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Abstract— Optimal control problems can be solved by dy-
namic programming. However, this method suffers from the
curse of dimensionality. To resolve this, simplified versions of
the original problem are often constructed in lower-dimensional
feature spaces, leading to approximate policies. Yet, the connec-
tions between the original and the approximate policy and costs
are rarely formalized. This paper addresses this challenge for
optimal stopping problems. We start by providing conditions
for lossless feature representations. This means that from an
optimal policy obtained in feature space, an optimal policy in
the original space can be constructed. Then, we search for
modified versions of the original problem that (i) admit a
lossless feature representation of far lower dimension; and (ii)
provide upper and lower bounds on the optimal cost of the
original problem. We can then use policies obtained in feature
space using these modified problems to provide approximate
policies for the original problem that are guaranteed to perform
better than or equal to this aforementioned cost upper bound.
We apply our tools in a high-dimensional precision farming
intervention problem, where our tools allow for a dramatic
decrease in complexity with only a small increase in the cost.

I. INTRODUCTION

The method of dynamic programming is an invaluable tool
for finding optimal policies in a wide range of optimal con-
trol and decision problems. However, for high-dimensional
problems, the method is computationally intractable due to
the curse of dimensionality. To mitigate this, approximate
methods are often pursued.

Especially relevant to the present paper are approximate
approaches that construct a feature space of lower dimension
on which it is feasible to apply exact dynamic programming,
providing a tractable approximate policy to the original
problem. A prime method to accomplish this is state aggre-
gation [1], [2], [3]. Other tools such as certainty equivalent
control [4] and Belief Compression for POMDPs [5] can
also be framed in this context. Moreover, a wide range of
application-specific related approaches can be found in the
literature, for instance in diesel engine control [6], resource
allocation [7], missile defense problems [8], and vision-based
control [9].

However, in these approximate approaches, the connec-
tion between the original and the approximate policy and
costs is rarely formalized. The present paper aims to address
this challenge for a specific class of dynamic programming
problems, namely that of optimal stopping problems. The
goal in these problems is to minimize a given cumulative
cost function. This is done by finding a policy either to stop

The authors are with the Control Systems Technology Group,
Department of Mechanical Engineering, Eindhoven University of
Technology, The Netherlands. E-mails:{m.j.t.c.v.zutphen,
m.heemels,d.antunes}@tue.nl. This research is part of the
research program SYNERGIA (project number 17626), which is partly
financed by the Dutch Research Council (NWO).

µ∗(i) = µ̂∗(ϕ(i))

J∗(i) = Ĵ∗(ϕ(i))
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Fig. 1. Visualization of the main results on optimal stopping problems,
(I) enabling lossless state reductions; (II) construction of highly-reducible
upper- and lower approximations on the original problem.

and incur a stopping cost or continue incurring the stage
cost. These problems arise in a wide range of fields, from the
pricing of financial derivatives [10] to connection scheduling
in ad-hoc networks [11]. Moreover, average cost optimal
state reset problems, that appear in event-triggered control
and precision farming [12], can also be framed as optimal
stopping problems.

In this paper, we provide two main theoretical contri-
butions and an application of these ideas to a case study.
The first contribution is a set of conditions on the structure
of the optimal stopping problem that allows for a lossless
feature representation of reduced dimension. This means
that the optimal value function and the optimal policy in
the original space can be obtained from the optimal value
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function and optimal policy in the feature space. As a
second contribution, we develop a technique for creating
modified versions of the original problem that (i) admit a
lossless feature representation of far lower dimension; and
(ii) provide upper and lower bounds on the optimal cost of
the original problem. We can then use the optimal policies
for the modified problems in feature space as approximate
policies for the original problem with guaranteed upper and
lower bounds on the associated cost (see Fig. 1).

Our results and methods are not only stated and applicable
to the standard cumulative cost case, but also to the average
cost optimal stopping problems with state resets. We apply
our new method on an average cost problem arising in
precision farming intervention problems, where our tools are
shown to enable a dramatic decrease in complexity, at only
a small cost increase.

The remainder of this paper is organized as follows.
Section II introduces optimal stopping problems and states
the problem. Conditions for a lossless reduction of the state
space are presented in Section III. Approximate solutions that
leverage these lossless conditions are discussed in Section
IV. An example of a problem on which these techniques can
be applied, together with the corresponding results, is pro-
vided in Section V. Lastly, Section VI provides conclusions
and future work directions.

