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Abstract— Point process networks are emerging in wide
range of applications, such as finance and social media. Such
networks are often modeled by the multivariate Hawkes pro-
cesses. In this paper, we propose a log-sparsity penalized least
squares (log-LS) estimation method for the Hawkes intensity to
capture the network dynamics, while eliminating the inactive
nodes. We develop a new continuous-time log-LS formulation
correcting an error in previous work by finding an underlying
true global minimum. We use a cyclic descent + BIC algorithm
for efficient optimization. We finally compare various penalties
in simulations demonstrating the advantages of log-sparsity.

I. Introduction
Point process applications are found in neural science

[1], high frequency finance [2], seismology [3], etc, where
random event times of one or more sources are collected and
modeled to characterize the underlying dynamics.

In the multi-source case, the event times of one source
are considered to be dependent on the history of its own
and also other sources’ past events. The sources thus form
a point process network where each source is a node of the
network, and a source’s impact on each node, including itself,
forms a directed link between nodes. For example, in the
network of neurons in an animal’s visual cortex, each neuron
is considered a node, the neural spike times are the event
time signals, and the existence of the excitation influence
from one neuron to another, or itself, forms a link.

The multivariate Hawkes process is the most widely used
model for a dynamic point process network. It is a linear
history dependent point process model. It assumes that each
node has a constant background rate and is also statistically
and positively excited by all the previous events of nodes
having directed links towards it. Hawkes model assumes
an exponentially decaying excitement impact. Examples of
Hawkes modeling are e.g. neural networks [1], [4], social
activity networks [5], [6] and currency exchange networks
[7].

The identification of the Hawkes model is generally hard.
The problems lie in, e.g. (a) the difficulty of identifying mul-
tiple nonlinear exponential time constants, and (b) producing
sparsity to eliminate unconnected nodes, i.e. to have exact
0 impact weight parameters for unconnected nodes. We will
discuss each of them later in this paper. But for (b), it can
be achieved by the sparse signal reconstruction methods.

Sparse signal reconstruction is to add a sparsity inducing
penalty to the original minimization problem for param-
eter identification, usually least squares or negative log-
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likelihoods. Common examples for such non quadratic penal-
ties include the `0 [8], [9], `q [10], [11] and `1 [12], [13],
[14] norms, Gaussian entropy [15], log penalty [16], [17],
[18], [19], [20], etc.

The log penalty is known to produce much greater sparsity
than `1 [16]. Existing solutions to log sparsity problems
include weighed-`1 algorithms [16], [19], [20], iterative
thresholding [17], [9], etc. But the result in [17] has a
fundamental flaw, which will be corrected in Section IV.

In point process applications, most works use `1 penalty
[6], [21], [22], [23]. Authors of [24] adopted an `0 penalized
least squares + BIC based criterion on binned data. However,
all above but the last, assume the nonlinear terms known;
they avoid the difficulty (a) mentioned above.

In this paper, we use Hawkes-Laguerre model, a basis
expansion of Hawkes, as the authors of [24] did to reduce
to a single nonlinear parameter. We formulate and solve the
log sparsity problem for Hawkes-Laguerre, and make the
following new contributions:

(a) We develop a new continuous-time log-penalized least
squares criterion (log-LS) for Hawkes-Laguerre inten-
sity.

(b) We identify the correct threshold for the log-LS
problem.∗

(c) We develop a cyclic descent algorithm (log-CD) for
log-LS.∗

(d) We develop a log-CD + BIC method for Hawkes-
Laguerre intensity estimation, including selection of
the optimal nonlinear time constants and log-penalty
parameters.

∗ (b) and (c) are results for the general log-LS problems and
can be applied to non point process applications.

The remainder of the paper is organized as follows. In
Section II, we review point process properties. Sections III
to IV address contributions (a) and (b), respectively. Section
V introduces contributions (c) and (d). In Section VI, we
compare various penalties in simulations. Section VII is
conclusions.

II. Point process preliminaries
A point process network is a network each of whose nodes

carries a point process. We suppose there are M nodes and
denote the counting process at the m(th) node as Nm,t = #
events at node m up to and including time t. We also denote
the network counting process Nt =

[
N1,t, · · · , NM,t

]>
.

