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Abstract— We investigate the impact of undesired Markovian
couplings to external systems on the stabilization towards pure
states or subspaces of continuously monitored quantum systems
under open-loop and feedback control protocols. In particular,
we provide sufficient conditions on perturbations to maintain
stability of the target and demonstrate the boundedness in mean
of the solutions of perturbed systems under open-loop protocols.
Effect on the stability of feedback protocols is also analyzed.
This work is a step toward a comprehensive robustness analysis
of measurement-based control of quantum systems with respect
to model perturbations.

I. INTRODUCTION

Accurate engineering of quantum processes has become a
critical step towards realistic applications of quantum infor-
mation, quantum computation, and quantum chemistry [1].
Measurement-based feedback control methods have garnered
significant attention due to their ability to stabilize quantum
systems towards a target pure state or subspace. In this
framework, a continuously-monitored open quantum system
is described by a Quantum Stochastic Master Equation
(QSME) [2]–[4], and the control is associated with a (possi-
bly time-dependent) Hamiltonian perturbation or dissipative
dynamics [5]–[7].

Despite the growing number of methods for nominal
control design, the robustness of stability for QSME remains
a critical problem for practice. In recent years, several papers
have investigated robust stability and stabilization problems
with, e.g., uncertain model operators [8], [9] and control
input errors [10] based on robust control techniques. In [11],
[12] and related papers, robustness of the filter with respect to
initialization has been explored. Moreover, recent works [13],
[14] proposed an explicit feedback controller that attains sta-
bilization when the initial state and certain model parameters
are unknown. However, these robust control schemes assume
perturbations with particular structures that leave the target
equilibrium point or subspace invariant. As realistic modeling
errors may change or destabilize equilibria completely, a
deeper analysis of the impact of more general, undesired
modeling errors is needed.

In this work, we study the robustness of QSME stability
with respect to undesired Markovian couplings to an exter-
nal environment, based on stochastic Lyapunov techniques.
Markovian couplings are a standard way to model the effect
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of the environment in open quantum systems [1]. This setting
can include input fluctuations and small thermal effects
that are often ignored in the control design. A detailed
comparison with the literature and the application of similar
techniques to general model perturbation will be included in
a forthcoming journal version of this work [15]. The paper is
organized as follows: In Section II, we introduce the systems
of interest, the stability notions and the problems we address.
In Section III, we analyze the effects of undesired Markovian
couplings on the stability of quantum systems under open-
loop protocols. In Section IV, we investigate the stability
of perturbed quantum systems under feedback protocols.
In Section V, we summarize our findings and discuss the
implications of our work for future research.

II. QSMES AND THEIR STABILITY

A. Notations and Models

The imaginary unit is denoted by i. For any finite positive
integer n, denote [n] := {1, . . . , n}. We denote B(H) the set
of all linear operators on a finite-dimensional Hilbert space
H. Define B∗(H) := {X ∈ B(H)|X = X∗}, B≥0(H) :=
{X ∈ B(H)|X ≥ 0} and B>0(H) := {X ∈ B(H)|X > 0}.
We take I as the identity operator on H, and take 1 as the
indicator function. We denote the adjoint A ∈ B(H) by A∗.
The commutator of two operators A,B ∈ B(H) is denoted
by [A,B] := AB − BA. We denote λ̄(A) and λ(A) the
maximum and minimum eigenvalue of the Hermitian matrix
A, respectively. The function Tr(A) corresponds to the trace
of A ∈ B(H). The Hilbert-Schmidt norm of A ∈ B(H) is
denoted by ∥A∥ := Tr(AA∗)1/2. Denote K as the family
of all continuous non-decreasing functions µ : R≥0 → R≥0

such that µ(0) = 0 and µ(r) > 0 for all r > 0. Denote
a ∧ b = min{a, b} for any a, b ∈ R.

We consider quantum systems described on a finite-
dimensional Hilbert space H. The state of the system is
associated to a density matrix on H,

S(H) := {ρ ∈ B(H)| ρ = ρ∗ ≥ 0,Tr(ρ) = 1}.