II. PROBLEM FORMULATION

We start by introducing the (standard) cumulative cost op-
timal stopping problem in Section II-A and the average cost
optimal stopping problem in Section II-B. In Section II-C we
define ϕ-lossless maps, upper- and lower approximations for
the aforementioned problem classes, and provide the problem
statement.

A. Cumulative cost optimal stopping problem

Consider a standard, cumulative cost, optimal stopping
problem [13] with full state information on a discrete finite
space xt ∈ N := {1, 2, . . . , n}, for t ∈ N0 := N ∪ {0} that
aims to find a policy determining the stopping time τ ∈ N,
which minimizes the expected cost function J : N → R
given by

J(x0) = E[
τ−1∑
t=0

g(xt) + η(xτ )], (1)

with initial condition x0 ∈ N, stage cost function g : N → R,
and stopping cost η : N → R subject to stationary stochastic
dynamics

pij = Prob[xt+1 = j|xt = i], (2)

for i, j ∈ N. We define P := [pij ]i,j∈N. For simplicity,
assume that the stopping time is restricted by τ ≤ h for a
given, possibly arbitrarily large h ∈ N. The stopping time is
technically a measurable function of the filtration associated
with the process xt, t ∈ N0 [14]. Equivalently, we can
define ut ∈ {0, 1} to be such that ut = 1, if τ = t, and
ut = 0, otherwise, and search for a policy ut = µt(xt); then
τ = min{ t ∈ N0 | ut = 1}.

The optimal solution to this problem can be obtained
using the exact stochastic dynamic programming algorithm

[14]; start with
J∗
h(i) = η(i), (3a)

for all i ∈ N. Subsequently, for each t ∈ {h−1, h−2, . . . , 0},
and i ∈ N, compute

J∗
t (i) = min{g(i) +

∑
n
j=1pijJ

∗
t+1(j), η(i)}, (3b)

where the minimum of (1), denoted by J∗(x0), is obtained
as J∗(x0) = J∗

0 (x0). Then, an associated optimal policy is

µ∗
t (xt) =

{
1, if J∗

t (xt) = η(xt),

0, otherwise,
(3c)

for every t ∈ {0, 1, . . . , h− 1}. We call (µ∗
t , J

∗
t ) a solution

pair of the optimal stopping problem (P, g, η, h).

B. Average cost optimal stopping problems
Consider the average cost

J̃(x0) = lim
T→∞

1

T

∑
T−1
t=0 E [(1− ut)g̃(xt) + utη(xt)] , (4)

subject to the same stationary stochastic dynamics (2), when
ut = 0, and state reset xt+1 = x0, if ut = 1, with stage cost
function g̃ : N → R, and restriction ∀k ∈ N0 ∃ℓ ∈ [k, k+ h]
such that uℓ = 1, i.e., stopping time τ ≤ h. It is well known
that the problem of minimizing this average expected cost (4)
can equivalently be formulated as the average cost optimal
stopping problem [12], [14]

J̃(x0) =
1

E[τ ]
E[
∑

τ−1
t=0 g̃(xt) + η(xτ )]. (5)

The optimal solution to this problem can be obtained us-
ing the numerical dynamic programming root-finding prob-
lem

min
τ

E[
∑

τ−1
t=0 (g̃(xt)− β) + η(xτ )] = 0, (6)

with β ≥ 0. Solutions to the minimization of the left-hand
side of (6) for a given value of β are obtained by executing
(3) with the adapted stage cost value g(xt) = g̃(xt) − β.
The unique β that satisfies equation (6) can subsequently be
found by, e.g., a binary search as the solution is monotonic
in β.

C. Problem statement
As the solutions to both optimal stopping problems (1),

(5) rely on exact dynamic programming, they become in-
tractable for problems with a large state-space cardinality
n = |N|. Unfortunately, this is the case in many problems,
e.g., those resulting from the discretization of problems in
Rñ with large ñ. In this paper, the aim is to achieve tractable
solutions for these problems by means of a proxy problem
in a lower-dimensional feature space, which we explain in
more detail below.

