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Abstract— The stability and safety of uncertain nonlinear
systems have always been an essential and hard task in the
automation field. For the forward invariance of the safety set
of the system under unmodeled dynamics, a new concept of
data-driven high-order iterative control barrier function (DHI-
CBF) is presented. To overcome the structural complexity and
dependence on dynamic models of traditional robot controllers,
an iterative learning mechanism is introduced and a model-
free iterative predictive controller (MFIPC) is designed. The
controller can be progressively optimized by predicting future
information so that it can cope with dynamic changes and
uncertainties in the environment. On this basis, quadratic
programming (QP) that unifies the DHI-CBF with the MFIPC
is established, which is able to prioritize the safety of the
system in case of conflict between the desired output and the
security boundary. Finally, the application for Franka-Panda
robot demonstrates the superiority of the presented algorithm.

I. INTRODUCTION

With the rapid development of control technology, the
safety of industrial equipment in complex environments has
become one of the mainstream issues in current research
[1]. In many control scenarios, the system is hard to model
accurately and suffers from model mismatch. Also, many
industrial objects, such as robotic arms, are highly nonlinear
and coupled [2], [3], which will make the implementation of
accurate modeling more challenging. Therefore, it is valuable
to conduct safety control studies when model information is
not accurate or even completely unknown.

So far, some works on safety control have been developed,
see [4], [5], [6]. In [7], the control method based on integral
barrier Lyapunov function is proposed that can impose
safe state constraints. However, the control input tends to
infinity as the robot state approaches the safety bound, which
somewhat restricts the practical application. CBFs are an
extremely valuable analytical method and have been widely
used. In [8], the nominal controller is added to a QP problem
to mediate potential conflicts between security and control
goals. In [9], a novel CBF with a high-order structural form
is constructed for nonlinear systems.

Note that all of the above controllers on CBF are designed
based on continuous-time systems. The majority of con-
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trollers in practical applications are programmed and realized
digitally, so discrete-time CBFs have also received much
attention recently. In [10], the discrete-time CBF is combined
with the control lyapunov function to give a nonlinear pro-
gramming problem. Nevertheless, the controllers constructed
through the CBFs described above rely on accurate system
models, and it may be challenging to secure the system when
the model information is unknown. Although the dynamics
of the system can be modeled under certain assumptions, it
is very time-consuming and relatively complex, making it
hard to analyze the controller directly.

Data-driven control (DDC) is increasingly in the spot-
light [11], [12], [13], which can effectively overcome the
shortcomings of tracking control performance dependent on
model information. In [14], the controller with output error
rate is derived by the compact format dynamic linearization
approach. In [15], the parameter estimation algorithm with a
switching mechanism is designed to improve the flexibility
of the controller. Iterative learning controllers (ILC) can learn
and optimize through feedback information, improve control
performance during system operation, and adapt to changes
in the system. In [16], a robust tracking ILC is constructed for
speed tracking control with iteration-dependent disturbance
for the controlled system. Although the above DDCs have
achieved excellent results, these methods still do not simul-
taneously consider the security of the system. Recently, in
[17], a novel IL-CBF is proposed for the security of multiple
intelligences.

Motivated by above factors, this paper presents a QP-based
security control algorithm to solve the trajectory tracking task
of systems with unknown dynamics. The main contributions
are listed as below:

(1) The DHI-CBF is proposed for safety-critical tasks,
which ensures constraint gratification for nonlinear discrete-
time systems with high relativity when the model dynamics
are completely unknown.

(2) To overcome the structural complexity and the depen-
dence on the dynamics model of conventional controllers, the
MFIPC strategy is designed based on a unified framework
of data-driven theory and iterative learning. The robustness
of controller is enhanced through a stepwise optimization
process while an adaptive parameter learning scheme is
designed to improve flexibility.

(3) The safe and stable data-driven controller is con-
structed by unifying designed DHI-CBF and MFIPC in a QP-
based formula. The application for the Franka-Panda robot
demonstrates the superiority.

The rest of the paper is structured as follows. The specific
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problem formulation is briefly stated in Section II; The
proposed algorithm is introduced in Section III. The testing
results based on the robot are presented in Section I'V; Lastly,
the conclusions are given in Section V.