• The conditional intensity function uniquely characterizes
point processes and, for m(th) node, is defined as

λm(t) = λm(t|N t−
0 ) = lim

δ→0

1

δ
Pr[Nm,t+δ −Nm,t = 1|N t−

0 ],
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where N
t−
0 = {Nl,u|l = 1, · · · ,M, 0 < u < t} is the

memory/history up to time t. λm(t) is the probability of an
event occurring at node m in a tiny time interval after t, given
the history up to t. We denote λ(t) =

[
λ1(t), · · · , λM (t)

]>
.

We assume no-simultaneity. i.e. only zero or one event can
occur in an infinitesimally small time interval.

Note that the history consists of all past event times of
all M nodes and also note that the intensity is a stochastic
process itself.
• The stochastic intensity obeys [25] the Martingale

increment property: E[λ(t)dt−(Nt+dt−Nt)|N t−
0 ] = 0, This

will be used to derive the least squares criterion.
•We model the stochastic intensities with a vector Hawkes

model [26] as follows

λ(t) = c+

∫ t

0

H(t− u)dNu, (1)

where c =
[
c1, · · · , cM

]>
, cm > 0 is the vector of

background rates and HM×M (u) = [hml(u)] is a matrix
of Hawkes impulse responses. Specifying H(u) is a major
problem which we overcome by employing a causal basis
expansion in terms of Laguerre polynomials

hml(u) =
∑P
j=1αml,jφm,j(u) (2)

φm,j(u) =
(βmu)j−1

(j − 1)!
βme

−βmu (3)

⇒
∫ ∞
0

φm,j(u)du = 1 (4)

⇒ λm(t) = cm +
∑M
l=1

∑P
j=1αml,jχml,j(t) (5)

χml,j(t) =

∫ t

0

φm,j(t− u)dNl,u

=
∑
Tl,k<t

φm,j(t− Tl,k), (6)

where P is the model order and χml,j’s are memory regres-
sors, αml,j> 0 characterizes the scale of the impact of node
l on node m, and 1

βm
> 0 is the time constant at which such

impact decays, and Tl,k’s are the event times at node l. The
second last line is a Lebesgue-Stieltjes integral.

Note that if βm is known, λm(t) is linear in cm and αml,j .
This makes model fitting for those parameters much simpler.

III. Sparsity Penalized Continuous Time Least Squares

In this section, we develop a new continuous time (CT)
log-sparsity penalized least squares criterion (log-LS) for
the sparse Hawkes-Laguerre intensity estimation. This will
eliminate (‘zero out’) weak or absent nodal connections
helping to capture more accurate dynamics.

We first derive a discrete time (DT) least squares criterion.
Then, we get a CT version by taking limits. Then we can
add the sparsity penalty.

We collect the α parameters and corresponding regressors
into vectors as follows.

αm = [ αm1,1 ··· αm1,P αm2,1 ··· αmM,P ]
>

χm(t) = [ χm1,1(t) ··· χm1,P (t) χm2,1(t) ··· χmM,P (t) ]
>
,

and rewrite (5) in vector form λm(t) = [ 1 χ>m(t) ] [ cmαm ] .
Now discretize the counts in observation period (0, T ] into
K small bins each of width δ = T

K . Then let Nδ
m,i be the

number of events at node m observed in the bin ((i−1)δ, iδ].
This leads to the following DT least squares criterion [24]:

The linear parameters cm, αml,j can be estimated by
minimizing J(c, α) =

∑
mJm(cm, αm)

Jm(cm, αm) =
∑K
i=1δλm(iδ)

(
1

2
λm(iδ)δ −Nδ

m,i

)
, (7)

for m = 1, · · · ,M .
A derivation can be found in [24] using the martingale

increment property. It follows a standard least square mini-
mization of the discretized martingale λm(iδ)δ−Nδ

m,i with
a term unrelated to parameters dropped.

However, we would like to avoid binning the observed
data because information will be lost. Therefore, we obtain
a CT criterion by taking limits of the DT criterion. We define
the following integrals and sums.

bml,j(t) =
∫ t
0
χml,j(u)du

B
(l′,j′)
m,(l,j)(t) =

∫ t
0
χml,j(u)χml′,j′(u)du

B̃
(l′,j′)
m,(l,j)(t) = B

(l′,j′)
m,(l,j)(t)−

1
t bml,j(t)bml′,j′(t)

G
(l′,j′)
m,(l,j) = 1√

B̃
(l,j)

m,(l,j)
(T )B̃

(l′,j′)
m,(l′,j′)(T )

B̃
(l′,j′)
m,(l,j)(T )

Sml,j =
∑Nm,T
r=1 χml,j(Tm,r)

vml,j = 1√
B

(l,j)

m,(l,j)
(T )

[
Sml,j − Nm,T

T bml,j(T )
]
,

where bml,j is the regressor integral, B(l′,j′)
m,(l,j) is the cross

integral, G(l′,j′)
m,(l,j) is the centered and normalized cross inte-

gral, Sml,j is the regressor sum and vml,j is the centered and
normalized regressor sum.