Suppose that we group states according to a surjective
map (projection)

ϕ : N → M, (7)

where M := {1, 2, . . . ,m} with m ≤ n. The map ϕ defines
an equivalence relation. States i, j ∈ N are equivalent,
denoted by i ∼ j, if ϕ(i) = ϕ(j). This map can induce an
optimal control (proxy) problem in this lower-dimensional
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space (see Fig. 2) with state x̂t ∈ M, as we will explain
in more detail below. We declare such map ϕ to be lossless
if the solution pair (µ∗

t (xt), J
∗
t (xt)) can be recovered from

a lower-dimensional solution pair (µ̂∗
t (x̂t), Ĵ

∗
t (x̂t)) of the

problem in feature space taking value in M.

Definition 1 (ϕ-lossless) A stopping time problem on state
space N = {1, 2, . . . , n} characterized by (P, g, η, h) is said
to be ϕ-lossless for a given ϕ : N → M with m < n, if there
exists a reduced order problem (P̂ , ĝ, η̂, h) on state space
M = {1, 2, . . . ,m}, with optimal cost- and policy functions
Ĵ∗
t : M → R, µ̂∗

t : M → {0, 1}, such that

J∗
t (xt) = Ĵ∗

t (ϕ(xt)), and µ∗
t (xt) = µ̂∗

t (ϕ(xt)), (8)

for every t ∈ {0, 1, . . . , h} and xt ∈ N. ■

Note that for ϕ-lossless problems, we can work on the
quotient space N/ ∼ of this equivalence relation, i.e., work
with m states rather than n states, without losing optimality.

To tackle problems that are not ϕ-lossless for any ϕ, or
that are ϕ-lossless for ϕ’s where m ≈ n, it is useful to
define the notions of upper and lower approximations. Upper
(lower) approximation refers to an abstract optimal stopping
problem defined by the tuple (P̄ , ḡ, η̄, h) ((P , g, η, h)) and
an associated cost function. Here, abstract refers to the
fact that the rows of P̄ (P ), in contrast to the rows of
a standard optimal stopping transition probability matrix
P , are not required to satisfy the discrete probability dis-
tribution property of summing to one. The abstract op-
timal stopping formulation requires a redefinition of the
expected value operator present in e.g., (1) and (4). Let
x = (x1, x2, . . . , xh) ∈ Nh be a state sequence and let
the set of all unique state sequences be indexed by ℓ, as
Nh = {xℓ =(xℓ

1, x
ℓ
2, . . . , x

ℓ
h)|ℓ ∈ {1, 2, . . . , nh}}. Let the

function q : {1, 2, . . . , nh} × Rn×n → R be defined as

q(ℓ, P ) = Πk∈{1,2,...,h−1} pxℓ
kx

ℓ
k+1

. (9)

We use this to redefine the EP [ · ]-operator as

EP [V (x)] =
∑

nh

ℓ=1q(ℓ, P )V (xℓ), (10)

for V : Nh → R. For transition probability matrices P
that satisfy the conditions of a probability distribution, this
definition coincides with the canonical definition of expected
value E[ · ], but for P -matrices which do not correspond to
probability distributions, it should be interpreted as a distinct
mathematical operator.

Evaluating the cost (1) using dynamic programming under
this redefinition of the E[ · ]-operator, for a given stopping

(P, g, η, h)

(P̂ , ĝ, η̂, h) (Ĵ∗, µ̂∗)

(J∗, µ∗)

Eq. (12) Eq. (8)

DP

DP

Fig. 2. Solving the original problem (P, g, η, h) in feature space M by
lossless feature mapping ϕ generating proxy problem (P̂ , ĝ, η̂, h) with state
space cardinality m < n. An optimal solution pair (µ∗, J∗) is losslessly
recovered from (µ̂∗, Ĵ∗).

policy µ, and for any tuple (P, g, η, h) results in

Jµ
t (i) =

{
g(i) +

∑n
j=1 pijJ

µ
t+1(j), if µt(i) = 0,

η(i), if µt(i) = 1.
(11)

Let us denote the cost (1) realized under policy µt and tuple
(P, g, η, h) for t ∈ N0 by Jµ(x0) = Jµ

0 (x0), and a cost
realized by an upper-bounding (lower-bounding) problem
under the same policy by J̄µ(x0) = J̄µ

0 (x0) (Jµ(x0) =
Jµ
0 (x0)), where J̄µ

0 (x0) (Jµ
0 (x0)) is obtained by replacing

pij by p̄ij (p
ij

) in (9), (11).