Assume the system is monitored continuously via n homo-
dyne/heterodyne detectors, which yield a diffusion observa-
tion process. In the quantum filtering regime [2], [3], [11], the
measurements record of k-th probe Yk(t) can be described
by a continuous semimartingale with quadratic variation
⟨Yk(t), Yk(t)⟩ = t. Denote the filtration generated by the
observations up to time t by FY

t := σ(Y (s), 0 ≤ s ≤ t)
where Y (t) = (Yk(t))k∈[n]. Its dynamics satisfies dYk(t) =
dWk(t) +

√
ηkTr((Lk + L∗

k)ρt)dt, where the innovation
process Wk(t) is a one-dimensional Wiener process and
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⟨Wk(t),Wl(t)⟩ = δk,lt for k, l ∈ [n], and satisfies FY
t =

Ft := σ{Ws : 0 ≤ s ≤ t} where W (t) = (Wk(t))k∈[n],
ηk ∈ (0, 1] describes the efficiency of the k-th detector, and
Lk ∈ B(H) is the noise operator induced by interactions
with the probe. The evolution of the quantum state can be
described by the following QSME,

dρt = Lu(ρt)dt+
∑n

k=1

√
ηkGk(ρt)dWk(t), (1)

with ρ0 ∈ S(H), where Gk(ρ) := Lkρ + ρL∗
k − Tr((Lk +

L∗
k)ρ)ρ, and Lu(ρ) := −i[H0 + utH1, ρ] +

∑n
k=1 DLk

(ρ)
with DA(ρ) := AρA∗ − A∗Aρ/2 − ρA∗A/2 where H0 ∈
B∗(H) is the free Hamiltonian, H1 ∈ B∗(H) is the control
Hamiltonian corresponding to the action of external forces
on the quantum system and ut ∈ R represents a control input
which is a bounded process adapted to FY

t .
Suppose the dynamics is perturbed by Markovian cou-

plings to external systems: the corresponding dynamics can
be described by a sum of finite Lindblad generators Fα(ρ) :=
α
∑m

k=1 DCk
(ρ) where Ck ∈ B(H) are noise operators

related. We assume that
∑

k ∥Ck∥ ≤ 1 and the whole
perturbation intensity is modulated through a real parameter
α ≥ 0. In this case, the dynamics of perturbed quantum
system can be described by the following QSME,

dσt = (Lu(σt) + Fα(σt))dt

+
∑n

k=1

√
ηkGk(σt)dWk(t), σ0 ∈ S(H). (2)

The existence and uniqueness of the solution of (1) and (2),
the strong Markov property of the solutions and the almost
sure invariance of S(H) for the solution can be proved by
combining the arguments in [4, Theorem 3.4, Proposition
3.10] and [5, Section 3].

B. Stability notions

Let HS ⊂ H be the target subspace. Denote by Π0 /∈
{0, I} the orthogonal projection on HS ⊂ H. Define the set
of density matrices

I(HS) := {ρ ∈ S(H)|Tr(Π0ρ) = 1},

namely those whose support is contained in HS .
Definition 2.1: For the system (1), the subspace HS is

called invariant almost surely if ρ0 ∈ I(HS), ρt ∈ I(HS)
for all t > 0 almost surely.

Based on the stochastic stability defined in [16], [17] and
the definition used in [18], [19], we phrase the following
definition on the stochastic stability of the invariant subspace.

Definition 2.2: Let HS ⊂ H be the invariant subspace for
the system (1), and denote Π0 the orthogonal projection on
HS and d0(ρ) := ∥ρ−Π0ρΠ0∥, then HS is said to be

1) globally exponentially stable (GES) in mean, if there
exist a pair of positive constants λ and c such that

E
(
d0(ρt)

)
≤ cd0(ρ0)e

−λt, ∀ρ0 ∈ S(H).

2) stable in probability, if for every ε ∈ (0, 1) and for
every r > 0, there exists δ = δ(ε, r) > 0 such that,

P
(
d0(ρt) < r for t ≥ 0

)
≥ 1− ε,

whenever d0(ρ0) < δ.
3) globally exponentially stable (GES) almost surely, if

lim sup
t→∞

1

t
log

(
d0(ρt)

)
< 0, ∀ρ0 ∈ S(H), a.s.

The left-hand side of the above inequality is called the
sample Lyapunov exponent.

Based on the nature of the control input ut, there are
two types of control protocols for the stabilization of the
system (1): 1) if ut is a real bounded deterministic process
depending on t, this protocol is called open-loop stabi-
lization [6], [19]. 2) if ut is a real bounded stochastic
process adapted to FY

t , this protocol is called feedback
stabilization [5], [13].

In this paper, we suppose the target subspace HS ⊂ H is
GES almost surely with respect to the nominal system (1),
we will analyze the effect of the perturbation, i.e., noisy
Lindbladians, on the stability of the nominal system under
open-loop and feedback protocols respectively.

