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Abstract— This paper considers electric automated buses
traveling in inter-urban roads and following a given route
including stops, that must be reached according to a given
timetable. Some of these stops are provided with a charging
infrastructure allowing to charge the bus batteries. The paper
proposes a decentralized control scheme for determining the
optimal speed profiles, the dwell and charging times of the
buses, by taking into account the traffic conditions along the
road through a suitable traffic flow prediction model. Two
objectives are considered contemporarily: the minimization of
the deviations from the timetable and the minimization of the
energy lack at the end of the bus route. To attain both these
conflicting objectives, a lexicographic approach is adopted to
design the controller which considers that, depending on the
system state, the priority of the two objectives can change.
Accordingly, the proposed control scheme changes the objective
prioritization in real time and switches between two different
lexicographic-based optimal control solutions. Some tests are
discussed in the paper to show the effectiveness of the proposed
control scheme.

I. INTRODUCTION

One of the main challenges of our society is undoubtedly

the protection of the environment and the health of our

planet. Among the human activities causing damage to

the environment, road transport represents one of the main

sources. Electric mobility seems to represent a viable alter-

native to reduce the environmental impact of road transport,

especially public transport [1]. The mobility transition for

smart cities [2] is not only represented by electrification but

also by the development of connected and automated vehicles

[3]. In this paper we consider electric automated buses which

have to follow a given line in extra-urban roads. Each vehicle

has to visit, in given time windows, specific stops which can

be provided or not with charging infrastructures. Our main

goal is to devise a control strategy in order to regulate the

speed of buses along the route, as well as the dwell and

charging times at stops. Since each bus is traveling in inter-

urban roads, without dedicated lanes, it is important to base

the control strategy on the traffic prediction, i.e. considering

the traffic state that the bus will encounter along its path.

Some research works found in the literature aim at defining

eco-driving strategies for electric buses traveling in urban

areas where the presence of reserved lanes allows to neglect

the influence of traffic [4], [5].
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The main novelty of our work stands, instead, in con-

sidering inter-urban roads where the influence of traffic is

very relevant for the bus behavior (previous works in this

research direction can be found in [6], [7]). In this paper

we propose a decentralized control scheme in which the

control variables are re-computed in real time when a bus

is ready to leave a stop. Such a scheme is composed of

two modules: the former allows the prediction of the traffic

state and the bus trajectory, while the latter is based on

the solution of a multi-objective optimal control problem.

Indeed, two main conflicting objectives must be addressed,

i.e. the minimization of the deviations from the timetable and

the minimization of the energy lack at the end of the bus

route. Since the priority between these objectives can vary

depending on the system state, the proposed control scheme

changes the prioritization between the objectives in real

time, requiring the application of two different lexicographic-

based algorithms. The multi-objective nature of this problem

has been investigated by the authors in [8], where two

algorithms based on the ε-constraint approach are applied

to find the Pareto frontier in different scenarios. Multi-

objective optimization techniques have been studied for some

decades [9], with the main focus on theoretical results

for the definition of solution methods allowing to provide

efficient solutions. Multi-objective optimization has been also

applied in feedback and optimal control problems [10] and

within model predictive control schemes [11], in which the

computational issue becomes much more important for real-

time applications.

The paper is organized as follows. In Section II the

proposed control scheme is introduced. The two modules

of the control scheme are described in Section III and

Section IV, respectively dealing with the prediction module

and the optimal control module. Section V reports some

simulation results, while conclusive remarks are drawn in

Section VI.

II. THE CONSIDERED SYSTEM AND THE PROPOSED

CONTROL SCHEME

We consider electric and automated buses which have to

follow specific routes with fixed stops and a given timetable.

These routes are in inter-urban roads where the influence

of traffic cannot be neglected. Some stops along the route

are equipped with a charging infrastructure while others are

not. The control variables of the problem are relevant to

the bus speed along the route, as well as the dwell times

and charging times at stops. The objectives to be considered

regard the minimization of the deviations from the timetable
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at stops, on the one hand, and the respect of a final energy

level requirement, on the other hand.