Definition 2 (Upper- and lower approximations) An ab-
stract optimal stopping problem characterized by (P̄ , ḡ, η̄, h)
((P , g, η, h)) is said to be an upper (lower) approximation of
the optimal stopping problem characterized by (P, g, η, h), if
for any stopping policy µt : N → {0, 1}, t ∈ {0, . . . , h− 1},

Jµ(x0) ≤ J̄µ(x0) (Jµ(x0) ≤ Jµ(x0)), ∀x0 ∈ N.

■

In this paper we are interested in two problems:
(i) Providing conditions on (P, g, η, h) under which cumu-

lative and average cost optimal stopping problems are
ϕ-lossless.

(ii) For problems that are either not ϕ-lossless or are ϕ-
lossless with a ϕ where m ≈ n, providing a procedure
that modifies (P, g, η, h) to form upper and lower
approximations that are ϕ-lossless with m ≪ n.

III. MAIN RESULT I: LOSSLESS CONDITION

The first main result provides sufficient conditions for the
considered stopping time problems to be ϕ-lossless.

A. Conditions for lossless state aggregation
Let us define m equivalence sets Aj := {i ∈ N | ϕ(i) =

j}, j ∈ M.

Theorem 1 (Lossless reduction) If the three conditions

(1.i) g(i) = g(r), ∀i, r ∈ N, s.t. i ∼ r,

(1.ii)
∑
ℓ∈Aj

piℓ =
∑
ℓ∈Aj

prℓ, ∀i, r ∈ N, s.t. i ∼ r, ∀j ∈ M,

(1.iii) η(i) = η(r), ∀i, r ∈ N, s.t. i ∼ r,

are met, then the optimal stopping problem defined by
(P, g, η, h) admits a ϕ-lossless feature-based state-space
reduction. ■

This means we can aggregate all states from each class Aj

for j ∈ M into a single representative state when running the
DP algorithm, reducing the number of operations from order
n to order m. This holds for both the cumulative cost (1)
and average cost (4) optimal stopping problems.

B. Construction of the state aggregation
Provided a set of equivalence groups Aj for j ∈ M for

problem (P, g, η, h) of state space size n, we can reduce the
problem losslessly to (P̂ , ĝ, η̂, h) with a state space of size
m through

P̂ = ΠrPΠc, ĝ = Πrg, η̂ = Πrη, (12)
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where Πr ∈ {0, 1}m×n and Πc ∈ {0, 1}n×m are permutation
matrices constructed by stacking row rj ∈ {0, 1}n and
column cj ∈ {0, 1}n vectors for j ∈ M as

Πr =
[
r⊤1 r⊤2 · · · r⊤m

]⊤
, Πc =

[
c1 c2 · · · cm

]
,

with

rj(i) =

{
1, if i = ej ,

0, otherwise,
and cj(i) =

{
1, if i ∈ Aj ,

0, otherwise,

for m arbitrary preselected elements ej ∈ Aj , and i ∈ N,
j ∈ M.

In short, this procedure merges transition probabilities of
each equivalence class into their respective feature space
state j ∈ M through the post-multiplication with Πc, while
also removing all remaining redundant states through a pre-
multiplication by Πr.

IV. MAIN RESULT II: APPROXIMATING POLICIES

The second main result consists of sufficient conditions
for modified problems to form an upper bound (or lower
bound) on the cost of an optimal stopping problem. These
conditions are leveraged below to create approximations en-
dowed with ϕ-lossless structure, solvable on strongly reduced
state spaces.

A. Conditions for upper and lower approximations
Theorem 2 (Upper and lower approximations) If, with
respect to optimal stopping problem (P, g, η, h), a proxy
problem (P , g, η, h) ((P̄ , ḡ, η̄, h)) satisfies

(2.i) 0 ≤ g(i) ≤ g(i) (0 ≤ g(i) ≤ ḡ(i)), ∀i ∈ N,

(2.ii) 0 ≤ p
ij

≤ pij (0 ≤ pij ≤ p̄ij), ∀i, j ∈ N,

(2.iii) 0 ≤ η(i) ≤ η(i) (0 ≤ η(i) ≤ η̄(i)), ∀i ∈ N,

then the proxy problem is a lower (upper) approximation
w.r.t. the optimal stopping problem. ■

