the gradient
bias generated among agents by heterogeneous data, which
slows down the convergence rate [11], [17], or even results
in local overfitting, known as client drift. Moreover, DSGD
relies on the condition of 1

N

∑N
n=1 |∇fn(y)−∇F (y)| ≤ ς ,

which exhibits slower convergence as ς increases.
To address the above challenge of processing heteroge-

neous data, D2 corrects the bias term by storing the gradients
of previous iterations. However, D2 stringently requires a
sufficiently connected network. Compared to D2, the GT
method has been proven to be more resilient against data
heterogeneity. It achieves this by incorporating local aux-
iliary variables that track global gradients, enabling agents
to perform a virtual centralized GD scheme. With a more
relaxed constraint on the mixing matrix than D2 and a single
stepsize parameter, it can converge to the neighborhood of a
stationary solution sublinearly.

To further enhance computational efficiency, stochastic
GT with stochastic GD (SGD) updates has been examined
in recent studies, such as [14], [18] for strongly convex
problems and GNSD [15] and GT-DSGD [19] for non-
convex problems. Additionally, the stochastic gradient track-
ing (GT) method eliminates the reliance on the aforemen-
tioned constraint of DSGD algorithms, which implies that
the stochastic GT method maintains its efficacy in the
presence of heterogeneous data. However, it is worth noting
that all of the aforementioned algorithms require significant
communication resources to achieve convergence.

Accordingly, it is of paramount importance to reduce
communication cost. To address this challenge, we adopt the
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TABLE I: Comparison of different GT-based algorithms

Algorithm function gradient stepsize comp. comm. λ W Initialization (n ∈ [N ])

GT [12] ns-cvx. full cst. O( 1
ε
) O( 1

ε
) (−1, 1) d.s. v0

n = g0
n

DSGT [14] cvx. stochastic dimi. O( 1
ε
) O( 1

ε
) (−1, 1) d.s. v0

n = g0
n

GNSD [15] n-cvx. stochastic cst. O( 1
ε2

) O( 1
ε2

) (−1, 1) d.s. and symm. v0
n = g0

n

GT-DSGD [19] n-cvx. stochastic, cst. O( 1
ε2

) O( 1
ε2

) (−1, 1) d.s. v0
n = g0

n

D2 [11] n-cvx. stochastic cst. O( 1
ε2

) O( 1
ε2

) (− 1
3
, 1) r.s. and symm. v0

n = g0
n

LU-GT [20] n-cvx. E-step full cst. O( 1
ε
) O( 1

ε
) (−1, 1) d.s. and symm. v0

n = g0
n

Periodical GT [21] n-cvx. E-step stochastic cst. O( 1
ε2

) O( 1
Eε2

) (−1, 1) d.s. and symm. v0
n = 1

N

∑N
i=1 g

0
i

LSGT (Proposed) n-cvx. E-step stochastic cst. O( 1
ε2

) O( 1
Eε2

) (−1, 1) d.s. v0
n = g0

n

“cvx.”, “n-cvx.” and “ns-cvx.” manifests convex, nonconvex, and nonstrongly convex, “comp.” denotes computation complexity, “comm.” represents
communication complexity, “cst.” and “dimi.” are the abbreviation of constant and diminishing, “d.s.” indicates doubly stochastic, “r.s.” shows right

stochastic, “symm.” suggests symmetric, ε is the solution accuracy, E is the local update number, W is the mixing matrix, λ is W ’s eigenvalue except
the largest eigenvalue, v0

n, n ∈ [N ] denotes the initialized tracking variable, g0
n = 1

N

∑N
i=1

1
|Ii|

∑
ξ∈Ii ∇`i(y

0
i ; ξ) is the stochastic gradient at agent

n, and In ⊆ Dn represents the agent n’s randomly chosen mini-batch data set.

local stochastic gradient descent (SGD) technique [22], [23]
to diminish the number of communication rounds required
by convergence. Instead of a single SGD update in existing
stochastic GT methods, our approach involves each agent
performing multiple local SGD updates within every commu-
nication round. The local SGD technique has been effectively
applied in the federated learning framework, as demonstrated
in FedAvg [24], FedLin [25], and SCAFFOLD [26], with a
central server used to aggregate and broadcast information.
Furthermore, both theoretical and empirical evidence [22],
[23] suggest that the local SGD technique can effectively
accelerate communication under appropriate conditions.