II. PROBLEM FORMULATION
A. System description

Consider a class of nonlinear systems with discrete-time
forms [18], described as follows:

yi(e+1) = fIV,) 7" ui (), U2 (1)

where V7" = {y; (), yi(t = 1), yi(t — na)}, UZ{" =
{ui(e — 1), ui(e — 2), - ui(e — np)}. yi(t), ui(e) denote
the system output and the control input respectively. f(.)
is the nonlinear function with unknown relationships. ¢ €
{0,1,---T} represents sampling instant. ¢ represents the
number of iterations. n, and n; are non-negative factors.

Similar to [16], the following assumptions are introduced:

Assumption 2.1: The partial derivatives of f(.) with re-
spect to u;(¢) exist and are continuous.

Assumption 2.2: The nonlinear system satisfies the gener-
alized Lipschitz condition.

[Ayie + 1) < 0] Aus ()] 2)

where A is the iterative difference operator, AY;(:) =
Y;(t) — Y;-1(¢), b is a normal number.

Subsequently, if |Au(k)| # 0, there exist time-varying
pseudo-partial derivative (PPD) W;(¢), such that system (1)
can be transformed into the dynamic data model.

yi(t) = yim1 (1) + 97 (0 — 1) Aui (e — 1) 3)

Remark 1: The obtained data model (2) conforms to the
time-varying linear incremental form of the input-output
relationship. The structural form shows that an unknown rela-
tionship between the control inputs and outputs is established
in the interval between two adjacent iterations.

B. Problem Formulation

To make sure the system converges to the desired position
ya(¢), the tracking error e;(¢) is defined based on the desired
output trajectory as

ei(t) = yalt) — vit) “4)

In previous designed frameworks, the dynamics model is
usually determined. However, it is hard to obtain in practice
and very time-consuming.

Another issue concerns safety constraints, which are com-
mon but essential for robotic tasks, such as robotic assembly,
robotic surgery, etc. To evaluate the safety of the system
output, the output y;(¢) in (3) is defined as a safe output if
it satisfies the following criterion.

wa(t) = yi(t) = 0 (5)

where wg(¢) represents the security boundary.

Therefore, it is desired that the system output y;(¢) is kept
within a safety region denoted by the set C.

C:={yi(t) e D[ O(yi(v)) = 0}
Int(C) := {yi(t) € D[ O(yi(+)) > 0} (6)
9C :={yi(t) € D| O(3i(+)) = 0}

where ©(.) is a function changing along the iteration axis.

Before presenting the concept of DHI-CBF, some neces-
sary definitions are explained below.

Definition 1: In nonlinear system (3), the set C' satisfies
forward invariance along the iterative dimension, if y;(¢) €
C,Vi. € N for every y;(0) € C.

Definition 2: Define the function « : [0,a) — [0,00) is
belong to class & function. It is increasing and «(0) = 0.

To satisfy safety, that is, to ensure that the system main-
tains the forward invariance of the safety set C' during
operation, the concept of CBF can be used to establish
corresponding conditions and constraints.

Definition 3: For the nonlinear system (3) with iterative
form, let C C R"™ define a function ©® : R* — R with
an iterative structure. © is a IL-CBF if the « function «
satisfying a(r) < r for all » > 0 such as

AO(yi(e),ui(t)) > —a(O(yi(1),ui(1)).Vyi(t) € D (7)

where AO(y;(1), ui(1)) = O(yi1 (1)) — O (0)):

Lemma 2.1: Given the set C C D C R" defined by (6)
for the continuous function © : R” — R, any discrete-time
control input u;(¢) that meets (7) will make the set C' forward
invariant if © is an IL-CBF on D.

Proof: The proof is similar to the analysis in [17]. H

As a conclusion, the design objectives are listed as:

1) The tracking control error satisfies Zlirgo le;(1)] =

dim ya(e) = yi()] = 0.

2) In a finite time, the control output y;(¢) of the nonlinear

system is kept within a safe area.

3) When control objectives (1) and (2) are in conflict,
priority will be given to guaranteeing the safety.

It needs to be noted that most of the existing CBFs are
designed based on continuous-time systems. Nevertheless,
most of the controllers in real applications are implemented
through digital programming, so it is challenging to design
discrete-time CBFs when the system model is completely
unknown.

III. MAIN RESULTS

This section is divided into three parts. The design of
MFIPC and the DHI-CBF will be given. The QP problem is
then constructed on this basis.