C. Conditions for robust invariance

Let H = HS ⊕HR and X ∈ B(H), the matrix represen-
tation in an appropriately chosen basis can be written as

X =

[
XS XP

XQ XR

]
,

where XS , XR, XP and XQ are matrices representing opera-
tors from HS to HS , from HR to HR, from HR to HS , from
HS to HR, respectively. We denote by ΠR the orthogonal
projection on HR ⊂ H. In [18], Ticozzi and Viola showed
that the invariance of the subspace enforces a given structure
for the associated semi-group generator. It is possible to
prove that if HS is invariant for the nominal dynamics
(1), the following assumption A on noisy Lindbladians are
satisfied, then HS is also invariant almost surely with respect
to the perturbed system (2) with arbitrary α,
A: ∀k ∈ [m], Ck,Q = 0 and

∑
k C

∗
k,SCk,P = 0.

III. ROBUSTNESS OF OPEN-LOOP STABILIZATION

In this section, we suppose that ut ≡ u where u is a real
constant and HS is GES a.s. with respect to the nominal
system (1). We define the following map,

LR,α(ρR) := −i[HR, ρR]+
∑

k DLk
(ρR)+α

∑
k DCk

(ρR),

where HR := H0,R + uH1,R, DA(ρR) := ARρRA
∗
R −

1
2{A

∗
PAP +A∗

RAR, ρR}, and ρR ∈ B≥0(HR). For R-block
of any Lindblad generator, we denote L∗

R,α the adjoint of
LR,α with respect to the Hilbert-Schmidt inner product on
B(HR). We recall the following results [19] concerning on
the spectral property of L∗

R,α and the relation with the GES
in mean with respect to the Lindblad generator. Denote by λα

the spectral abscissa of LR,α, i.e., λα := min{−Re(x)|x ∈
sp(LR,α)}.

A. Effect of Perturbations that preserve target invariance

Firstly, we consider the case where HS is invariant for the
perturbed system (2). Then, we obtain the following results
by using similar arguments as in [19, Section 2].
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Proposition 3.1: Suppose that HS is invariant for Lu(σ)+
Fα(σ). For any α ≥ 0 and ε > 0, there exists KR ∈
B>0(HR) such that L∗

R,α(KR) ≤ −(λα − ε)KR. Moreover,
HS is GES a.s. for the perturbed system (2) iff λα > 0.
The above proposition requires the full information of the
noisy Lindbladian to ensure the GES of target subspace. In
the following, we consider the case where HS is GES a.s.
for the nominal system (1), that is λ0 > 0 by Proposition 3.1.
Based on KR and the convergence rate c > 0, we show that
the target subspace maintains GES when the perturbation is
small enough.

Corollary 3.2: Suppose that λ0 > 0. Then, there exist
KR ∈ B>0(HR) and c > 0 such that L∗

R,0(KR) < −cKR.
Moreover, if A is satisfied and 2α∥KR∥/λ(KR) < c, then
HS is GES a.s. for the perturbed system (2).
Proof. The first part can be obtained directly by applying
Proposition 3.1. For any α ≥ 0, we have

L∗
R,α(KR) = L∗

R,0(KR) + α
∑

k D
∗
Ck

(KR)

≤ −cKR + α
∑

k D
∗
Ck

(KR).

Since KR > 0, for any k ∈ [m], we have

D∗
Ck

(KR) ≤
λ̄
(
D∗

Ck
(KR)

)
λ(KR)

KR ≤
∥D∗

Ck
(KR)∥

λ(KR)
KR.

By the definition of D∗
Ck

and the norm inequality,

∥D∗
Ck

(KR)∥ ≤ (2∥Ck,R∥2 + ∥Ck,P ∥2)∥KR∥
≤ 2∥Ck∥2∥KR∥. (3)

It implies,∑
k D

∗
Ck

(KR) ≤
2
∑

k ∥Ck∥2∥KR∥
λ(KR) KR ≤ 2∥KR∥

λ(KR)KR,

where we used the assumption
∑

k ∥Ck∥ ≤ 1. Therefore, we
deduce,

L∗
R,α(KR) ≤ −

(
c− 2α∥KR∥/λ(KR)

)
KR.

The results can be concluded by applying the similar argu-
ments as in [19, Section 2]. □

Remark 3.3: Consider the nominal system (1) where HS

is GES a.s., and A is satisfied. By utilizing the Dissipation-
Induced Decomposition technique [20], we can establish that
in fact HS remains GES a.s. for the perturbed system (2)
for all values of α. Furthermore, we can find a KR for the
perturbed system. Since the proof of this result falls beyond
the scope of this paper, we omit it; see [15] for further details.