The considered road stretch is divided into N sections,

each one having length Li [km], i = 1, . . . , N , in which

some external flows can enter and from which traffic flows

can exit. Let us denote the set of road sections as I = {i :
i = 1, . . . , N}. According to the length of each section, it

is possible to compute the position pi of the beginning of

section i as p1 = 0 and pi =
∑i−1

=1 L, i ∈ I \ 1. In the

considered road stretch a set B of electric and automated

buses is considered and a set S of bus stops is present. The

position of each bus stop s in the road stretch is denoted as

πs [km].

In order to control all the buses, a decentralized control

scheme is proposed in which each bus is controlled indepen-

dently. A sketch of the control logic is provided in Fig. 1.

Such a logic is applied every time a bus is ready to leave a

stop, and the considered control horizon covers all the time

necessary for the bus to reach the last stop. The proposed

control scheme consists of two main modules:

1) the prediction module, which allows to make a pre-

diction of the traffic state in the road and of the

bus trajectory; the model is initialized with the state

measured in real time;

2) the optimal control module, which allows to find the

optimal values of the control variables considering as

inputs both the average traffic speed computed by the

prediction model and the traffic state of buses measured

in real time. This module can be applied with two

different lexicographic approaches, giving priority to

the timetable or to the final energy level, on the basis

of a condition which verifies if the bus is expected to

be late at the next stop or not.
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Fig. 1: The proposed control scheme

Both modules are based on a time discretization that is,

in general, different. Let us denote with T pred and T the

sampling times of the prediction model and the optimal

control problem, respectively, and let us introduce Γ =
T/T pred. Moreover, for the prediction model and the optimal

control problem different time step indexes are used, i.e. k
and h respectively.

As aforementioned, the proposed control strategy is run

at each time instant in which bus b is ready to leave a stop,

denoted as tbs for each stop s. Let us indicate with k(tbs)
and h(tbs) the time steps corresponding to tbs in the two

discretization mechanisms. Then, at each time instant tbs, the

prediction model is run for k ∈ K(tbs) = {k(tbs), . . . ,K
b−1},

in which Kb is the last time step of the considered horizon

corresponding to the scheduled arrival time of the bus at the

last stop plus the waiting time in the last stop. The optimal

control problem, instead, refers to time steps h ∈ H(tbs) =
{h(tbs), . . . , H

b − 1}, where Hb is the last time step of the

considered horizon, such that Hb = 1/ΓKb. When applying

the control strategy at time tbs, the sets S(tbs) ⊆ S and

I(tbs) ⊆ I must be updated, including the bus stops and

the road sections after the position of the bus at time tbs.

III. THE PREDICTION MODULE

The prediction module run at time tbs over the prediction

horizon k ∈ K(tbs) is composed of a traffic flow model for

predicting the traffic state along the road and a prediction

model for the bus.

The traffic flow prediction model considered in this work

is METANET [12] referred to a single road stretch in an

extra-urban environment (more details on traffic models can

be found in [13]). For each section i ∈ I(tbs), and for each

time step k ∈ K(tbs), the following variables are defined:

• ρpredi (k) is the predicted traffic density in section i at

time kT pred [veh/km];

• vpredi (k) is the predicted mean traffic speed in section

i at time kT pred [km/h];

• qpredi (k) is the predicted traffic flow from section i to

section i+1 during time interval [kT pred, (k+1)T pred)
[veh/h];

• rpredi (k) is the predicted traffic flow entering section i
from external roads during time interval [kT pred, (k +
1)T pred) [veh/h];

• fpred
i (k) is the predicted traffic flow exiting section

i to external roads during time interval [kT pred, (k +
1)T pred) [veh/h].

