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Abstract— This paper presents a distributed methodology to
produce collision-free control laws for an Unmanned Aerial
Vehicle (UAV) fleet. We use a game theoretic framework,
where UAVs accommodate for individual and fleet goals, while
respecting safety requirements. The method combines Control
Barrier Functions (CBFs) and a primal-dual algorithm for Nash
equilibrium (NE) seeking in generalized games. Feedback is
introduced by Model Predictive Control (MPC) and we analyze
its stability properties. The combination of these tools allows
for a distributed, collision-free pointwise equilibrium solution,
despite the agents’ coupling, due to common target tracking
and the collision avoidance constraints. Our algorithmic re-
sults are supported theoretically and our method’s efficacy is
demonstrated via extensive numerical simulations.

I. INTRODUCTION

This work addresses safe deployment of Unmanned Aerial
Vehicle (UAV) fleets while taking into account the conflicting
objectives of individual and common goal tracking by use of
game theoretic approaches. Our method covers a wide class
of multi-agent games, and designs a safe by construction,
high-performance algorithm, capitalizing on the widespread
applications of Control Barrier Functions (CBFs). CBFs
provide a way to enforce safety through invariant set analysis
[3] and have been recently applied to various problems in
continuous and discrete time settings, such as adaptive cruise
control [4], safe teleoperation of UAVs [18], bipedal robot
navigation [1], and learning [21]. The rising number of
CBF applications stem from their computational viability:
when the system dynamics are affine in the input and the
cost to be minimized is quadratic, a family of Quadratic
Programs (QPs) parameterized by the system state needs to
be solved [5], [11], [16].

Furthermore, to enhance the real-time deployment poten-
tial, and effective peer-to-peer communication, we resort
to recent advancements in distributed algorithms for Nash
Equilibrium (NE) computation. Distributed safety require-
ments produce coupled constraints, giving rise to generalized
games: typically, primal-dual iterative methods are then used,
in which the NE of the game is reached asymptotically. In
this work we rely on a recently developed technique based
on gradient tracking [8], that exhibits superior convergence
properties compared to similar methodologies [6], [10]. This
is a discrete-time algorithm motivated by cooperative coun-
terparts [13]; for some conceptually similar continuous-time
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methods we refer to [9]. Finally, feedback is introduced by
Model Predictive Control (MPC) [12], [2], which has only
recently been exploited in conjunction with CBF constraints
[17], [20].

Blending CBFs, MPC and the primal-dual algorithm for
Nash equilibrium seeking in generalized games, that up
to now have been mainly used separately, is a distinct
feature of our work which inherits the benefits of these
methodologies. Merging these tools allows for a distributed,
collision-free equilibrium solution for the multi-UAV game,
despite coupled constraints and common target, which gen-
erates an aggregative term in the cost. We propose sufficient
MPC stability conditions, accounting for this extra term and
illustrate the method’s efficacy via numerical simulations.

This paper is organized as follows: Section II introduces
the UAV system, its states and the adopted gaming setup.
Section III presents the ingredients of the game for the
specific multi-UAV setting. Section IV presents a distributed
equilibrium seeking algorithm for the coordination problem
and discusses a sufficient condition for the “aggregative
MPC” stability. Section V presents a four UAV position
swapping problem and a sensitivity analysis for the param-
eters encoding safety and prediction horizon. Section VI
concludes this work and points out future research directions.

Notation. Let R,R+,N be the set of real, non-negative real
and natural numbers. G = (I,E) denotes an undirected graph
with I being the node set and E ⊂ I×I the set of edges. Agent
i can receive information from j if the edge ( j, i) ∈ E and
vice versa. The set of neighbours of i is denoted by Ni := j ∈
I : ( j, i) ∈ E and we consider that i ∈Ni. W ∈Rn×n denotes
the weighted adjacency matrix of graph G , with its entries
satisfying wi j = w ji > 0 if ( j, i) ∈ E and wi j = 0 otherwise.
A continuous function f : [0,a)→ [0,∞) for a > 0 is of class
K if it is strictly increasing and f (0) = 0 [19].