The optimal policy µ̄∗ for an upper approximation has a
proven upper-bound on the cost when applied to the original
problem Jµ∗ ≤ J µ̄∗ ≤ J̄ µ̄∗

, where µ∗ is the optimal
policy for the original problem. Comparing the optimal cost
of the upper approximation J̄ µ̄∗

to the optimal cost of a
lower approximation Jµ∗

additionally provides an upper-
bound on the difference between the cost realized using the
approximate policy µ̄∗ and the true optimal cost as

Jµ∗
≤ Jµ∗

≤ J µ̄∗
≤ J̄ µ̄∗

, (13)

using Theorem 2 and the definition of optimality. Here, J
should be interpreted as the cost w.r.t. either (1) or (4).

Note that Theorem 2 requires the stage cost g(i), i ∈
N, of the original problem to be non-negative, which is not
necessarily the case for the reformulation (6) of the average
cost problem (4). Yet, Theorem 2 does turn out to hold for
the average cost problem (4) in the case of non-negative
stage cost g̃(i). Such average cost problem is characterized
by the tuple (P, g̃, η, h). Upper (lower) approximations can
be defined as in Definition 2 provided that we now interpret
J̄µ(x0) (Jµ(x0)) as cost (4), or equivalently (5), for policy
µ). While such cost can no longer be written through (11), it

is still well defined as we can write the numerator in (5) as
a function of the p̄ij (p

ij
) through (9), and the denominator

as EP [τ(x)] =
∑nh

ℓ=1 q(ℓ, P )τ(xℓ).

Theorem 3 (Average cost approximation) Consider the
average cost (4), tuple (P, g̃, η, h), and a proxy problem
(P , g, η, h) ((P̄ , ḡ, η̄, h)) that satisfies conditions (2.i), (2.ii),
and (2.iii) with g = g̃. Then the modified problem is a lower
(upper) approximation w.r.t. the optimal stopping problem. ■

Theorem 3 allows us to construct upper- and lower
approximations for average cost problems and cumulative
cost problems alike.

B. Construction of the modified problems
In Algorithm 1, we present a general procedure that uses

Theorem 2 to obtain an upper approximation for cumulative-
and average cost optimal stopping problems with arbitrarily
low m̄ < m ≤ n. For the method to be applicable, the
original problem (P, g, η, h) must satisfy conditions (2.i),
(2.ii) and (2.iii) of Theorem 2. Problems that satisfy these
conditions include the many cumulative cost problems where
g(i) = 0 and η(i) > 0 for all i ∈ N, such as moment-of-
purchase problems and the many average cost problems that
generally satisfy g(i) ≥ 0 and η(i) > 0 for all i ∈ N.

Algorithm 1 Upper approximation
1. Select an arbitrary number m̄ ∈ N of seed states S̄ =
{i1, i2, . . . , im̄} ⊆ N, each required to have a unique stage
cost value, g(ij) ̸= g(ir) for j, r ∈ M, j ̸= r. It is further
required that the state i with the largest stage cost g(i) is
in S̄.
2. Create stage cost function ḡ such that ḡ(i) :=
min{g(j) | g(i) ≤ g(j), j ∈ S̄}, for i ∈ N, so that
the equivalence classes emerge as Āj := {r ∈ N | ḡ(r) =
ḡ(ij)}, for j ∈ M̄.
3. Set stopping costs η̄ as η̄(i) = max{η(r) | r ∈ Āj(i)},
where j(i) ∈ M̄ is such that i ∈ Aj(i).
4. Define εir := Prob[xt+1 ∈ Ār|xt = i] = Σℓ∈Ār

piℓ,
and find Mjr = max i∈Āj

εir for all j, r ∈ M̄.
5. Compute the elements of P̄ for i, ℓ ∈ N as

p̄iℓ :=
{
Mjr

piℓ

εir
if εir > 0, Mjr

1
|Ār|

if εir = 0,

where j = {k ∈ M̄|i ∈ Āk}, r = {k ∈ M̄|ℓ ∈ Āk}.