A. The Design of MFIPC Strategy

When the data model (2) with an iterative structure is
considered as a prediction equation, a new prediction model
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can be obtained:
Yir1 (1) = yi(e) + V7 (0 —
Yira(t) = yira (1) + Ul (e —
= i) + 0l (-

1Auip (0 — 1)
1)Aujta(e — 1)
)A’ui+1(b — 1)

+ ‘1’1+2( DAu2(e — 1) ®)
Yirn (1) = yirn—1(0) + O (0 = DAu (0 — 1)
= yi(1) + UL (0= DAu (0 — 1)
4+ 4 \I/i+N(L —1Auipn(t—1)
Define
Yn (1) = [it1(e), - ,yi+N(L)}T
AUN(L) = [Auigp1(2), Auiga(t) ... Augyn (1))
A(il)’T: (1)
\I’zT:(L) ‘I’z'T-s-z (¢) 2
qu;l( ) \Il,iT+2(L) e qj?—i—N( ) NN
E=[11 - 1]

where Yy (i) represents the forward prediction vector,
AUn(¢) is the increment vector of control torque. The
dynamic model (8) can be rewritten as the matrix form

V() = Al — 1)« AU (0 — 1) + E % y;(2) (10)

Remark 2: The option of N determines the size of predic-
tion step. The choice of N ought to be adjusted to the actual
requirements and characteristics in order to obtain better
performance. If the system has a fast dynamic response, the
size of prediction step /N may need to be smaller in order to
more accurately capture the rapid changes in the system. If
the system has large inertia or a slower dynamic response,
the prediction step N may need to be larger to better predict
the long-term behavior of the system.

Based on the obtained prediction model (10), the following
cost function is considered

Z Ya,ii () = Yir (1)) + AAUZ;(0)]
Jj=1

11
where A > 0 can prevent the drastic changes of inputs.

Define Yy(¢) = [Ya,i+1(¢); Ydit2(t) - . - yai+n (¢)] and the
new cost function is designed as

T =[Ya(e) = Yn ()" [Ya(e)
+ MUN ()T AUN (1) (12)

Conduct 9J/0Un () = 0, and the optimal control law can
be derived as

AUN(L)

J(AUN (¢

—Yn(l

=[AT( = 1AL —1)+ M AT - 1)
[Ya(e) — Exyi—1()] (13)

The calculation can be simplified by introducing the
parameter 0 < p < 1.

pAT (L —1) [Ya(r)
A =

— Exy;—1(0)]

AUN(t) = SEESY;

(14)

According to the principle of recursive optimal control,
the optimal control input for applying the current time step

can be calculated
ui(L) = ’U,Z‘_l(b) + gT * AUN(L) (15)

where g =[1 0 - 0 ]T. For W;(1), we design the
following index function of PPD estimation

= |Ayz‘71(b) -
+ u‘\pi(b ) - —1)

J(W; (e —1)) V(= 1)Au 1 (0 —1)|

2

(16)

where p is a weighting factor that serves to prevent the PPD
from varying too much effectively. By minimizing the above
index function, one can obtain

& 8 _ nAui,]_(L — 1)
Vile === DF R D )
X [Ayi—1 (1) = U (0 — 1) Ay (o — 1)]

Then, the autoregressive model by the sequence \i’l(L -
1),Wo(e —1),--W;(¢ — 1) is developed below

Wig1(b—1) =010 — DU (. — 1) 4+ O2(c — )Ty _1 (. — 1)

ot O, (= D)Wy (- 1) (18)
where 6;(v — 1)(j = 1,2---n,) represent the appropriate
coefficients. n,, denotes the order of the model.

Define 0(: — 1) = [01(t — 1), 0, (¢ —
estimation algorithm of PPD becomes

1)], and the

Uipi(0=1) =01 (0= Dy (e — 1)
Ot =)Wy, (t—1)
ot 0, (= D)Wy (= 1) (19)
60 —1) =0, 11— 1)+ —= D5
0+ H\i/l(b — I)H
+ 00— 1)6,.1(S = 1)] (20)
where j=1,2---Nand 0 < < 1.