B. Effect of general Perturbations
Next, we consider the general case, the noisy Lindbladians

are supposed to be unknown. In this case, GES should not
be expected since HS may not be invariant for the perturbed
system. Instead, we study the boundedness of E[d0(σ(t))].

Proposition 3.4: Suppose that λ0 > 0. Then, there exist
KR ∈ B>0(HR) and c > 0 such that L∗

R,0(KR) < −cKR.
Moreover, for the perturbed system (2) and for all t ≥ 0,

E[d0(σ(t))] ≤ c1e
−ct/2 +

√
αD, (4)

for some constant c1 > 0, where D := 2∥KR∥
3λ(KR)c , and

P
(
d0(σ(t)) < δ(c1e

−ct/2+
√
αD)

)
≥ 1−1/δ, ∀δ ≥ 1. (5)

Proof. Denote the extension of KR to B(H) by K =
[
0 0
0 KR

]
.

Then Tr(Kσ) = Tr(KRσR). Due to the linearity, we have

LTr(Kσ) = Tr(L∗
R,α(KR)σR)

≤ −cTr(Kσ) + 2α∥KR∥,
where L is related to the equation (2), and for the second
inequality, we used the Cauchy–Schwarz inequality, the
relation ∥σR∥ ≤ ∥σ∥ ≤ 1 and (3) with the assumption∑

k ∥Ck∥ ≤ 1. By applying the Itô’s formula and then taking
the expectation, we get d

dte
ctE(Tr(Kσt)) ≤ αDect, which

implies

E(Tr(Kσt)) ≤ e−ct
(
Tr(Kσ0)− αD/c

)
+ αD/c.

In addition to the inequalities d0(σ)
2 ≤ 3Tr(ΠRσ) ≤

3
λ(KR)Tr(Kσ) (see [21, Lemma 6] for the proof) where√
x+ y ≤

√
x +

√
y for all x, y ≥ 0, the equation (4) can

be obtained. Moreover, for any δ ≥ 1, we have

E[d0(σt)1{d0(σt)≥δ(c1e−ct/2+
√
αD)}]

≥δ(c1e
−ct/2 +

√
αD)P

(
d0(σt) ≥ δ(c1e

−ct/2 +
√
αD)

)
,

together with the inequality (4), the equation (5) can be
concluded. □

Remark 3.5: The property (4) ensures that the solution
of the perturbed system (2) is bounded in mean, moreover,
when the perturbation vanishes, i.e., α = 0, the system (2)
is GES in mean, then by following the similar arguments as
in [19], we can show that it is also GES a.s. The property (5)
is referred to as the stochastic noise-to-state stability [22],
[23]. In our case stability is also exponential.

IV. ROBUSTNESS OF FEEDBACK STABILIZATION

In this section, we consider the case where the initial
state ρ0 and the measurement efficiency ηk of the nominal
system (1) are unknown, following the treatments in [14],
we construct an estimator ρ̂t using

dρ̂t =Lu(ρ̂t)dt+
∑n

k=1

√
η̂kGk(ρ̂t)

(
dWk(t)

+ Tk
(
ρt, ρ̂t

)
dt
)
, ρ̂0 ∈ S(H) (6)

where Tk(ρ, ρ̂) :=
√
ηkTr((Lk + L∗

k)ρ) −
√
η̂kTr((Lk +

L∗
k)ρ̂). The control input is a function of the estimator,

i.e., ut = u(ρ̂t), and suppose u ∈ C1(S(H),R) to ensure
the existence and uniqueness of the solution of the cou-
pled system (1)–(6) (see [5, Proposition 3.5]) and the a.s.
invariance of S(H)×S(H) for (1)–(6). Now, let us consider
the system perturbed by noisy Lindbldadians Fα(σ). For the
perturbed system (2), the noisy Lindbldadians are usually
unknown, and sometimes we have only partial information
about them. Thus, under feedback protocols, it is natural to
continue using (6) to estimate the trajectories of the perturbed
system (2).

Under open-loop protocols, the Lindblad generator Lu(ρ)
dominates the stabilization process and the converse (linear)
Lyapunov theorem for the nominal system (1) is proved
in [19, Theorem 1.2]. However, under feedback protocols, it
is very challenging to construct a global Lyapunov function.
Thus, we cannot follow the treatments in Section III to
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characterize the behavior of the perturbed system. Instead,
we investigate the dependence of the trajectories on the per-
turbation magnitude α and the effect of noisy Lindbladians
on the stability.