II. PROBLEM FORMULATION

A. UAV model

Let I = {1, . . . ,N} index a fleet of N UAVs, where
pxi(t), pyi(t) denote the ith-UAV’s (x,y) centre of gravity
coordinates at time t. Similarly, let vxi(t),vyi(t),axi(t),ayi(t)
denote its velocity and acceleration components. For sim-
plicity, we assume in this initial study that all UAVs perform
level flights and share the same double integrator dynamics1:
p̈xi(t) = axi(t), p̈yi(t) = ayi(t). Discretizing with sample time

1This will be replaced by a 6-DOF nonlinear UAV model in future studies.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 1070



h leads to

xi[k+1] =


1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1

xi[k] +


h2

2 0
0 h2

2
h 0
0 h

ai[k], (1)

where k denotes the time index, xi[k] =
[pxi [k] pyi [k] vxi [k] vyi [k]]

T ∈ R4 is the state and
ai[k] = [axi [k] ayi [k]]

T ∈ R2 the control input. Let
pd = [pd

x1
pd

y1
. . . pd

xN
pd

yN
]T ∈ R2N collect each UAV

target position coordinates. Using the error dynamics
ei[k] = xi[k]− [pd

xi
pd

yi
0 0]T , a compact depiction of (1) is

ei[k+1] = Adiei[k]+Bdiai[k]. (2)

B. Game setup

In this non-cooperative multi-agent game setting, agent
i ∈ I aims at solving a finite horizon optimization problem,
with horizon length H. For each i, j ∈ I, i ̸= j, let ui =
[ai[0] . . .ai[H−1]]Ti be the decision vector of agent i over the
time horizon, where ui ∈Ui ⊆R2H accounts for the presence
of local constraints (to be defined in the sequel). Each agent
i ∈ I seeks to solve:

min
ui∈Ui

Ji(ui,σ(u))

subject to Aiui + ∑
j∈I\{i}

A ju j ≤∑
i∈I

bi (3)

where σ(u) := 1
N ∑i∈I φi(ui) is an aggregative vector, formed

by the aggregate function φi. Ji(ui,σ(u)) is the finite horizon
cost each agent i ∈ I seeks to minimize, subject to the local
constraint set Ui and coupled constraints, defined by matrices
Ai and vectors bi of appropriate dimension. The game is
described by the tuple Ga = (N,{Ji}i∈I ,{Ui}i∈I ,{Ai,bi}i∈I)
and referred to as generalized aggregative game due to the
coupling in the objective and constraints. The solution con-
cept for such a game class is a Generalized Nash Equilibrium
(GNE), summarized below.

Definition 1: A collection of strategies u∗, formed by u∗i
(optimal ui), is a GNE for Ga if for all i ∈ I, we have

Ji(u∗i ,σ(u∗))≤ min
ui∈Ci(u∗−i)

Ji(ui,σ(u∗)), (4)

where Ci(u∗−i) = {ui ∈Ui : Aiui + ∑
j∈I\{i}

A ju∗j ≤ ∑
i∈I

bi}, and

u∗−i consists of u∗j , ∀ j ∈ I, j ̸= i.

III. INGREDIENTS OF THE GAME

A. Coupling constraints

Following [1], for i, j ∈ I with i ̸= j, consider δ pi, j[k] =
[pxi [k] pyi [k]]

T − [px j [k] py j [k]]
T and a set S, denoted to be the

superlevel set of a function h j
i : P ⊂ R2→ R

S = {δ pi, j[k] ∈P ⊂ Rn : h j
i (δ pi, j[k])≥ 0}.

Set S is the safe set within which agents’ trajectories should
be confined to avoid collision. If the conditions below hold

(i) h j
i (δ pi, j[0])≥ 0,

(ii) ∃ui[k],u j[k] such that ∀k ∈ N∪{0}, (5)

h j
i (δ pi, j[k+1])−h j

i (δ pi, j[k])≥−γcbf(h
j
i (δ pi, j[k])).

then the function h j
i : P → R is said to be a discrete-

time exponential CBF and the set S is invariant along
the trajectories of (2) governed by ui[k],u j[k] in (5), ∀k ∈
N∪ {0} [1]. In (5), γcbf is a class K function satisfying
0< γcbf(h

j
i (δ pi, j[k]))≤ h j

i (δ pi, j[k]) [20]; here we restrict our
analysis to 0 < γcbf ≤ 1. CBF is preferred over a simple
distance constraint, being justified in an MPC framework
due to higher safety. [20] shows that a CBF with smaller
γcb f produces obstacle avoidance earlier2. Comparatively,
distance constraints demand larger prediction horizon H,
not viable on real-time systems, while lower values may
lead to infeasibility. Finally, CBF designs the inequality’s
right hand-side “adaptively”, using an invariance framework,
unlike distance constraints. As (3) involves affine coupling
constraints, the chosen CBF is

h j
i (δ pi, j[k]) =

|pxi [k]− px j [k]|
r1

+
|pyi [k]− py j [k]|

r2
−1 (6)