The algorithm thus produces a ϕ-lossless upper approxi-
mation to the original problem with a significantly reduced
number of equivalence classes m̄ ≪ m by increasing
the stage- and stopping costs, and transition likelihoods of
certain states to make previously dissimilar states equivalent.
To initiate, in step 1, we somewhat arbitrarily select a set
of m̄ states from N such that each has a unique stage cost
value g(i) and one of the states with maximum stage cost
is included. This is done to have a basis of seed states S̄ to
which all other states are subsequently made equivalent.

In step 2, we construct ḡ(i) by simply raising each of the
original stage cost values g(i) for i ∈ N \ S̄ until they equal
the stage cost of one of the seed states ij for j ∈ M̄. This is
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done to ensure ḡ satisfies (2.i) for all emerging equivalence
groups, which are made explicit as Āj , j ∈ M̄. Similarly, in
step 3, we construct stopping cost function η̄(i) to always
equal the maximum value η(i) takes on the elements of each
equivalence group for all equivalent states i ∈ Āj . This
ensures the satisfaction of condition (2.iii).

Lastly, we find what the largest chance of transitioning
from group j ∈ M̄ to any state in equivalence group r ∈ M̄
is (step 4) to define the elements P̄ = [p̄iℓ] for i, ℓ ∈ N such
that the resulting transition sums ε̄ir to each equivalence
group will be equal for all equivalent states in Āj(i) (step
5), note that j(i) ∈ M̄ selects the equivalence class index to
which i ∈ N belongs.

Note that Algorithm 1 can be repurposed to produce
lower- instead of upper approximations. This is done by (i)
ensuring the smallest rather than the largest stage cost value
state is included in S̄ in step 1, (ii) reversing the inequality
in step 2, and (iii) replacing the max function with a min
function in steps 3, and 4. Note also that for problems where
more information about the states is stored in the terminal
cost η(i) than in the stage cost g(i), e.g., when g(i) = 0 for
all i ∈ N, the algorithm should be modified by swapping g
for η and vice versa in all steps.

V. EXAMPLE APPLICATION, PRECISION FARMING

To demonstrate the efficacy of the tools developed above,
an example problem in precision farming is employed. The
problem is introduced and then solved both approximately
and exactly when the size of its state space allows for
it. Above this threshold, it is shown that the approximate
methods can generate solutions when the exact methods have
become intractable, providing approximate solutions with
proven upper- and lower bounds on the cost.

Take an agricultural field, discretized spatially along a
single dimension into N ∈ N subfields. We describe the
state of each subfield fi for i ∈ {1, 2, . . . , N} at timestep
t ∈ N0 using a binary value

fi(t) ∈ {0, 1},

where fi(t) = 0 corresponds to “no weeds present”
and fi(t) = 1 to “subfield infected with weeds”.
These values are stored in field state vector f(t) =[
f1(t) f2(t) · · · fN (t)

]⊤
.

Since f ∈ {0, 1}N , the exact number n of unique field
state values f can take is |{0, 1}N | = 2N . This allows the
state of the entire field at every time step t ∈ N0 to be
uniquely represented by a single integer state label as xt ∈
N := {1, 2, . . . , n} for n = 2N . This labeling can be defined
through the bijective mapping π : {0, 1}N → N.

Uninfected subfields fi(t) = 0 for i ∈ {1, 2, . . . , N},
t ∈ N0, can become infected by seeds transmitted through the
air or by infection from an infected neighboring subfield. The
probabilities of either of these happening to an uninfected
subfield at any timestep t are assumed

0 < pair < pneighbor < 1.

Thus, since subfields i for i ∈ {1, 2, . . . , N}, at any timestep
t have nin,i(t) ∈ {0, 1, 2} infected neighbors, their chance of

infection

pi(t) = Prob[fi(t+ 1) = 1|fi(t), nin,i(t)],

at timestep t is found as pi(t) = 1, if fi(t) = 1, and

pi(t) =


pair, if nin,i(t) = 0,

1− (1− pair)(1− pneighbor), if nin,i(t) = 1,

1− (1− pair)(1− pneighbor)
2, if nin,i(t) = 2,

(14)
when fi(t) = 0. Using π and this expression (14) we can
create the transition probability matrix P that contains the
probabilities P = [pij ] of the system transitioning from state
i ∈ N to state j ∈ N in one timestep.