However, the local SGD technique in fully decentralized
networks has been less studied. As the local update number
increases, client-drift can exacerbate, potentially hindering
improvements in communication efficiency. Therefore, in-
tegrating local SGD with the GT method while ensuring
heterogeneity independence poses a non-trivial challenge.
For instance, recent work proposed a deterministic locally
updated GT method, as in [20], which required an extra
stepsize and a symmetric mixing matrix. Furthermore, it
remains unclear under what circumstances local updates
reduce communication costs in convergence analysis. A
concurrent study [21] considered multi-step stochastic GT
but required consensus initialization of the tracking variable,
which resulted in an unnecessary increase in communication
costs across a connected network.

In this paper, we propose a new decentralized algorithm,
termed as the local stochastic GT (LSGT) algorithm, by
integrating the local SGD technique into the stochastic GT
method. With LSGT, each agent can perform multiple local
SGD updates to imitate centralized SGD scheme. Theoret-
ically, we build more relaxed conditions under which our
proposed LSGT algorithm enjoys the linear speedup with a
O( 1

Eε2 ) communication complexity, compared with existing
work summarized in Table I. Moreover, it reveals the insights

that LSGT reserves the bias-correction advantage of GT
method while accelerating the tracking process for estimating
the global gradient. We empirically describe the impact of
the local updates, stepsize, and the network topologies on
the convergence. Moreover, simulation results demonstrate
that our proposed LSGT algorithm is robust against hetero-
geneous data while reducing the communication cost.

Notation: In is the n by n identity matrix, and 1 is the
all-one vector. Ai,j is the (i, j)-th element of matrix A. ⊗
denotes the Kronecker product; a> and A> perspectively
represent the transpose operation of vector a and matrix A;
〈a, b〉 represents the inner product of vectors a and b, ‖a‖ is
the Euclidean norm, and ‖A‖ represents the largest singular
value of A; ‖A‖F denotes the matrix Frobenius norm.

II. PROBLEM SETTING

We are interested in finding a first-order stationary point
of problem (1) over a multi-agent network.

Firstly, we model the connections among distributed a-
gents in the multi-agent network as an undirected graph
G = (E ,V), where E represents the set of edges and V = [N ]
denotes the set of agents. Subsequently, the mixing matrix for
the specified graph can be defined as W ∈ RN×N , where
Wn,m > 0 denotes the scaling factor for the information
received by agent n from agent m if and only if the edge
(n,m) ∈ E , and Wn,m = 0 otherwise. Moreover, we have
the following standard assumptions.

Assumption 1 The underlying graph is connected.

Assumption 2 The mixing matrix W is doubly stochastic
satisfying

W1 = 1, 1>W = 1, |λw| < 1, (2)

where λw is the second largest eigenvalue of W which
implies ‖W − 1

N 11>‖ < 1.
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There are many choices of such mixing matrix satisfying
Assumption 2, see [15, Remark 2]. One example is the
max-degree rule [27]. Notice that we require less stringent
conditions on the mixing matrix, compared with the required
condition λ ∈

(
− 1

3 , 1
)

for the D2 algorithm in [11], and the
required symmetric W in [11], [15], [20], [21].

Furthermore, we assume the objective function in problem
(1) satisfying the standard conditions below.

Assumption 3 The loss function F (y) , 1
N

∑N
n=1 fn(y) is

bounded below, denoted by F (y) ≥ F , ∀y.

Assumption 4 Each fn is smooth and its gradient satisfies

‖∇fn(y)−∇fn(y′)‖ ≤ L ‖y − y′‖ , ∀y,y′, (3)

where L is the Lipschitz constant.

To improve computation efficiency, we consider stochastic
local updates instead of full gradients. Specifically, we define
the following stochastic gradient for each agent n as

gn ,
1

|In|
∑
ξ∈In

∇`n(yn; ξ), (4)

where In ⊆ Dn represents a randomly chosen mini-batch
data set at agent n. Without loss of generality, we assume
that |In| = . . . = |IN | , |I| and give the following standard
assumption for SGD methods.

Assumption 5 For each agent n ∈ [N ], we have
• Unbiased gradient: E[gn] = ∇fn(yn);

• Uniform bounded variance: E[‖gn −∇fn(yn)‖2] ≤ σ2

|I| .

III. PROPOSED LSGT ALGORITHM

In this section, for solving the non-convex problem (1),
we present a new decentralized communication-efficient al-
gorithm, called local stochastic gradient tracking (LSGT),
by integrating the stochastic GT method [15], [16] with the
local SGD technique.