We now state the optimization for αm and cm in the
following result.

Result I. (a) log-LS. The continuous-time log-penalized
least squares criterion (log-LS) is given

Jm(αm) =
1

2
α>mGmαm − v>mαm + hm

∑
l,jπ(αml,j), (8)

where π(a) = ln[(|a| + γ)/γ] is the standard log-sparsity
penalty term [16], 0 < γ � hm are two penalty parameters
to be chosen, and

Gm = G>m = [Gm1,1 ··· Gm1,P Gm2,1 ··· GmM,P ]

Gml,j =
[
G

(1,1)

m,(l,j)
··· G(1,P )

m,(l,j)
G

(2,1)

m,(l,j)
··· G(M,P )

m,(l,j)

]>
vm =

[
vm1,1 · · · vm1,P vm2,1 · · · vmM,P

]>
.

(b) Denote by α∗m = [α∗m1,1 · · ·α∗mM,P ]> the minimizer
of (8). Weights α̂ml,j can be estimated as

α̂ml,j = α∗ml,j/
√
B̃

(l,j)
m,(l,j)(T ), (9)

(c) Background rate ĉm can be estimated as

ĉm =
1

T

(
Nm,T −

∑M
l=1

∑P
j=1α̂ml,jbml,j(T )

)
. (10)
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Proof: Due to space limits, we only sketch the deriva-
tion. The CT criterion (8) is derived from the DT criterion
(7). Dividing (7) by δ, it can be rewritten as

J̄m(cm, αm) =
∑K
i=1

1

2

(
x>i

[
cm
αm

])2

− yix>i
[
cm
αm

]
,

(11)

where xi =
[√
δ
√
δχ>m(iδ)

]>
and yi =

Nδm,i√
δ

.

Now center and normalize xi to get x̃i =
xi− 1

K

∑
i xi

‖xi− 1
K

∑
i xi‖2

,

and center Nδ
m,i/
√
δ to get ỹi = yi − 1

K
√
δ

∑
iN

δ
m,i =

1√
δ

(
Nδ
m,i −

Nm,T
T δ

)
. Note that the first entry in x̃i becomes

0 so cm disappears.
Denote by J̃m(αm) the new criterion after replacing xi, yi

by x̃i, ỹi in J̄m. Now expand J̃m(αm), add the log-sparsity
penalty, and use the limits such as

1

K

∑
iχml,j(iδ) =

1

T

∑
iχml,j(iδ)δ →

1

T

∫ T

0

χml,j(t)dt

∑
iχml,j(iδ)χml′,j′(iδ)δ →

∫ T

0

χml,j(t)χml′,j′(t)dt∑
iχml,j(iδ)N

δ
m,i →

∑Nm,T
r=1 χml,j(Tr), as δ → 0,

to get the quoted log-LS in (8).
Finally recovering the centering and normalization gives

α̂m in (9) and ĉm in (10).

Remarks.
(a) The criteria Jm,m = 1, · · · ,M can be optimized

separately.
(b) Gm can be shown to be positive definite. Gm has unit

diagonal entries and off-diagonal entries of magnitude
< 1 due to normalization.

(c) Authors of [24] used DT log-penalized least squares
by adding the penalty term directly to (7). We use the
CT criterion to preserve all information.

(d) We have centered and normalized the regressors and
centered the observed counting increment, so that the
background rate cm disappears from the criterion and
avoids being penalized - since they must be 6= 0 for
the Hawkes model to make sense. Another reason for
normalization is for use in the cyclic descent algorithm
to be developed later. cm is estimated by undoing the
centering and normalization.

(e) Criterion (8) is different from the CT criterion used
in [21] because they do not center or normalize and
thus the background rate cm gets penalized causing
problems if it is zeroed.

We now turn to solving log-LS in (8).