For improving the estimation performance of the time-
varying parameters, the following iterative axis-based reset
algorithm is designed. The MFILPC scheme is as follows

Uij(e—1) =01(c— Dy 1 (e = 1)

F 020~ 1)y, (- 1)

o O, (= D)W 40— 1) 21
Ui(b—1) =Tyt —1),
if |- < porldu-1)<e @)
Qi(a — ].) :01-,1@ — ].) + \IJZA(L — 1) 3 [ci)z(b — ].)
R
+ UL —1)0,1(S —1)] (23)
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0—1) = 01(c—1),if [0~ D =M (24

wi(t) = ui_1 (1) + g7 * AUN(2) (25)

where M > 0,0 > 0.

Remark 3: Inspired by previous work related to iterative
learning [17] and model predictive control [19], parameter
adaptive mechanisms can be designed to improve controller
flexibility based on a unified framework of DDC and ILC
theory. To overcome the shortcomings of existing DDC
schemes [12], [15] which are mainly limited to the time
domain, discrete control of the robot is addressed by extend-
ing MFAC to the iterative domain for the first time to fully
utilize more system information. In addition, this scheme
utilizes only terminal I/O information throughout the design
process, thus allowing for additional degrees of freedom,
such as faster processing speeds.

B. DHI-CBF for Discrete-Time Systems

The conventional CBFs [5] cannot be directly employed to
secure the system since dynamic information is completely
unknown. To handle this issue, we proposed the concept of
DHI-CBF based on the design of the dynamic data model
with iterative structure.

For the time-varying system (3), in order to obtain the
ability to satisfy more strict output constraint guarantees, we
define a list of functions by primitive function © : R™ — R
with a relative degree of m.

Fo(yL) = G)(yb)

Fl(yL) = AFO(yuuL) + O(IFO(yL)
. (26)

Fm(yL) = AFm—l(ywuL) + amrm—l(yL)

where y;(¢) and u;(¢) are replaced by the simplified symbols
y, and u,. ATls(y,,u,) =Ts(y,+1)—Ts(y,), 6 =0,1---m—
1, aj(j =1,2,---m) are class x functions.

A list of sets Cj, j = 0,1,---m — 1 are generated as
follows:

Co:={y. €D |To(y,) >0
>0

Ci:={y. €D|T1(y.)
27

Cm—l = {yL €D ‘ F’m—l(yb) Z 0

Definition 4: For the discrete-time system (2), the contin-
uous function © : R™ — R is a DHI-CBF of relative degree
m if there exist I's(y,),0 € {0,1,---,m — 1} defined by
(27) such that

Lp(y) 20 (28)

for all y, € NI",'Ci.

Theorem 1: Givensets Cj, j € {0,1,--- ,m — 1} defined
by (27) and a function © : R" — R. If © is a DHI-CBF
of relative degree m defined on ﬂ;’lglCi, any discrete-time
controller u;(¢) ensuring (28) will render the set HZZBICZ»
forward invariant.

Proof: When © is DHI-CBF, condition (27) holds,
which yields

Fm<yb) = Armfl(ymuL) + amrmfl(yL)
>0,VL € N.

By Lemma 2.1, it is obvious that the corresponding set
C,n_1 satisfies forward invariance, that is, y, € C,,_1,Vi €
N if yo € Cp,_1. Then,

FnL—l(yL) = AF7n—2(yL> uL) + am—lFm—Z(yL)

>0,V € N. (29)

which verifies the forward invariance of set C,,_o through
Lemma 2.1 again.

By iterative induction, it can be derived that if yo € C},
then y, € C;,Ve € N,Vj € {0,1---m — 1}. Therefore, the
set ﬂ]m:_Ole is forward invariant. [ ]

Remark 4: The above design concepts can be viewed as a
generalization of the high-order CBFs [20] from continuous-
time systems to discrete-time systems. Another noteworthy
point is that previous design of higher-order CBFs relied on
dynamical models, otherwise the mathematical relationship
between the input u, and the output y, could not be inscribed
in ©(-). Therefore the safety of the system will be poorly
ensured if the model information is inaccurate.

C. Optimization Problem Unifying MFIPC and DHI-CBF

i—th operation

Robotic System

- Torque Sensor

Q

AQ)
0O

v, (1)

Position Sensor

Velocity Sensor

New prediction
equation

I T ] |

Vi@

- NG
—( <—’

Robotic System

(0

Fig. 1: Control algorithm framework.