Specifically, in addition to the local variable yn, each
agent n constructs another auxiliary variable vn ∈ Rp to
estimate a stochastic approximation of the global gradient
∇F (y) = 1

N

∑N
n=1∇fn(y). The LSGT is initialized by y0

n

and stochastic gradient v0n = g0n for each agent n.
In the r-th round of the algorithm, each agent n ∈ [N ] per-

forms a sequence of E consecutive steps of SGD and tracks
the updates within every communication round. Specifically,
at each step q ∈ [E], agent n randomly selects a mini-batch
dataset Ir,qn of size |I| and executes SGD in the direction of
vr,q−1n with a positive step size γ as given in equation (6a).
Following this, the local auxiliary variable vr,q−1n is updated
locally by adding the new gradient gr,qn and removing the
previous gradient gr,q−1n , as illustrated in equation (6b).
Subsequently, after completing E local updates, each agent
n sends the pair (yr+1

n ,vr+1
n ) to its neighboring agents

and scales the received information via W . The algorithmic
details of LSGT are presented in Algorithm 1. Below, we
discuss the relation of the proposed LSGT algorithm with
some of the existing methods.

Algorithm 1 Proposed LSGT algorithm for solving (1)

1: Initialize: Let y0
1 = . . . = y0

N and v0n = g0n, ∀n ∈ [N ].
2: for communication round r = 0 to T do
3: for agent n = 1 to N in parallel do
4: Receive information from neighbours and set[

yr,0n
vr,0n

]
=

N∑
m=1

Wn,m

[
yrm
vrm

]
, gr,0n =grn. (5)

5: for local update q = 1, . . . , E, do
6:

yr,qn = yr,q−1n − γvr,q−1n , (6a)
vr,qn = vr,q−1n + gr,qn − gr,q−1n , (6b)

where the stochastic gradient gr,qn is computed
like (4) using yr,qn and a mini-batch Ir,qn ⊆ Dn.

7: end for
8: Set yr+1

n = yr,En ,vr+1
n = vr,En , gr+1

n = gr,En , and
send (yr+1

n ,vr+1
n ) to neighbors.

9: end for
10: end for

Remark 1 For E = 1, the LSGT algorithm reduces to the
vanilla stochastic GT method. For E > 1, the LSGT is in
fact equivalent to a periodically time-varying GT method
with skipped communications, where the mixing matrix at
each t-th iteration can be defined as

W t =

{
W if mod (t, E) = 0,

I otherwise.
(7)

Remark 2 (Comparison with [20]) The recent work [20]
proposed the locally updated GT (LU-GT) algorithm which
is also a multi-step GT method. However, there are 4
key differences between LU-GT and our proposed LSGT
algorithm: i) full gradient: LU-GT considers full gradient,
while we consider a computation-efficient SGD updates;
ii) extra stepsize: LU-GT introduces an additional stepsize
to control the update of tracking variables and guarantee
the contraction property of the consensus errors, which is
not needed by ours in (6b); iii) symmetric W : The analysis
of LU-GT is based on a symmetric mixing matrixW whereas
our LSGT algorithm does not.

Remark 3 (Comparison with [21]) The concurrent work in
[21] explores decentralized gradient tracking with multi-
ple local steps, termed as periodical GT. Their theoretical
analysis relies on an extra condition for the consensus
initialization, namely v0i = 1

N

∑N
n=1 g

0
n, i ∈ [N ]. However,

achieving this consensus may require several rounds of
information exchange, leading to significant communication
overhead. In contrast, our LSGT algorithm does not require
this initialization. We will elaborate on the impact of different
initializations, specifically v0i = g0i , i ∈ [N ], on LSGT in
Remark 5.
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IV. CONVERGENCE ANALYSIS

In this section, we present a novel convergence analysis
for the LSGT algorithm, which shows the conditions under
which LSGT indeed benefits a linear speedup from the local
updates.

For ease of presentation, denote Y r , [yr1, . . . ,y
r
N ]>,

V r , [vr1, . . . ,v
r
N ]>, and define the average of local

variables as ȳr = 1
N

∑N
n=1 y

r
n, and v̄r = 1

N

∑N
n=1 v

r
n.

Then, the consensus and tracking error can be represented
as the compact form below

φr =

[
φry
φrv

]
=

[
E
[
‖Y r − 1(ȳr)>‖2F

]
E
[
‖V r − 1(v̄r)>‖2F

]] ∈ R2. (8)

The main theoretical results for the LSGT method are
presented in to the theorem below.