=
|ex

i [k]− ex
j[k]+δ pd

xi, j
|

r1
+
|ey

i [k]− ey
j[k]+δ pd

yi, j
|

r2
−1,

where h j
i (δ pi, j[k])≥ 0 guarantees no collision between UAVs

i and j at time k. Parameters r1,r2 > 0 are the norm-1
unsafe radii, delimiting the UAV’s body in the x and y
directions. The second equality in (6) is obtained by using
(2), where ex

i ,e
y
i denote the first two components of ei, and

constant target positions pd
xi, j

, producing: δ pd
xi, j

= pd
xi
− pd

x j

and δ pd
yi, j

= pd
yi
− pd

y j
. The choice of h j

i in (6) ensures that
condition (i) in (5) is convex. To ensure that (ii) in (5) is also
convex we follow a linearization procedure similar to [15]:

h j
i (δ pi, j[k+1])−h j

i (δ pi, j[k])

≥ (∇h j
i (δ pi, j[k]))T (δ pi, j[k+1]−δ pi, j[k])

≥−γcbfh(δ pi, j[k]), (7)

where the first inequality is due to convexity of the CBF.
Satisfying (7), offers a sufficient condition for satisfaction of
(ii) in (5). For all i, j ∈ I we have:

δvli, j [k] = vli [k]− vl j [k], for l = x,y,

Γi, j[k] =
2
h2 γcbfh

j
i (δ pi, j[k])

+
2
h

( 1
r1

sgn(δ pxi, j [k])δvxi, j [k]

+
1
r2

sgn(δ pyi, j [k])δvyi, j [k]
)
.

2If the system is constrained over the prediction horizon - explored in
future studies.

1071



We now rewrite relation (7) in the form of (3) resulting in[
−vc vc

][ui
u j

]
≤ Γi, j[k],

vc =
[

sgn(δ pxi, j [k])
r1

sgn(δ pyi, j [k])
r2

01×2(H−1)

]
.

(8)

Equation (8) imposes a safety constraint for the UAV pair
i, j and similar constraints have to be instantiated in case of
static obstacles.

To determine an equilibrium solution for the game under
consideration we present in the next section a distributed
methodology proposed in [8]. However, the latter requires
that matrix A formed by the horizontal concatenation of Ai,
A j, ∀i, j ∈ I, i ̸= j must be full row rank (see Assumption
IV.2 in [8]). Since we aim at avoiding constraints with every
other UAV, rows of A scale as N(N − 1)/2, whereas its
columns scale as 2×NH. To ensure that A is full row rank,
we need to ensure that H ≥ (N − 1)/4. We also assume
complete knowledge by UAV i of both its own position and
velocity and the corresponding information from other UAVs,
(coupled in the same constraint) at each time instance.

B. Local constraints
Each agent is also subject to local constraints. These refer

to aimax ∈R2, i∈ I, the limiting acceleration capacity of each
UAV. The local constraint set of agent i ∈ I is given by

Ui =
{

ui : −aimax ≤ ai[k]≤ aimax , for all k = 0, . . . ,H−1
}
.

(9)

C. Objective functions
The objective function of each UAV i ∈ I is expressed as

Ji(ui,σ(u)) =
H−1

∑
l=0

ei[l]T Qiei[l]+ui[l]T Riui[l]

+β (ei[H]T QHiei[H]) (10)

+
pa

N

(
1
N

N

∑
z=1

pxz [H]− pox

)2

+
pa

N

(
1
N

N

∑
z=1

pyz [H]− poy

)2

,

where the first line of (10) is the running cost, with matrices
Qi ≻ 0 (needed for strong monotonicity; for the stability
analysis only Qi ⪰ 0 is necessary) and Ri ≻ 0 of appropriate
dimension, penalize the state (in error dynamics) and control
input, respectively. The second line of (10) is a terminal cost
with weighting matrix QHi ≻ 0 and a scaling factor β > 0.
The last line of (10) penalizes the agents’ aggregate (this
implicitly defines functions φi and σ in (3)) with respect
to a common fixed target po = (pox , poy)

T , to be tracked
by all UAVs. Here we require the aggregate to be close
to the target at the terminal time H. The term pa

N > 0
is introduced to ensure that each Ji gets exactly (1/N)-th
of the aggregative term and we account (by scaling pa)
for the relative importance of the individual and common
objectives. To relate terms in (10) with ui[k], we use Eq. (2)
recursively. This objective satisfies strong monotonicity and
Lipschitz continuity with respect to agents’ decisions (e.g.,
see standing Assumptions II.2 and II.3 in [8]).