The METANET model is given by the following finite

difference equations

ρpredi (k + 1) = ρpredi (k) +
T pred

Li

[

qpredi−1 (k)− qpredi (k)

+rpredi (k)− fpred
i (k)

]

(1)

vpredi (k+1) = vpredi (k)+
T pred

τ

[

V
(

ρpredi (k)
)

− vpredi (k)
]

+
T pred

Li

vpredi (k)
[

vpredi−1 (k)− vpredi (k)
]

−
νT pred

[

ρpredi+1 (k)− ρpredi (k)
]

τLi

[

ρpredi (k) + χ
]

− δonT
pred v

pred
i (k)rpredi (k)

Li

[

ρpredi (k) + χ
] (2)
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where i ∈ I(tbs), k ∈ K(tbs), with τ , ν, χ, δon being model

parameters. The traffic flow to be used in (1) is given by

qpredi (k) = ρpredi (k)vpredi (k) and the steady-state speed-

density relation adopted in (2) can be expressed as

V (ρpredi (k)) = vfi exp

[

−
1

a

(

ρpredi (k)

ρcri

)a]

(3)

where vfi is the free-flow speed [km/h] of section i, ρcri is the

critical density [veh/km] of section i, a is another parameter.

This prediction model is initialized with the traffic state

measured in real time at time instant tbs, and enables to

compute all the traffic variables along the prediction horizon.

Among them, the mean traffic speed vpredi (k), k ∈ K(tbs), is

an input both for the bus trajectory prediction model and for

the optimal control module.

In the bus trajectory prediction model, for each bus b ∈ B
the following variables are defined:

• pb,pred(k) is the predicted position of bus b at time

kT pred [km];

• vb,pred(k) is the predicted speed of bus b at time kT pred

[km/h];

• δb,predi (k) is equal to 1 if bus b is predicted to travel in

section i at time kT pred, 0 otherwise;

• tb,preds+1 is the predicted departure time at the next stop.

The bus trajectory prediction model computes the pre-

dicted position of the bus along the road as

pb,pred(k + 1) = pb,pred(k) + vb,pred(k)T pred (4)

where the predicted speed is computed taking into account

the mean traffic speed associated with the section in which

the bus travels, i.e.

vb,pred(k) = min







∑

i∈I(tb
s
)

δb,predi (k)vpredi (k), vb,max







(5)

with vb,max indicating the maximum speed of bus b.
According to the predicted position of each bus and con-

sidering the minimum dwell time indicated in the timetable,

it is possible to compute tb,preds+1 , i.e. the predicted departure

time at the next stop, in order to compare it with t̄bs+1, i.e.

the scheduled departure time at the next stop.

IV. THE OPTIMAL CONTROL MODULE

In order to optimally control each bus in the road stretch,

an optimal control problem must be solved at each time tbs,

considering a planning horizon with h ∈ H(tbs). In the next

sub-sections, the multi-objective optimization problem to be

solved is firstly presented, then the two lexicographic ap-

proaches are reported, along with the algorithm summarizing

the whole control strategy.

A. The multi-objective optimal control problem

In this paper we consider a decentralized control scheme

in which an optimal control problem is stated and solved for

each bus b ∈ B, for which we report here the main variables.

The state variables are defined for each time step h ∈
H(tbs) ∪ {Hb}:

• pb(h) is the position of bus b at time step h [km];

• eb(h) is the energy stored in the battery of bus b at time

step h [kWh].

The control variables are defined for time steps h ∈
Hb(tbs):

• vb(h) is the speed of bus b at time step h [km/h];

• wb
s(h) ∈ {0, 1} is equal to 1 if bus b is in stop s at time

step h, 0 otherwise;

• cbs(h) ∈ {0, 1} is equal to 1 if bus b is charging its

battery in stop s at time step h, 0 otherwise.

Some auxiliary variables are needed in the optimal control

problem, for i ∈ I(tbs), h ∈ Hb(tbs), in order to define the

position of the bus in the road sections:

• zbi (h) ∈ {0, 1} is equal to 1 if pb(h) ≥ pi, i.e. if bus b is

after the beginning of section i at time h, 0 otherwise;

• ybi (h) ∈ {0, 1} is equal to 1 if pb(h) ≤ pi+1, i.e. if bus

b is before the beginning of section i + 1 at time h, 0

otherwise;

• λbi (h) ∈ {0, 1} is equal to 1 if bus b is in section i at

time step h, 0 otherwise.