Theorem 1 Suppose that Assumption 1 to 5 hold. For a
sufficiently small γ < 1 (satisfying the conditions of [28,
Theorem 1]), we have

1

T

T−1∑
r=0

E
[∥∥∥∥ 1

N

N∑
n=1

∇fn(yrn)

∥∥∥∥2] ≤ 4(F (ȳ0)−F )

γET
+

40Lγσ2

N |I|︸ ︷︷ ︸
terms same as centralized SGD

+
16(1 + 7λ2w)2E2L2γ2

(1− λ2w)4

(
2577Nσ2

|I|
+

111φ0v
T

)
︸ ︷︷ ︸

terms due to decentralized optimization

. (9)

Proof sketch: Due to limited space, the proof details are
relegated to [28, Section 4]. One of the key steps in the
analysis is to construct the following linear system for
investigating the dynamics and the relationships between the
consensus and tracking error matrix.

φr+1 ≤ Aφr +Cer, (10)

where for some coefficient matrix A and C, and the pertur-
bation vector

er =

E
[∥∥∥∥ 1

N

N∑
n=1
∇fn(yrn)

∥∥∥∥2]
σ2

|I|

 . (11)

We then determine the contraction property of φr by proving
the spectral radius ρ(A) < 1 as long as stepsize γ is
sufficiently small. The second step is to investigate how
φr influences the descent of the objective value in (1). By
combining these two steps, we establish the convergence rate
of LSGT in (9). �

When our LSGT method reduces to the deterministic
version, i.e., σ2 = 0, then choosing γ ∝ 1/E in (9),
the convergence rate of LSGT can achieve O(1/T ), which
is consistent with the convergence rate of LU-GT in [20,
Theorem 1].

Theorem 1 illustrates the non-asymptotic mean-square
convergence rate of the proposed LSGT algorithm in (9),
which determines a solution in the neighborhood of a sta-
tionary solution to problem (1). In particular, the first two
terms in the right hand side (RHS) of (9) are independent
of the network topologies and comparable to those of the

centralized SGD scheme [29]. Meanwhile, the impacts of
the network connectivity λw and the initial tracking error
φ0v on the decentralized network are reflected in the last two
terms.

In addition, it is demonstrated in the following corollary
that our proposed LSGT algorithm enjoys the linear speedup
with the local update number E and the network size N for
a long run.

Corollary 1 Let γ =
√

N
ET and E ≤ ( T

N5 )
1
3 where T is

sufficiently large so that γ satisfies the conditions in Theorem
1. Then, for the proposed LSGT algorithm, we have

1

T

T−1∑
r=0

E
[∥∥∥∥ 1

N

N∑
n=1

∇fn(yrn)

∥∥∥∥2] ≤ 4(F (ȳ0)−F )√
NET

+
40Lσ2

√
NET |I|

16(1 + 7λ2w)2L2

(1− λ2w)4
√
NET

(
2577σ2

|I|
+

111φ0v
NT

)
. (12)

Corollary 1 shows that by setting E ≤ (T/N5)
1
3 with

a large enough T , the convergence rate gap between LS-
GT and centralized SGD narrows up to a constant. It
achieves the network-independent linear speedup with the
rate of O(1/

√
NET ), which is faster than the convergence

rate O(1/
√
NT ) of the vanilla stochastic GT method [19,

Corollary 1]. Thus, it demonstrates LSGT indeed benefits
from multiple local updates with E > 1 for improving
communication efficiency.

Remark 4 (Impact of network connectivity and stochastic
gradient error) Both (9) and (12) suggests that as λw
decreases, the 3rd and 4th terms of the RHS bound becomes
smaller. It is because a smaller λw characterizes a better
connected network so that (yrn,v

r
n) reaches consensus faster.

On the other hand, we can also derive that a larger mini-
batch size |I| can reduce the stochastic noise and further
improve the convergence performance.

Remark 5 (Impact of initialization discrepancy φ0v) The last
term of the bound (12) characterizes how the initialization
discrepancy φ0v influences the convergence of LSGT. Specif-
ically, when the number of the round T is large enough, the
impact of initialization discrepancy φ0v can be removed under
proper constant stepsize. It suggests that LSGT can overcome
the data heterogeneity, since φ0v measures the difference of
the local gradients. In sharp contrast, the theoretical analysis
in the concurrent work [21] does not make this point clear
and requires φ0v = 0.