IV. SOLUTION METHODOLOGY AND ANALYSIS

A. Primal-Dual TRADES algorithm

We assume that each agent knows its own information and
that it can exchange information with its neighbours Ni. We
use a similar communication structure as in [8], which relies
on undirected and strongly connected graphs.

The Primal-Dual TRADES (Algorithm 1) [8] solves (3)
and uses variables to track the coupling constraint and the
aggregative term with the goal of solving the problem in a
distributed manner.

Algorithm 1 Primal-Dual TRADES (Agent i)

1: Initialization: u0
i ∈Ui, λ 0

i ∈ Rm
+, z0

i = 0, y0
i = 0

2: Repeat until convergence
3: up+1

i = up
i + δtr([u

p
i − γtrF̃i(u

p
i ,φi(u

p
i ) + zp

i ) −
γtrGu,i(N(Aiu

p
i −bi)+ yp

i ,λ
p
i ]−up

i )

4: λ
p+1
i = ∑ j∈Ni wi jλ

p
j +δtrγtrGλ ,i(N(Aiu

p
i −bi)+ yp

i ,λ
p
i )

5: zp+1
i = ∑ j∈Ni wi jz

p
j +∑ j∈Ni wi jφ j(u

p
j )−φi(u

p
i )

6: yp+1
i = ∑ j∈Ni wi jy

p
j +∑ j∈Ni wi jN(A ju

p
j −b j)−N(Aiu

p
i −

bi)
7: return u∗i

In Algorithm 1, line 1 initializes the decision variables
ui, the Lagrange multiplier λi, and tracking variables zi and
yi for the cost Ji and the coupled constraints in (3). The
superscript p ∈ N∪{0} denotes the iteration index. Line 2
updates the variables until convergence, in line 3 F̃i and Gu,i
are the pseudo gradient of the cost and constraints in (3),
with respect to the primal variable, i.e.,

F̃i(xi,s) = ∇1Ji(xi,s)+
∇φi(xi)

N
∇2Ji(xi,s), (11)

Gu,i(s1,s2) =
m

∑
l=1

max{ρ[s1]l +[s2]l ,0}[Ai]
T
l , (12)

where ∇1Ji and ∇2Ji are the gradients of Ji with respect to
its first and second arguments. [Ai]l and [bi]l indicate the l-
th row of matrix Ai and vector bi in (3), and the constant
ρ > δtrγtr

wii
> 0 (see (33) in [8]). The argument within brackets

in line 3 acts as a gradient descent method with γtr ∈ R
as the step size. Parameter δtr ∈ (0, 1) performs a convex
combination between the current value and the new estimate.
Line 4 updates the dual variable also using gradient descent,
with Gλ ,i (13) as the pseudo gradient of the constraints in
(3) with respect to the dual variable, i.e.,

Gλ ,i(s1,s2) =
1
ρ

m

∑
l=1

(max{ρ[s1]l +[s2]l ,0}− [s2]l)ebl , (13)

Lines 5 and 6 have update laws for the aggregative cost and
the coupling constraint tracking variables. Parameter wi j is
the i, j element of the network adjacency matrix, introduced
for consensus among agents estimations. Note that we do
not enforce local constraints in a hard manner in Algorithm
1; this stems from the fact that for generalized games the
algorithm in [8] does not allow for local constraints. The
control input generated by TRADES will be saturated to
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ensure it is within the desired limits (see Algorithm 2);
numerical evidence shows that convergence is achieved even
if local constraints are enforced in a hard manner.

The presented setup satisfies all technical assumptions
introduced in [8], which are omitted here in the interest of
space. The subsequent theorem summarizes the convergence
behaviour of Algorithm 1.

Theorem 1: [8] Consider Algorithm 1, with the tracking
variables z0

i and y0
i being initialized as zero. Then, Algorithm

1 converges linearly to a NE of the game Ga.