IV. Log-Sparsity
In order to solve the log-LS in (8), we first need to discuss

the solution of the following scalar log-LS criterion

min
f
Js(f ; y) =

1

2
(y − f)2 + hπ(f). (12)

We show below that the global minimizer f∗ is found by
the following thresholding

f∗ = Ψ(y) =

{
0, if |y| ≤ τ∗
fe, if |y| > τ∗

(13)

fe = sgn(y)(
√
hψ(w)− γ),

where ψ(w) = w +
√
w2 − 1, w = |y|+γ

2
√
h

, fe is the local
minimizer when f 6= 0, optimized by calculus, and τ∗ is the
threshold derived below.

For the two most common penalties of `1, `0, it is well
known that scalar penalized least squares problem is solved
by thresholding with a single threshold. However for the `q
penalty it turns out the minimization involves two thresholds
[27], [10] - roughly corresponding to a local minimum and
a global minimum. It turns out that this is also the case for
the log-sparsity penalty. We call these thresholds:

i) Euler threshold - the local threshold
ii) Sparsity threshold - the global threshold.

A. Euler Threshold

In [17], the authors find that the log-LS problem, for f 6= 0
exists, when |y| > τe = 2

√
h−γ (their formula is equivalent

but differs in scale because we have a factor of 1
2 in Js). We

call τe the Euler threshold.
The authors then mistakenly claim, without proof, that the

Euler threshold also provides the global minimum. We now
proceed to find the global minimizer.

B. Sparsity Threshold

The global minimizer is as follows.
Result II. Sparsity Threshold. The scalar log-LS (12) is

globally minimized by (13) where the sparsity threshold τ∗
is given by

τ∗ = min
f>0

U(f), U(f) =
1

2
f +

h ln[(f + γ)/γ]

f
, (14)

and τe < τ∗.
Proof: We minimize Js(f) by comparing Js(0) with

Js(f), f 6= 0.
We have Js(0) = 1

2y
2. So 0 is preferred if

1

2
y2 <

1

2
y2 − yf +

1

2
f2 + h ln[(|f |+ γ)/γ]

⇒ yf <
1

2
f2 + h ln[(|f |+ γ)/γ].

This inequality is non-trivial iff yf > 0, i.e. iff sgn(y) =
sgn(f) whereupon it is equivalent to

|y| < 1

2
|f |+ h ln[(|f |+ γ)/γ]

|f |
.

This leads us to introduce the sparsity threshold τ∗ as in
(14). Then, 0 is preferred if |y| < τ∗.

We denote the minimizer of U(f) by f0. We now show
τe < τ∗.
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U(f) is convex on (0,∞), so differentiating U(f) for a
minimum, we find

0 = 1
2 + h

(f0+γ)f0
− h ln[(f0+γ)/γ]

f2
0

⇒ 1
2f0 + h

f0+γ
= h ln[(f0+γ)/γ]

f2
0

⇒ f0 + h
f0+γ

= U(f0) = τ∗.

Now consider for f > 0, the following function

f + h
f+γ = [(f + γ) + h

f+γ ]− γ
=
√
h
[
f+γ√
h

+
√
h

f+γ

]
− γ

≥ 2
√
h− γ = τe,

since the term in square brackets has the form x + 1
x and

is minimized at x = 1 with minimum = 2. Then we get
equality iff f + γ =

√
h and the result follows.

Remark. U(f) is convex on f > 0, so we can effectively
find τ∗ = U(f0) by numerically finding the solution f0 to

U ′(f0) =
1

2
+

h

γ2

f0/γ
f0/γ+1 − ln(f0/γ + 1)

(f0/γ)2
= 0.

V. Log-cyclic descent (log-CD)

Using the results derived in Section IV, we can now
develop a cyclic descent algorithm, which we call log-CD
for solving log-LS problem in (8). We state it in Algorithm
I.

We can thus state the complete algorithm for sparse
Hawkes intensity estimation by the log-CD method, taking
into account the optimization for the nonlinear parameter βm.
We select βm, together with the log-penalty parameter hm,
by a BIC criterion. This is summarized in Algorithm II.

Algorithm I. Cyclic descent for log-LS (log-CD).
To optimize Jm(αm) in (8), with current iterate αkm =

[αkml,j ]l=1,··· ,M,j=1,··· ,P , we update αk+1
m as followings:

1) Start with an element αkml,j in αkm.

2) Calculate zkml,j = vml,j −
∑
j′ 6=j,l′ 6=lα

k
ml′,j′G

(l′,j′)
m,(l,j).

3) Solve the scalar log-LS Js(αk+1
ml,j ; z

k
ml,j) to get αk+1

ml,j =

Ψ(zkml,j) defined in (13), with the threshold τ∗ defined
in (14).