In the following proposition, we bound the trajectories
distance as a function of α. Let (ρt, ρ̂t) and (σt, σ̂t) be the
solutions of nominal coupled system (1)–(6) and perturbed
coupled system (2)–(6) with (ρ0, ρ̂0) = (σ0, σ̂0). It specifies
the power rate of convergence, and the rate of getting to
infinity of the lengths of the time interval. Both rates depend
on the perturbation magnitude α. Denote ∆α

t := ρt − σt,
∆̂α

t := ρ̂t − σ̂t and Uα
t := E(∥∆α

t ∥2 + ∥∆̂α
t ∥2).

Proposition 4.1: There exist two constants A,B > 0 such
that for all t ≥ 0,

√
Uα
t ≤ αA(eBt − 1). Moreover, for any

γ ∈ (0, 1) and α > 0, Uα
t ≤ α2γ for all t ∈ [0, 1

B log(1 +
1

Aα1−γ )].
The proof is provided in Appendix.

Corollary 4.2: Suppose that (HS ,HS) is GES a.s. for the
nominal coupled system (1)–(6) with the sample Lyapunov
exponent less than or equal to −λ. Then, for any initial state
(ρ0, ρ̂0), there exists a finite constant c > 0 such that, for
any γ ∈ (0, 1) and α > 0, for all t ∈ [0, 1

B log(1 + 1
Aα1−γ )]

E(d0(σt)
2) ≤ c1

(
αγ + ce−λt

)
,

for some constant c1 > 0.
Proof. Due to the a.s. GES of (HS ,HS), for all initial
state, there exists a finite random variable R(ω) > 0 such
that d0(ρt) ≤ R(ω)e−λt a.s. Together with the inequalities
Tr(ΠRσ)

2/N ≤ d0(σ)
2 ≤ 3Tr(ΠRσ) with N = dim(H),

by applying Proposition 4.1, we have the following estima-
tion, for any γ ∈ (0, 1), for all t ∈ [0, 1

B log(1 + 1
Aα1−γ )],

E(d0(σt)
2) ≤ 3E(Tr(ΠRσt))

≤ 3E
(
|Tr(ΠRσt)− Tr(ΠRρt)|+Tr(ΠRρt)

)
≤ c1

(
αγ + E(R)e−λt

)
,

where we used the Lipschitz arguments |Tr(ΠRρ) −
Tr(ΠRσ)| ≤ c1∥∆∥ for some constant c1 > 0. □

A. Impact of perturbations on stability in probability

In the following, we first present a Lyapunov-based ap-
proach for analyzing stochastic systems, which allows us
to investigate how perturbations affect the stability of the
system in probability. Specifically, we consider a classical
SDE and introduce a perturbation in the drift term by adding
αfdis(q), where α ≥ 0,

dqt = f(qt)dt+ αfdis(qt)dt+ g(qt)dWt. (7)

Assume fdis is appropriately defined functions so that
{qt}t≥0 becomes a unique strong solution. Let S̄ ⊂ Q be
a target subset of a control problem. Define τr := inf{t ≥
0|V (qt) = r} with r ≥ 0. Moreover, we make the following
assumption:
H: there exists V ∈ C2(Q,R≥0) such that V (q) = 0 iff q ∈ S̄
and a function µ ∈ K such that, L V (q) ≤ −µ(V (q))+αD
for all q ∈ Sc := {q ∈ Q \ S̄|V (q) < c} for some c,D > 0,
where L is related to (7).

The following lemma shows how the unknown α and fdis
deteriorate the stability.

Lemma 4.3: Assume that H is satisfied. For any ε ∈ (0, 1)
and r ∈ (0, c), there exists δ = δ(ε, r) ∈ (0, r) such that for
all q0 ∈ Sδ ,

P(V (qt) < r, ∀t ≥ 0) ≥ 1− ε− αDE(τr)/r. (8)

Moreover, the stability in probability is restored when α
tends to zero.
Proof. The proof basically follows the arguments of [17,
Theorem 4.2.2]. For any ε ∈ (0, 1) and r ∈ (0, c), we can
find δ = δ(ε, r) > 0 such that supq∈Sδ

V (q) < εr. Then,
Itô’s formula gives

E[V (qτr∧t)] ≤ V (q0)− E
∫ τr∧t

0

µ(V (qs))ds+ αDE(τr ∧ t).