B. Safe aggregative receding horizon control
We now modify Algorithm 1 by adopting MPC to produce

the enhanced safe distributed Algorithm 2.

Algorithm 2 Safe distributed receding horizon TRADES
(Agent i)

1: UAV i← pd , po, ∀i ∈ I
2: ei[0] = xi[0]− (pd

xi
, pd

yi
,0,0)T , ei[1] = ei[0]

3: ui[0] = 0, ∀i ∈ I
4: for k = 1,2, . . . do
5: UAV i← e j[k],u j[k−1], ∀ j ∈ I, j ̸= i
6: Calculate Aiui + ∑

j∈I\{i}
A ju j ≤ ∑

i∈I
bi as in (8)

7: Initialize Algorithm 1: u0
i = ui[k − 1] ∈ Ui, λ 0

i ∈
Rm
+, z0

i = 02, y0
i = 0m .

8: Run Algorithm 1
9: u∗i = max(min(u∗i ,amax),−amax)

10: ui[k] = u∗i [0]
11: ei[k+1] = Adiei[k]+Bdiai[k]
12: UAV j← ei[k+1], ui[k],∀ j ∈ I, j ̸= i
13: end for

Algorithm 2 runs in parallel for all agents. Lines 1-3
collect relevant initialization information for UAV i such as
the initial and desired end state for all UAVs and the common
point to be tracked. Line 6 updates at each iteration the
collision avoidance constraints, line 7 initializes the Primal-
Dual trades with the optimal ui from the previous iteration.
Lines 8-11 involve the main updates. At each iteration
Algorithm 1 (line 8) returns the optimal decision vector u∗i ,
which is saturated (line 9), so that ui ∈Ui. Then, u∗i has its 1st

component parsed to ui[k] (line 10), and acts in the system
dynamics (line 11). Both ui[k], and ei[k+1] must be shared
with all other UAVs for the coupled constraints’ calculation
in the next iteration of Algorithm 2.

C. Aggregative MPC stability discussion
Consider the MPC formulation:
J∗i (ui,σ(u)) = min

ui
Ji(ui,σ(u))

s.t. ei[l +1] = Adiei[l]+Bdiai[l]

ui[l + p] ∈Ui, p = 0 . . .H−1
ei[l +H] ∈ EiH

ei[l] = e0.

(14)

In standard MPC (without σ(u)), (14) is solved repeatedly
whenever a new e0 is available [7], [20]. However, since

Ji(ui,σ(u)) in (14) contains a quadratic cost on σ(u), a
re-evaluation of the MPC’s stability condition is necessary.
Excluding the CBF, we analyze the aggregative term’s effect
in terms of stability following [14]; however, our analysis is
distinct due to the presence of that term. This is our main
theoretical result.

Proposition 1: For all i ∈ I, consider the terminal set
EHi = {ei ∈ Rn : eT

i QHiei ≤ αHi}, where αHi > 0 (non-
degenerate as QHi ≻ 0). Assume there exists k̄ such that
∀k > k̄, ∀i ∈ I, ei[k] ∈ EHi . Furthermore, ∀i ∈ I, ∀ei[k] ∈ EHi ,
we assume the following conditions:

1) Adiei[k]+Bdiai[k] ∈ EHi

2) ui[k] ∈Ui
3) β ((ei[k + 1])T QHi(ei[k + 1]) − (ei[k])T QHi(ei[k])) +

pa
N (gT [k+1]g[k+1]−g∗

T
[k]g∗[k])−ei[k−H]T Qiei[k−

H]
≤−(ei[k])T Qi(ei[k])− (ai[k])T Ri(ai[k]).

where

g[k+H] =C
[
AH−1

d Bd 04×np , . . . ,Bd 04×np

]
ui

+ zi[k]+
1
N

N

∑
i=1

(
CAH

d ei[k]+
[

pd
xi

pd
yi

])
− po,

C =
[
I2×2 02×2

]
.

Then, ∀i∈ I the MPC (14) with cost Ji (10) and state ei[k]
is stable.