V. EXPERIMENT RESULTS

Consider a 20-agent connected network with mixing ma-
trix W generated by the max-degree rule [14], [27]. Assume
these agents are connected by a random network graph,
which is generated as in [30].

We aim to solve a image classification task of 10 hand-
written digits based on the MNIST dataset [31]. The data
samples are partitioned to the agents’ local dataset in the IID
[32] and non-IID fashion [23]. The agents collaborate to train
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TABLE II:
Communication rounds to achieve a certain testing accuracy.

acc. The IID setting The non-IID setting
E=1 E=5 E=10 E=50 E=1 E=5 E=10 E=50

85% 62 14 8 3 75 16 10 11
90% 126 26 14 4 136 30 21 41
95% 335 68 35 8 378 91 65 191

“acc.” denotes testing accuracy.

a two-layer deep neural network (DNN) comprising a single
hidden layer with 30 neurons [33]. The Rectified Linear Unit
(ReLU) and softmax functions serve as activation functions
for the hidden and output layers, respectively. Cross-entropy
serves as the training loss function [34]. To ensure the
validity of our results, we conduct five independent trials
and compute the average.

The effects of local iteration number E, stepsize γ, and
network topology λw are respectively investigated below.

In order to examine the impact of local recursion on
the performance of the proposed LSGT algorithm, we con-
ducted an experiment in which we set local updates to
E = 1, 5, 10, 50 for investigating the effects. The results,
as shown in Figure 1(a), reveal that the training loss and
testing accuracy improve more quickly as E increases for the
IID case. This is due to the fact that in the IID setting, the
data shared among decentralized agents are from the same
distribution, and thus more local updates aid in the learning
of a better common model. Conversely, Figure 1(b) shows
that the performance of LSGT first improves from E = 1 to
E = 10, but then worsens when E = 50. The reason for this
is that a large E can amplify the model discrepancy among
agents with non-IID data.

We further explored the relationship between the commu-
nication round and local updates E in Table II. It illustrates
the communication rounds required by the LSGT algorithm
with different values of E to achieve testing accuracy levels
of 85%, 90%, and 95%. More local updates decrease the
necessary communication rounds in the IID setting, while
in the non-IID case, the required communication rounds
first decrease and then increase as E grows. This result is
consistent with the insight provided by Theorem 1, which
indicates that E should not be too large. Additionally, in
Figure 1, the LSGT algorithm with E = 5 outperforms
the DSGD and D2 methods for both the IID and non-IID
settings.

In Fig. 2, one can see that for the IID and non-IID
settings, a smaller stepsize such as γ = 10−5 slows down
the convergence of LSGT over both training loss and testing
accuracy, which demonstrates the corresponding analysis in
Theorem 1.

To evaluate the influence of various network topolo-
gies, our proposed LSGT algorithm was applied to three
graphs with different orders λw(line) > λw(random) >
λw(complete), where their connectivity order was reversed.
As shown in Figure 3, for the IID setting, the impact of
network topology on convergence performance was found to
be negligible. However, in the non-IID scenario, the LSGT
algorithm exhibited higher testing accuracy when applied

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

(a) The IID setting.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

(b) The non-IID setting.

Fig. 1: Convergence curves of the proposed LSGT algorithm
with different E (γ = 10−3, random graph).
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-0.5
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1

Fig. 2: Convergence curves of the proposed LSGT algorithm
with different stepsize γ (E = 10, random graph).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0
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1

Fig. 3: Convergence curves of the proposed LSGT algorithm
with different topologies (E = 10, γ = 10−3).

to a better-connected network, such as a complete graph.
This result aligns with the analysis provided in Remark 4.
Notably, the proposed LSGT over a a network with stronger
connectivity converged to a larger training loss. This can
be attributed to the fact that as the network topology’s
connectivity increases, the training model approaches the
global model more closely. However, when this training
model is applied to local data, its efficacy may be reduced
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due to the heterogeneity of the data, as discussed in [35].

VI. CONCLUSION

In this paper, we have proposed a novel algorithm named
LSGT, which integrates the local SGD technique into the
stochastic GT method to improve the communication effi-
ciency of the current GT method for solving problem (1). We
have established the convergence conditions theoretically, un-
der which the LSGT algorithm (Theorem 1) achieves a linear
speedup with the number of local SGD updates E (Corollary
1), while still being capable of handling heterogeneous data.
This is in contrast to existing GT methods that either do not
consider multiple steps of local SGD or fail to fully explore
the benefits of local SGD for GT methods. Furthermore, our
theoretical analysis is supported by the observations in the
simulation results.
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