The cost of a field i being infected fi(t) = 1 is d ∈ R>0

per timestep. Thus, the stage cost of each state xt ∈ N is
found as

g(xt) = d1⊤
n π

−1
(xt),

where π
−1
(xt) is the inverse mapping π

−1
: N → {0, 1}N of

π and 1n is an n × 1-vector of ones. The stopping cost is
equal for all states and is defined as

η(xt) = δ, for all xt ∈ N,

where δ ∈ R>0, as it is assumed there is a set cost
associated with treating the entire field — so all subfields
— with herbicides, which resets all subfield states to zero.
Minimization of the average cost (4) is considered.

A. Solution

As the number of subfields N grows, the cardinality of the
state space n = 2N grows exponentially. For a field that is
subdivided in, e.g., N = 30 subfields, the related state space
has a cardinality of n > 1 · 109. Since P is an n×n-matrix,
this matrix alone would have more than 1 · 1018 elements.
This particular problem in its original form (P, g, η, h) turns
out to be ϕ-lossless with m ≈ n/2. This reducibility stems
from mirror image states in {0, 1}N . For N = 2, e.g., we
have that [0 1]⊤ is the mirror image of [1 0]⊤, and thus enjoys
the same current and expected future degrees of infection.
Although this is a significant reduction, its lossless proxy
problem is still far from tractable for N ≫ 10.

Note that the original stage cost g(i) takes only N + 1
unique values for i ∈ N. Algorithm 1 applied to this
example with m̄ = N + 1 thus generates upper- and lower
approximations on the original problem with ḡ = g := g and
η̄ = η := η.

B. Results

We consider this example situation for cost- and transition
probability parameters (δ, d, pair, pnei) = (10, 1, 0.1, 0.5), and
a range of field discretizations, N ∈ {1, 2, . . . , 18}. The
resulting optimal average cost is compared to the results
from the related upper and lower approximations of the same
problem. This is visualized in Fig. 3. Above N = 14, solving
the original problem directly became too demanding without
special hardware and only the approximate problems have
been solved.

In Fig. 4, the relationships between the number of sub-
fields N and the size of the corresponding state spaces
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Fig. 3. The optimal cost of the example problem for N = 1, 2, . . . , 14,
as well as the costs associated with the upper- and lower approximations of
this original problem for N = 1, 2, . . . , 18.

n= n̄=n, m, m̄=m, are visualized. At N = 132, the
number of values n × n comprising P already exceeds the
estimated amount of atoms in the universe [15] by a factor
of almost three. For this same scenario, the reduced P -
matrices of the approximate problems ( ˆ̄P and P̂ ) require
only m̄× m̄ = m×m = 19044 elements.

As described in Section IV, the straightforward procedure
of obtaining ˆ̄P and P̂ starts by producing P . This matrix P
is then adapted using Algorithm 1 to yield the P̄ and P
matrices. Lastly, the P̄ and P matrices are reduced using
Eq. (12) to form ˆ̄P and P̂ (see also Fig. 1). As the size of
P grows exponentially (as displayed in Fig. 4), executing
the method this way is extremely memory intensive as it
requires storing three matrices of size n × n. This is why
the computations that were required to obtain the results
displayed in Fig. 3 have been modified to produce ˆ̄P and P̂

Fig. 4. The growth of the size of the original state space n, upper/lower
approximation state space n̄ = n, losslessly reduced state space m and
losslessly reduced upper/lower approximation state space m̄ = m as a
function of the number of subfields N .

directly. This modification can be obtained straightforwardly
by executing Algorithm 1 and Eq. 12 for each element of ˆ̄P
and P̂ instead of for the entire matrices at once.

VI. CONCLUSIONS, FUTURE WORK AND DISCUSSION

We introduced the notion of ϕ-losslessness for stopping
time problems, provided sufficient conditions that can be
used to verify this property for a given problem, and provided
a method that generates the associated reduced problem.
Secondly, we defined upper (lower) approximations of far
lower dimension that not only form a guaranteed upper
(lower) bound on the optimal cost of the original problem,
but also yield an approximate policy with a guaranteed
upperbound on its performance.

The natural extension of this work is to generalize the
same techniques to general Markov decision problems. Ad-
ditional research directions that emerge from the develop-
ment of these techniques are (i) the investigation of how
Algorithm 1 can be modified to produce the tightest possible
upper/lower bounds, and (ii) the search for fast algorithms
for finding ϕ, i.e., the existing equivalence classes in a given
problem.
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