To design control inputs that can simultaneously meet
multiple objectives such as system safety and stability, the
MFIPC and DHI-CBF are unified into a QP-based solution
formula.
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Since the designed MFIPC has a display expression,
the safety constraints described by DHI-CBF can be em-
bedded in the closed-loop system through the QP prob-
lem. The control framework is given as Fig. 1, and
the optimization problem can be rewritten as follows:

uf(L) = argmin% | ui(e) — Zi(0)||?
U0 = [ 1) |
ilt) = u; (L
s.t. (30)

Umin § UZ(L) § Umax

where Uiy and umax are the lower limit and upper limit of
the control input respectively, Z;(¢) represents the nominal
control law of Equation (25).

In this sense, the designed DHI-CBF can be viewed as a
“filter” capable of filtering out control inputs that undermine
security. In other words, when the control objectives of the
system do not conflict with the safety constraints described
by the DHI-CBF, then the robotic system will achieve the
control objectives without violating the safety constraints;
otherwise, the priority will be given to ensuring system
safety.

IV. EXPERIMENTS

In this section, a nonlinear robotic system with time-
varying constraints is used to demonstrate the effectiveness
of the proposed optimal control scheme.

The overview of the hardware configuration is shown
in Fig. 2. The Franka-Panda robot is composed of highly
flexible flex joints. In addition, the Panda robot is equipped
with a variety of sensors. The host computer is an Intel Core
17-8700K computer with Ubuntu 16.04 LTS operating system
installed on it and the Ubuntu system uses the real-time
kernel Linux 4.14.12-rt10. The software platform is based on
the Robot Operating System (ROS), version Kinetic Kame.
Furthermore, a distributed communication architecture with
master and slave nodes is designed. The master node is
mainly responsible for sending the control torque to the robot
as well as sending the information such as the position of
the robot itself to the slave node. On the basis of the state
information, the control torque is calculated by the slave node
through the control algorithm.

Run the proposed algorithm with n = 0.65,p = 0.7, u =
0.1 for the application. See Table I for other parameter
settings. The Al joint of the robot with brushless dc motor
is initialized from ¢(0) = 0O at rest. The control frequency is
set to 1000Hz to realize high-speed real-time communication
based on User Datagram Protocol.

Based on the concept of DHI-CBF (26), the following
function is set up:

FO(yL) = @(yb)
Fl(yL) = AFO(:’JHUL) + a1F0(yL)
FQ(yL) = Arl(yu%) + 052F1(yL)

3D

‘Work Station PC

IELhemet I Serial Port

Panda 7-DOF
| Manipulator

Control Box

Fig. 2: Franka-Panda robot experiment platform.

TABLE I: Control Parameter

Parameter Value ‘ Parameter Value
m 0.1 N 3

0 [0.6,0.4,0.4] p 0.7

n 0.65 vq(1) 0.1
[e%} 0.4 Umax 0.7
(o) 0.35 Umin —0.7
m 2 np 3

To verify the superiority of the proposed QP-based control
algorithm, it is compared with the safety controller [17]
under dynamic constraints, and the results in 50-th iterations
are shown in Fig. 3 (a) - Fig. 3 (b). Note that time-varying
constraints of joint position were added to the experiments to
fully demonstrate the guarantees for safety of the proposed
method.

When there is no conflict between the control target and
the security boundary (between about time Os and 3.1s), the
system runs along the desired trajectory. From the point of
steady state performance, the proposed method has a smaller
tracking error and higher tracking accuracy. Meanwhile, it
can be clearly seen that when the reference trajectory con-
flicts with the dynamic constraints (between about time 3.1s
and 9.5s), the position outputs under the present scheme are
strictly limited within the safety boundaries and the trajectory
runs smoothly. In terms of transition performance, when the
conflict disappears (around 36s), the proposed method has a
faster response time without large overshooting.

Besides, it can be seen from Fig. 3 (b) - Fig. 3 (c) that the
control torque is strictly limited to the preset safety range
throughout the control process with satisfactory real-time
performance. The average calculation time for each control
cycle does not exceed 0.5 ms. Therefore, the proposed
control scheme has great reliability in practical applications.

V. CONCLUSION

A data-driven safety-critical control scheme was proposed
in this paper, where the concept of DHI-CBF was formu-
lated to enable set invariance. To overcome the structural
complexity of conventional controllers and the dependence
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