Two other sets of auxiliary variables are defined for

s ∈ S(tbs), h ∈ Hb(tbs), and are related to the arrivals and

departures of the bus at bus stops:

• γb,arrs (h) ∈ {0, 1} is equal to 1 if bus b arrives at stop

s between time step h and h+ 1, 0 otherwise;

• γb,deps (h) ∈ {0, 1} is equal to 1 if bus b departs from

stop s between time step h and h+ 1, 0 otherwise.

A final set of auxiliary variables is required to represent

the final energy state of the bus:

• ζb,fin = max{ēb,fin − eb(hb,fin), 0} is the final lack of

energy in bus b compared with the desired level ēb,fin.

Since the prediction model described in Section III has

a different time discretization compared with the optimal

control problem, the predicted traffic speed transmitted by the

prediction model at time instant tbs must be processed in order

to be used in the optimal control problem, where the traffic

speed must be associated with the time steps h ∈ H(tbs).
This speed is denoted as vi(h) and is computed as follows:

vi(h) =

hΓ
∑

ℓ=(h−1)Γ+1

vpredi (ℓ)

Γ
(6)

The multi-objective optimal control problem to be solved

by bus b at time tbs can be stated with the following mixed-

integer linear quadratic formulation.

Problem 1: Multi-objective optimal control problem

min
(

F1, F2

)

(7)

where

F1 =
∑

s∈S(tb
s
)

∑

h∈Hb

αb
s(h)

(

w̄b
s(h)− wb

s(h)

)2

(8)

F2 = ζb,fin (9)

subject to:

pb(h+ 1) = pb(h) + vb(h)T h ∈ H(tbs) (10)
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eb(h+ 1) = eb(h) + T
∑

s∈S(tb
s
)

ςsc
b
s(h)

− δb
[

pb(h+ 1)− pb(h)
]

− Tβb h ∈ H(tbs) (11)

pb(h)−
(

πs −∆
)

≥ σ −
(

L+ σ
)(

1− wb
s(h)

)

s ∈ S(tbs), h ∈ H(tbs) (12)

(

πs +∆
)

− pb(h) ≥ σ −
(

L+ σ
)(

1− wb
s(h)

)

s ∈ S(tbs), h ∈ H(tbs) (13)

∑

s∈S(tb
s
)

wb
s(h) ≤ 1 h ∈ H(tbs) (14)

∑

h∈H(tb
s
)

wb
s(h) ≥ ψs s ∈ S(tbs) (15)

cbs(h) ≤ wb
s(h) s ∈ S(tbs), h ∈ H(tbs) (16)

cbs(h) ≤ ηs s ∈ S(tbs), h ∈ H(tbs) (17)

γb,arrs (h)− γb,deps (h) = wb
s(h+ 1)− wb

s(h)

s ∈ S(tbs), h ∈ H(tbs) \H
b − 1 (18)

γb,arrs (h) + γb,deps (h) ≤ 1 s ∈ S(tbs), h ∈ H(tbs) (19)
∑

h∈H(tb
s
)

γb,arrs (h) + γb,deps (h) ≤ 2 s ∈ S(tbs) (20)

pb(h)− pi +M
(

1− zbi (h)
)

≥ σ

i ∈ I(tbs), h ∈ H(tbs) (21)

pi − pb(h) +Mzbi (h) ≥ 0 i ∈ I(tbs), h ∈ H(tbs) (22)

pi+1 − pb(h) +M
(

1− ybi (h)
)

≥ 0

i ∈ I(tbs), h ∈ H(tbs) (23)

pb(h)−pi+1+Mybi (h) ≥ σ i ∈ I(tbs), h ∈ H(tbs) (24)

λbi (h) ≤ zbi (h) i ∈ I(tbs), h ∈ H(tbs) (25)

λbi(h) ≤ ybi (h) i ∈ I(tbs), h ∈ H(tbs) (26)

λbi (h) ≥ zbi (h) + ybi (h)− 1 i ∈ I(tbs), h ∈ H(tbs) (27)

ζb,fin ≥ ēb,fin − eb(Hb) (28)

ζb,fin ≥ 0 (29)

0 ≤ vb(h) ≤
∑

i∈I(tb
s
)

λbi(h)vi(h) h ∈ H(tbs) (30)

vb(h) ≤

(

1−
∑

s∈S(tb
s
)

wb
s(h)

)

· vb,max h ∈ H(tbs) (31)

−∆V ≤ vb(h+ 1)− vb(h) ≤ ∆V

b ∈ B, h ∈ H(tbs) \H
b − 1 (32)

eb,min ≤ eb(h) ≤ eb,max b ∈ B, h ∈ H(tbs) (33)

where σ is a small quantity arbitrarily chosen, M is a large

quantity arbitrarily chosen, ∆ is a tolerance, L is computed

as L =
∑

i∈I(tb
s
) Li.