Proof: Let Ji(k) and J∗i (k) be a cost and the optimal
cost of the ith agent at time k as in (10), with input sequence
u∗i [k] = [a∗i [k] . . .a

∗
i [k+H−1]]Ti . A sub-optimal cost of Ji(k+

1) can be obtained using ui[k+1] = [a∗i [k+1] . . . a∗i [k+H−
1]ai[k+H]]Ti . Due to the MPC formulation (14), we assume
there exists a k̄ such that ∀k > k̄, ∀i∈ I,ei[k+H]∈ EHi . Using
the stated conditions in Proposition 1 we conclude: Due to
condition 2) control input constraints are satisfied, while by
condition 1), ei[k+H + 1] ∈ EHi [14]. The cost of the sub-
optimal sequence in k+1 is:

Ji(k+1) =
k+H−1

∑
l=k+1

e∗
T

i [l]Qie∗i [l]+a∗
T

i [l]Ria∗i [l]

+ ei[k+H]T Qiei[k+H]+ai[k+H]T Riai[k+H]

+β (ei[k+H +1]T QHiei[k+H +1])

+
pa

N
(g[k+H +1]T g[k+H +1]).

Adding and subtracting ei[k]T Qiei[k], a∗i [k]
T Ria∗i [k], β (e∗i [k+

H]T QHie
∗
i [k+H]), pa

N (g∗i [k+H]T g∗i [k+H]) we get

Ji(k+1) = J∗i (k)− ei[k]T Qiei[k]−a∗
T

i [k]Ria∗i [k]

−β (e∗i [k+H]T QHie
∗
i [k+H])

− pa

N
g∗i [k+H]T g∗i [k+H]+ ei[k+H]T Qiei[k+H]

+ai[k+H]T Riai[k+H]

+β (ei[k+H +1]T QHiei[k+H +1])

+
pa

N
(g[k+H +1]T g[k+H +1]).
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Now using condition 3):

β (ei[k+H +1]T QHiei[k+H +1]− e∗
T

i [k+H]QHie
∗T
i [k+H])

+ ei[k+H]T Qiei[k+H]+ai[k+H]T Riai[k+H]

+
pa

N
(g[k+H +1]T g[k+H +1]−g∗

T

i [k+H]g∗i [k+H])

− ei[k]T Qiei[k]≤ 0,

resulting in: J∗i (k+1)≤ Ji(k+1)≤ J∗i (k)−a∗
T

i [k]Ria∗i [k]. The
optimal cost iterates form a non-increasing sequence which is
bounded below from zero as Ri ≻ 0, ∀i ∈ I. As a result, the
cost iterates form a convergent sequence, tending to some
point eieq = [pxieq

pyieq
0 0]T , i ∈ I where the acceleration

inputs vanish and thus, stability is proven. The presence of
the aggregative term prevents cost iterates from necessarily
converging to zero, ensuring only stability. However, when
the aggregative objective is the average of individual agents’
target locations pd , the cost exhibits a decoupled structure
since σ(u) = 0 in (3), guaranteeing asymptotic stability.

Assumption 3 in Proposition 1 is a non-increase condition;
future work concentrates towards establishing sufficient con-
ditions for its satisfaction.

V. NUMERICAL EXAMPLE

We study a four UAVs position swapping scenario, de-
scribed by a fully connected communication graph, in which
agents start at p01 = [0, 1]T , p02 = [0,−1]T , p03 = [1, 0]T and
p04 = [−1, 0]T , and aim for positions pd1 = p02 , pd2 = p01 ,
pd3 = p04 and pd4 = p03 . Average positions should be kept
near the recharging station, located at po = [0,0]T (pa = 1)
and po = [0.5,0.5]T (pa = 104) in the 1st and 2nd runs at
the predicted horizon’s end. The sample time is h = 0.2 s,
and accelerations are limited to 2 m/s2 in both x and y
directions. Simulations use the following parameters for
all UAVs: H = 3, Qi = diag(5,5,5,5), Ri = diag(2,2,2,2),
and QHi is the solution of the algebraic Riccati equation
of the associated unconstrained infinite horizon quadratic
objective function Ji, without the aggregative term. β = 1,
γcbf = 0.1, γtr = δtr = 0.1, and r1 = 0.25m and r2 = 0.5m were
arbitrarily chosen. The stopping criterion for Algorithm 1 is
max(||up+1

i − up
i ||, ||λ

p+1
i − λ

p
i ||) ≤ ∆, ∀i ∈ I for a number

of consecutive iterations equal to the graph diameter, where
∆ > 0 is a chosen tolerance.