Using non-negativity of V and the definition of µ,
E[V (qτr∧t)] ≥ E[1{τr≤t}V (qτr )] ≥ P(τr ≤ t)r . Since
supq0∈Sδ

V (q0) < εr and r > 0, P(τr ≤ t) ≤ ε+αDE(τr∧
t)/r. By monotone convergence theorem, P(τr < ∞) ≤
ε+ αDE(τr)/r.

Then, for the inequality (IV-A), let α tend to zero, we have
P(τr ≤ t) ≤ ε, which implies that S̄ is stable in probability
by letting t → ∞. □

Next, by using the above lemma, we investigate how noisy
Lindbladians affect the stability of the nominal system (1)–
(6) in probability.

Proposition 4.4: Suppose that there exist a function V ∈
C2(S(H) × S(H),R), a constant l > 0 and µ ∈ K such
that LV ≤ −µ(V) whenever V < l, where L relates to the
nominal system (1)–(6). Then, for the perturbed system (2)–
(6), for all ε > 0, there exist δ ∈ (0, r) and c > 0 such
that

P
(
V(σt, σ̂t) < l, ∀t ≥ 0

)
≥ 1− ε− αcE(τl)/l

whenever V(σ0, σ̂0) < δ, where τl denotes the first exiting
time of (σt, σ̂t) from {V < l}. Moreover, the stability in
probability is restored when α tends to zero.
Proof. Due to the continuity of ∂V/∂σ and the compactness
of S(H), there exists a constant D > 0 such that L̄V ≤
−µ(V) +αD where L̄ relates to (2)–(6). The result can be
concluded by applying Lemma 4.3. □

B. N-level spin systems

In the following, we consider a concrete scenario of N -
level spin systems undergoing non-demolition homodyne
detection [13]. In this situation, some further analysis on the
effect of invariance-preserving perturbation can be carried
out adapting existing Lyapunov-based methods. Let Φ :=
{e1, . . . , eN} correspond to an orthonormal basis of H,
assume the target subspace HS ∈ {ae1, beN} for some non-
zero a, b ∈ C, i.e., dim(HS) = 1 and we are seeking
the stabilization toward a target pure state Π0 ∈ Γ :=
{e1e∗1, eNe∗N}. Set H0 = ωJz with ω > 0, H1 = Jy , n = 1
and L =

√
γJz with γ > 0. Jz and Jy are the angular

momentum operators along z-axis and y-axis respectively,
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the matrix form with respect to Φ are given by

Jz = diag[J, . . . ,−J ], Jy =


0 −ic1
ic1 0 −ic2

. . . . . . . . .
ic2J−1 0 −ic2J

ic2J 0

 ,

where J := (N − 1)/2 represents the fixed angular momen-
tum and cm =

√
(N −m)m/2.

We impose the following assumptions on feedback con-
troller and parameters:
A1: u ∈ C1(S(H),R) such that u(σ̂) ̸= 0 for all σ̂ ∈
{e1e∗1, . . . , eNe∗N} \ Π0 and u(σ̂) = 0 whenever d0(σ̂) < r
for some r > 0.
A2: 2N−2

2N−1 <
√

η̂
η < 1

2 + 1
2

√
N+1
N−1 .

Suppose that A1 and A2 are satisfied. [13, Theorem 4.14]
shows that, for the nominal system (1)–(6) with (ρ0, ρ̂0) ∈
S(H)× int(S(H)) where int(S(H)) := {ρ ∈ S(H)| ρ > 0},
(HS ,HS) is GES a.s. with the sample Lyapunov exponent
less than or equal to c̄ := −(η ∧ η̂ + (N − 1)

√
η̂|√η −√

η̂|)γ. Then, Corollary 4.2 can provide an estimation of
the trajectories of perturbed spin systems under feedback
protocols.

Next, we consider the case where HS is invariant for the
noisy Lindbladians. By following the similar arguments as
in [13], the a.s. GES of target subspace is robust with respect
to noisy Lindbldadians if A holds.

Proposition 4.5: Suppose that A, A1 and A2 are satisfied.
Then, for all (σ0, σ̂0) ∈ S(H) × int(S(H)), (HS ,HS) is
GES a.s. for the perturbed coupled system (2)–(6) and the
sample Lyapunov exponent is less than or equal to c̄.

Compared with Proposition 3.1, under feedback protocols,
the back-action of the non-demolition measurements, i.e.,
the diffusion term of (1), plays an important role in the
stabilization in Proposition 4.5. It ensures the recurrence
property of the trajectories related to any neighbourhood
of the target subspace and (local) stability in probability
(see [13], [15], [24] for more discussion). In the following,
we examine how the perturbations deteriorate the stability in
probability. Define V(σ, σ̂) := Tr(σΠR) +

√
Tr(σ̂ΠR) and

denote by τl the first exiting time of (σt, σ̂t) from {V < l}.