Problem 1 is a multi-objective optimal control problem,

including two cost terms, F1 and F2, respectively defined in

(8) and (9). In particular, F1 is related to the deviation from

the timetable, i.e. it is the quadratic difference between the

control variable wb
s(h) and its expected value w̄b

s(h) (related

to the predefined path and timetable of the bus), multiplied by

αb
s(h), which allows to properly weigh early arrivals and late

departures from stops. The second objective F2 penalizes the

final lack of energy for the bus with respect to the prescribed

final energy level.

Constraints (10) and (11) are the bus state equations.

(10) computes the distance covered by the bus on the basis

of its speed and is initialized with the measured bus state

pb(h(tbs)). Constraints (11) update the energy stored in the

bus battery by increasing it on the basis of the charging

power ςs associated with stop s [kW], and decreasing it

by considering the electric consumption δb when traveling

[kWh/km] and the electric consumption βb for the auxiliary

equipment [kW]. (11) is initialized with the state eb(h(tbs))
measured in real time.

Constraints (12)-(13) impose that wb
s(h) is equal to 0 if

pb(h) ≤ πs − ∆ or pb(h) ≥ πs + ∆, i.e. when the bus is

not in the proximity of stops. Constraints (14) ensure that

the bus can be at most in one stop in each time step, while

(15) guarantee that the bus stays in a stop for at least ψs time

steps. Constraints (16) and (17) impose, respectively, that the

bus can be charged in a bus stop only if it is waiting there

and if the stop is provided with a charging infrastructure,

considering that ηs ∈ {0, 1} is equal to 1 if bus stop s is

provided with a charging infrastructure and 0 if not.

Constraints (18) and (19) ensure that, when wb
s(h) = 0 and

wb
s(h + 1) = 1, it yields γb,arrs (h) = 1 and γb,deps (h) = 0.

When instead wb
s(h) = 1 and wb

s(h + 1) = 0, constraints

(18) and (19) force γb,arrs (h) to 0 and γb,deps (h) to 1. Both

variables γb,arrs (h) and γb,deps (h) are fixed to 0 if wb
s(h) =

wb
s(h+ 1). Constraints (20) impose that the sum of arrivals

and departures of the bus in each stop cannot be greater than

2.

Constraints (21)-(22) are used to correctly define the

variables zbi (h) and, analogously, (23)-(24) to define the vari-

ables ybi (h), depending on the bus position pb(h). Moreover,

constraints (25)-(27) define λbi(h) on the basis of zbi (h) and

ybi (h), i.e. λbi(h) = 1 if zbi (h) = ybi (h) = 1. Similarly,

constraints (28)-(29) are used to properly fix ζb,fin on the

basis of the desired final energy ēb,finin the bus battery

[kWh].

Constraints (30)-(31) impose positivity and upper bounds

for the bus speed, respectively considering the predicted

traffic flow speed vi(h) and the maximum allowed speeds

vb,max. Note that (31) also imposes that the speed is null if

the bus is at a stop. Finally, constraints (32) guarantee that the

speed variation between two consecutive time steps cannot

exceed ∆V [km/h], while (33) impose lower and upper
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bounds for the energy stored in the batteries, respectively

given by eb,min and eb,max [kWh].

B. The Lexicographic Approach

In order to solve Problem 1, that is a multi-objective opti-

mal control problem, scalarization techniques can be applied,

transforming a multi-objective optimal control problem into

a sequence of single-objective problems. In case there is a

prioritization among the objectives, lexicographic approaches

can be applied. Generally speaking, their application consists

in solving a sequence of single-objective problems, where

new constraints are added to each subsequent problem so

as to fix the already considered objectives equal to the

previously found optimal values.