4) Replace αkml,j with αk+1
ml,j in αkm.

5) If all elements in αkm are not exhausted, go to 2).
6) If the terminating condition is met, take the estimate

α̂m = αk+1
m and terminate. If not, let k ← k + 1 and

go to 1).

Remarks.
(a) Step 4) is essential to the convergence of log-CD.
(b) The terminating condition can be the relative

decrement in Jm falling below a tiny number:
Jm(αkm)−J(αk+1

m )
|J(αkm)| < ε.

(c) Algorithm I can be easily amended to solve the general
log-LS minα

1
2‖y −Xα‖

2
2 + h

∑
iπ(αi).

(d) Convergence analysis is a challenging issue which we
hope to treat elsewhere.

Note that for now we have assumed βm known. We now
treat the nonlinear parameter βm and also find the optimal
tuning parameter hm by combining the above log-CD with
BIC method. We summarize the full algorithm as follows.

Algorithm II. log-CD + BIC algorithm.
The sparse Hawkes-Laguerre intensity can be estimated by

separately optimizing each Jm. For each m, do the following:
1) Choose a proper grid of possible values of

β1
m, · · · , βKbm , and h1m, · · · , hKhm .

2) For each βpm, calculate the corresponding G(l′,j′)
m,(l,j) and

vml,j .
3) Repeat on each pair of (βpm, h

q
m), the log-LS optimiza-

tion and solve log-LS in (8) by Algorithm I
4) Calculate α̂m by (9) and ĉm by (10).
5) Calculate the corresponding BIC: [28] BIC(p,q)

m =

−2L(p,q)
m +d lnNm,T , where d = no. of active param-

eters = 2+ no. of non-zero αml,j’s and the likelihood
[29], [25]

L(p,q)
m , Lm(α̂m, ĉm|βpm, hqm)

=
∑Nm,T
r=1 ln(ĉm + α̂>mχm(Tm,r))− ĉmT − α̂>mbm(T ),

bm(T ) = [ bm1,1(T ) ··· bm1,P (T ) bm2,1(T ) ··· bmM,P (T ) ].
6) Find the pair (βpm, h

q
m) that has the smallest BIC

and find the corresponding estimates α̂m, ĉm and
β̂m = βpm.

Remarks.
(a) The rule-of-thumb value for hm is h0 =

√
2 ln(MP ).

(b) G
(l′,j′)
m,(l,j) and vml,j are pre-calculated for each βpm.

Some recursive calculation details can be found in [28].
(c) Only with Hawkes-Laguerre model is it possible to

reduce the nonlinear parameter estimation (of βm)
to a simple grid search. Other models may require
estimating up to MP nonlinear parameters.

VI. Simulations
Here we run simulations to compare log sparsity penaliza-

tion with `0 and `1 penalties on Hawkes-Laguerre intensity
estimation and reveal a number of interesting features.

We simulate P = 3-rd order multivariate Hawkes-
Laguerre point processes with M = 3 nodes. We use the
following node background rates and time constants[

c1 c2 c3
]

=
[
0.2 0.5 1

][ 1
β1

1
β2

1
β3

]
=
[
0.2 0.33 0.1

]
.

We set sparse memory regressor weights at

α̃23 = α̃31 = α̃33 = 0,

where α̃ml ,
∑P
j=1αml,j . The active weights are chosen

such that [
α̃11 α̃12 α̃13 α̃21 α̃22 α̃32

]
=
[
0.5 0.7 0.2 0.4 0.35 0.2

]
.
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Fig. 1. Quantiles of estimated weights against T . Blue: log, orange: `0,
purple: `1, black: true. Thick solid lines: median, thin dotted lines: upper
and lower 25% quantiles. Red boxes: active weights.

Five observation times T := 20, 100, 180, 260, 340 are
considered. We use the thinning algorithm [30], [31] to
simulate n = 200 point processes for each T .

To find the optimal 1
βm

and hm, we vary Kb = 15

time constants 1
βm

in [0.067, 1] and Kh = 15 hm’s in
[0.1, 1]h0, h0 =

√
2 ln(MP ). We fix γ = 5× 10−4.

We compare (1) the log-sparsity penalty with two other
penalties: (2) `0, (3) `1. In each case, the same penalty
parameter grid is used and optimization is by cyclic descent.
All terminating conditions are set to Jm(αkm)−J(αk+1

m )
|J(αkm)| <

ε, ε = 10−5.
One would also like to compare with results based on

using the Euler threshold. But it fails catastrophically. 23.3%
of the runs using Euler thresholding terminated because the
criterion increased!