Proposition 4.6: Suppose that A1 and A2 are satisfied.
For all ε > 0, there exist δ ∈ (0, r) and l > 0 such that

P
(
V(σt, σ̂t) < l, ∀t ≥ 0

)
≥ 1− ε− α2(N − 1)E(τl)/l

whenever V(σ0, σ̂0) < δ and σ̂0 ∈ int(S(H)). Moreover, the
stability in probability is restored when α tends to zero.

Proof. By a straightforward calculation, we have

L̄V(σ, σ̂) ≤ Tr(ΠRFα(σ))− C(σ, ρ̂)
√

Tr(σ̂ΠR),

C(σ, ρ̂) = η̂Tr(σ̂ΠR)
2/2− 2

√
η̂Tr(σ̂ΠR)|T (σ, σ̂)|.

Moreover, we have

lim inf
(σ,σ̂)→I(HS)×I(HS)

C(σ, ρ̂) ≥ c > 0

where c := (η̂/2− 2J
√
η̂
∣∣√η −

√
η̂
∣∣)γ and the positivity is

guaranteed by A2. Due to the continuity, there exist constants

l > 0 and µ ∈ K such that

L̄V ≤ −µ(V) + α
∑

k ∥D∗
Ck

(ΠR)∥
≤ −µ(V) + 2α(N − 1), whenever V < l,

where we used the fact ∥ΠR∥ = N − 1 and
∑

k ∥Ck∥ ≤ 1.
Note that, V is not C2 due to the square root, however, by
using the similar arguments as in [24, Lemma 4.3], we can
show that for all σ̂0 ∈ int(S(H)), P(σ̂t ∈ int(S(H)), ∀t ≥
0) = 1. Then, the result can be concluded by applying the
similar arguments as in the proof of Lemma 4.3. □

V. CONCLUSION

In this paper, we have investigated the effects of undesired
Markovian couplings on the stability of open quantum sys-
tems, both under open-loop and feedback protocols. We have
provided sufficient conditions on perturbations to maintain
stability of the target and demonstrated the boundedness in
mean of the solutions of perturbed systems under open-loop
protocols. Additionally, we have analyzed the dependence
of the solution of feedback SME on the perturbation and
investigated how the the latter deteriorates the stability in
probability. Our findings provide a solid foundation for a
more comprehensive study of robust stabilization of QSME,
which is essential for practical applications of quantum
control. Further research efforts focus on characterizing the
behavior of perturbed systems under feedback protocols
and considering more general and realistic perturbations to
expand the applicability of our findings.

APPENDIX

A. Itô’s formula

Given a stochastic differential equation dqt = f(qt)dt +
g(qt)dWt, where qt takes values in Q ⊂ Rp, the related
infinitesimal generator is the operator L acting on twice
continuously differentiable functions V : Q × R+ → R as
below

L V (q, t) :=∂V (q,t)
∂t +

∑p
i=1

∂V (q,t)
∂qi

fi(q)

+ 1
2

∑p
i,j=1

∂2V (q,t)
∂qi∂qj

gi(q)gj(q).

Itô’s formula describes the variation of the function V along
solutions and is given as follows

dV (q, t) = L V (q, t)dt+
∑p

i=1
∂V (q,t)

∂qi
gi(q)dWt.

B. Proof of Proposition 4.1

By Itô’s formula, we have

E(∥∆α
t ∥2) =E

∫ t

0

2Tr
[
∆α

s

(
S(ρs, ρ̂s)− S(σs, σ̂s)

+
∑

k

(
DLk

(ρs)−DLk
(σs)

)
− Fα(σs)

)]
ds

+ E
∑

kηk

∫ t

0

∥Gk(ρs)− Gk(σs)∥2ds,
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where S(ρ, ρ̂) := [−i(H0 + u(ρ̂)H1), ρ], and

E(∥∆̂α
t ∥2)

= E
∫ t

0

2Tr
[
∆̂α

s

(
S(ρ̂s, ρ̂s)− S(σ̂s, σ̂s)

+
∑

k

(
DLk

(ρ̂s)−DLk
(σ̂s)

)
+
∑

k

√
η̂k
(
Gk(ρ̂s)Tk(ρt, ρ̂t)− Gk(σ̂s)Tk(σt, σ̂t)

))]
ds

+ E
∑

kη̂k

∫ t

0

∥Gk(ρ̂s)− Gk(σ̂s)∥2ds.