In Figure 1, triangles represent UAVs, parallelograms show
the CBF boundary, ‘o’ and ‘x’ symbols depict start and target
locations, and the square shows the common target/aggregate
position. UAVs (shown at distinct times) avoid collisions by
respecting unsafe boundaries and reach targets while limited
by input constraints. The TRADES algorithm requires, when
approaching the safety boundaries, a maximum of 112 iter-
ations to solve the finite horizon problem with a numerical
tolerance of 3.5×10−2. With these parameters, up to 98.7%
of Algorithm 2 iterations can run within h = 0.2s (excluding
communication overhead).

The parameter γcbf captures the maneuver’s aggressiveness
when agents are close to collision (e.g., see [20]). A smaller
γcbf value results in a more cautious controller, while a higher
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Fig. 1. Panels from top to bottom: UAVs at starting positions, coming close
to neighbours’ unsafe boundary, after collision is resolved, and at swapped
positions in the end. Left column panels correspond to po = [0,0]T and
pa = 1, while the right one to po = [0.5,0.5]T and pa = 104.

value makes agents more aggressive, potentially causing
feasibility issues. This is also noticed for small values of
r1 and r2. In both feasibility issue cases, the UAVs see only
the next step in terms of safety due to the CBFs in (8). This
“allows” high accelerations, building up UAVs speed as they
move towards its goals. Upon a sudden obstacle detection,
UAVs have one instant to correct their path. Their high flying
speeds demand strong deceleration, which is limited by the
actuator capacity leading to infeasibility.

Figure 2 illustrates CBF value evolution for different γcbf
values. Parameters used are: h = 0.15 s, β = 0.1, ∆ = 1×
10−3, and amax = 4 m/s2. Higher γcbf values reduce inter
UAV CBF value compared to lower ones. The green curve
with the highest γcbf, for instance, has the smallest minimum
among all other curves, the aggressiveness can result in
worse performance. Further predicted states of MPC in (5)
and decreasing radii values r1 and r2 as more CBF constraints
are introduced in (5) could address performance issues.

Under some circumstances, H > 1 enhance the perfor-
mance of Algorithm 2 if compared to using H = 1, which
acts as a DCLF-DCBF [20]. One case is when all other
parameters remain the same and β is decreased. Another
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Fig. 2. CBF values between UAVs pairs for γcbf values: 0.1 (blue), 0.3
(red), 0.5 (yellow), 0.7 (purple), and 0.9 (green). Values above the dashed
black line indicate safety.
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Fig. 3. Effect of distinct values of H in UAVs’ trajectories.

situation is when we increase ∆, allowing Algorithm 1 within
Algorithm 2 to terminate earlier (intensified if the UAVs
have small control authority). This is a relevant case for
real-time deployment as early termination of Algorithm 1
is certainly desired. A value H > 1 in such cases manage
to avoid infeasibility, or to improve performance. Figure 3
illustrates this situation with H = 1 and H = 3, γcbf = 0.5
and convergence tolerance ∆ = 5.5×10−2. A value of H = 1
makes UAVs oscillate considerably across their trajectory to
the target and overshoot around their final destinations, while
H = 3 results in a smooth trajectory and arrival for UAVs.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this work, we proposed a distributed equilibrium seek-
ing algorithm for multi-UAV control with safety guarantees
using CBFs. A primal-dual mechanism determining the NE
strategy in a distributed manner uses MPC to enhance its
performance which is displayed by a multi-UAV position
swapping problem. We studied the effect of CBF parameters
and prediction horizon on the fleet performance. Future work

includes exploring terminal cost/set pairs for stability, safety,
and recursive feasibility and comparison to relevant methods.
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[2] Frank Allgöwer and Alex Zheng. Nonlinear model predictive control,
volume 26. Birkhäuser, 2012.

[3] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro No-
tomista, Koushil Sreenath, and Paulo Tabuada. Control barrier
functions: Theory and applications. In 2019 18th European control
conference (ECC), pages 3420–3431. IEEE, 2019.

[4] Aaron D Ames, Jessy W Grizzle, and Paulo Tabuada. Control barrier
function based quadratic programs with application to adaptive cruise
control. In 53rd IEEE Conference on Decision and Control, pages
6271–6278. IEEE, 2014.

[5] Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada.
Control barrier function based quadratic programs for safety critical
systems. IEEE Transactions on Automatic Control, 62(8):3861–3876,
2016.

[6] Giuseppe Belgioioso, Angelia Nedić, and Sergio Grammatico. Dis-
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