Now we discuss the results from the above three penalties.

A. Memory regressor weights

We first show the estimated memory regressor weights
α̂ml,j . It is impossible to plot all PM2 αml,j’s, so we plot
their sums α̃ml. We plot separately in two figures.

In Fig. 1, we plot the quantiles of weight estimates that
are estimated active, i.e. for α̃ml 6= 0. The thick solid lines
are the medians of each method, taken from the n = 200
repeats at each T . The colored areas between the thin dotted
lines indicate the 25% − 75% quantiles. The back dashed
horizontal lines are the true values. The red box frames
indicate truly active weights and the others are inactive ones.

Fig. 2. Percentage of nonzero α̃ml’s against T . Blue: log, orange: `0,
purple: `1, black: true. Red boxes: active weights.

Fig. 3. Quantiles of estimated ĉm against T . Blue: log, orange: `0, purple:
`1, black: true. Median: thick solid lines, upper and lower 25% quantiles:
thin dotted lines.

In Fig. 2, we plot the percentage of weight estimates that
are eliminated by sparsity penalty. i.e. %{α̃ml = 0}. The
true value for active weights is 100% and that of inactive
ones is 0%, indicated by black dashed line.

We have the following mixed performance observations:
(a) It seems that the log-sparsity is the most severe sparsity

penalty. In Fig. 2, for inactive weights (plots without
the red box), log-sparsity gives the best sparsity fol-
lowed by `0 and then `1, confirming that log penalty
provides better sparsity than `1. In Fig. 1, log-sparsity
estimates are larger, (e.g. α̃31, α̃13, α̃23, α̃33). It means
that the log-sparsity tends to eliminate small estimates
better than other penalties.

(b) The log-sparsity penalty tends to eliminate some small
valued active weights, e.g. for α̃13 in Fig. 2.

(c) For the statistics of nonzero estimates, all three meth-
ods perform similarly. It seems that the statistics of
nonzero estimates are not heavily affected by each
penalty term.
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Fig. 4. Means of estimated β̂m against T . Blue: log, orange: `0, purple:
`1, black: true.

B. Background rates and time constants

The quantiles of estimated ĉm and the mean values of
estimated β̂m are plotted in Fig. 3 and Fig. 4, respectively.
We plot mean values of β̂m instead of medians because they
are estimated by grid search.

All 3 methods perform similarly in ĉ1 and ĉ2. But for
ĉ3, `1 has larger estimate of ĉ3 because it fails to eliminate
inactive memory regressors as shown in Fig. 2.

Log-sparsity estimates β̂1 best. `1 estimates β̂2 best. `0
and log-sparsity equally estimate β̂3 best.

C. Computational times and negative estimates

We now compare some other performance aspects. First,
the average computational times per 100 repeats are: Log-
CD: 0.92s + 3.13s, `0: 1.71s, `1: 1.99s. Additional 3.13s
per 100 repeats for log-CD is used to solve the threshold
τ∗ in (14), which does not increase with model order P or
observation time T .

Second, we compare the percentage of negative estimates
as they need to be positive. For log-CD and `1, all BIC
selected estimates are positive. However, for `0, increasing
number of negative estimates are found as T grows. We
detect 0.39% negative α̂ml,j’s when T = 20 but the number
increased to 5.7% when T = 340.

VII. Conclusions

In this paper, we develop a new continuous-time log-
sparsity penalized least squares criterion (log-LS) for
Hawkes-Laguerre intensity estimation.

We discover, for the first time, the correct globally mini-
mizing threshold for the general log-LS problem, correcting
a major flaw in previous work.

We developed a cyclic descent algorithm for the log-LS
problem, which we call log-CD. We selected simultaneously
the optimal nonlinear time constant parameters and the
penalty weights with BIC. This tuning parameter selection
problem is poorly treated or ignored in other literature.

We found interesting features in the comparative simula-
tions. Firstly the erroneous Euler threshold led to complete
failure to converge in about 25% of cases. Secondly, the `0
sparsity penalty produced an increasing number of negative
coefficients as the observation period increased. Log-sparsity
did not have this problem. As expected, the `1 penalty led
to less sparsity than the log-penalty. Together these results
suggest the log-sparsity penalty should enjoy wider use.

In the future, we will tackle likelihood approaches.
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