Due to the Lipschitz continuity of S(ρ, ρ̂), there exists
c1 > 0 such that ∥S(ρ, ρ̂) − S(σ̂, σ)∥ ≤ c1(∥∆α∥ +
∥∆̂α∥). By Cauchy-Schwarz inequality, there exists c2 >
0 such that Tr

[
∆α

(
S(ρ, ρ̂) − S(σ̂, σ)

)]
≤ c2(∥∆α∥2 +

∥∆α∥∥∆̂α∥). By similar arguments, there exist c3, c4, c5 >
0 such that Tr

[
∆α

(
DLk

(ρs) − DLk
(σs)

)]
≤ c3∥∆α∥2,

Tr
(
∆αFα(σ)

)
≤ αc4∥∆α∥ and ∥Gk(ρs) − Gk(σs)∥2 ≤

c5∥∆α∥2. Thus, there are three constants c6, c7, c8 > 0 such
that

E(∥∆α
t ∥2) ≤

∫ t

0

c6E(∥∆α
s ∥2) + αc7E(∥∆α

s ∥)

+ c8E(∥∆α
s ∥∥∆̂α

s ∥)ds.

Similarly, we can obtain the following estimation for ∆̂t,

E(∥∆̂α
t ∥2) ≤

∫ t

0

ĉ1E(∥∆̂α
s ∥2) + ĉ2E(∥∆α

s ∥∥∆̂α
s ∥)ds

for some ĉ1, ĉ2 > 0. Moreover, by Jensen’s inequality,

E(∥∆α∥) ≤ E(∥∆α∥) + E(∥∆̂α∥)

≤
√

E(∥∆α∥2) +
√

E(∥∆̂α∥2) ≤
√
2Uα,

where we used the fact
√
x+

√
y ≤

√
2(x+ y) for x, y > 0

in the last inequality. Due to xy ≤ (x2 + y2)/2, there exist
two constants a, b > 0 such that

Uα
t ≤

∫ t

0

aUα
s + αb

√
Uα
s ds,

by applying the generalized Grönwall inequality [25, pp.
360-361], we have

Uα
t ≤

(αb
2

∫ t

0

ea(t−s)/2ds
)2

,

which implies
√

Uα
t ≤ αA(eBt − 1) for some constants

A,B > 0. Therefore, for any finite t ≥ 0, limα→0 U
α
t = 0.

Furthermore, we can use above estimation and make one step
further by extending the time interval which depends on α.
For any γ ∈ (0, 1) and α > 0, we have

α1−γA(eBt − 1) ≤ 1, t ∈ [0, T (α)],

where T (α) := 1
B log(1 + 1

Aα1−γ ), T (α) goes to infinity
when α tends to zero. Hence, we have

√
Uα
t ≤ αγ for all

t ∈ [0, T (α)] with α > 0.
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Poincaré, vol. 18, no. 6, 2017, pp. 2045–2074.

[20] F. Ticozzi, R. Lucchese, P. Cappellaro, and L. Viola, “Hamiltonian
control of quantum dynamical semigroups: Stabilization and conver-
gence speed,” IEEE Transactions on Automatic Control, vol. 57, no. 8,
pp. 1931–1944, 2012.

[21] W. Liang, T. Grigoletto, and F. Ticozzi, “Switching stabiliza-
tion of quantum stochastic master equations,” arXiv preprint
arXiv:2209.11709, 2022.

[22] S.-j. Liu, J.-f. Zhang, and Z.-p. Jiang, “A notion of stochastic input-
to-state stability and its application to stability of cascaded stochastic
nonlinear systems,” Acta Mathematicae Applicatae Sinica, English
Series, vol. 24, no. 1, pp. 141–156, 2008.

[23] H. Ito, “A complete characterization of integral input-to-state stability
and its small-gain theorem for stochastic systems,” IEEE Transactions
on Automatic Control, vol. 65, no. 7, pp. 3039–3052, 2019.

[24] W. Liang, N. H. Amini, and P. Mason, “On exponential stabilization
of N -level quantum angular momentum systems,” SIAM Journal on
Control and Optimization, vol. 57, no. 6, pp. 3939–3960, 2019.

[25] D. Mtrinovic, J. Pecaric, and A. Fink, Inequalities Involving Functions
and their Integrals and Derivatives. Springer Science & Business
Media, 1991.

7201