For the specific case considered in this paper, Problem 1

can be solved with a lexicographic approach in two ways,

depending on the priority given to the two objectives F1

and F2. In particular, if the priority is given to F1, i.e. to

the compliance with the bus timetable, the following two

problems must be solved:

Problem 2: Lexicographic with priority to F1 - Step a

minF1 (34)

where F1 is given by (8), subject to (10)-(33).

Problem 3: Lexicographic with priority to F1 - Step b

minF2 (35)

where F2 is given by (9), subject to (10)-(33) and

F1 = F ∗
1 (36)

where F ∗
1 is the optimal value of F1 found by solving

Problem 2.

If, instead, the priority is given to F2, i.e. to the final

energy level, the following two problems must be solved:

Problem 4: Lexicographic with priority to F2 - Step a

minF2 (37)

where F2 is given by (9), subject to (10)-(33).

Problem 5: Lexicographic with priority to F2 - Step b

minF1 (38)

where F1 is given by (8), subject to (10)-(33) and

F2 = F ∗
2 (39)

where F ∗
2 is the optimal value of F2 found by solving

Problem 4.

Algorithm 1 summarizes the whole procedure to be ap-

plied at time tbs for bus b.

V. CASE STUDY APPLICATION

The considered case study is an intercity bus line located

in Italy, that is 26.3 kilometers long and includes eight

stops. The effectiveness of the lexicographic approach has

been tested considering a bus with departure at the Savona

stop scheduled at 07:13 a.m. and with departure from the

Finalborgo stop scheduled at 8:10 a.m. The bus has to meet

Algorithm 1: Control scheme at time tbs for bus b

Predict the traffic state evolution for time steps

k ∈ K(tbs) with model (1)-(3)

Predict the bus trajectory for time steps k ∈ K(tbs)
with model (4)-(5)

if tb,preds+1 > t̄bs+1 then
Apply the lexicographic scheme with priority to

F1, i.e. solve Problem 2 and Problem 3 for time

steps h ∈ H(tbs)
end

else
Apply the lexicographic scheme with priority to

F2, i.e. solve Problem 4 and Problem 5 for time

steps h ∈ H(tbs)
end

Update the control variables vb(h), wb
s(h), c

b
s(h),

h ∈ Hb(tbs), s ∈ S(tbs), and apply them until the bus

reaches the next stop at time tbs+1

the timetable shown in Table I considering a 1-minute stop

for each intermediate stop between Savona and Finalborgo.

The main parameters related to the bus and the bus stops

are the following: eb,min = 50 [kWh], eb,max = 300 [kWh],

eb(0) = 160 [kWh], which corresponds to a State of Charge

(SOC) of about 53%, ēb,fin = 200 [kWh], corresponding to

a SOC of about 67%, δb = 1.16 [kWh/km], βb = 3 [kWh],

vb,max = 70 [km/h], ςs = 150 [kW], s ∈ S. The reference

values w̄b
s(h) have been set according to the timetable given

in Table I, while the weights αb
s(h) are set to penalize late

departures more than early departures from a stop and to

strongly penalize non-compliance with the timetable.

TABLE I: Bus timetable in the Savona-Finalborgo line.

0 Savona 07:13:00

1 Vado Ligure 07:25:00

2 Bergeggi 07:30:00

3 Spotorno 07:35:00

4 Noli 07:40:00

5 Varigotti 07:45:00

6 Finalpia 07:52:00

7 Finalmarina 07:55:00

8 Finalborgo 08:00:00

The lexicographic approach implies the application of

Algorithm 1 eight times, i.e. for each bus stop from Savona

to Finalmarina. The optimization problems present in Al-

gorithm 1 have been solved in Matlab using YALMIP [14]

and adopting Gurobi 9 as solver. The time tbs, the predicted

departure time tb,preds+1 , the chosen priority and the computa-

tional times for each run of Algorithm 1 are summarized in

Table II.

For each run of Algorithm 1, the prediction of traffic

conditions along the bus line is performed using the model

described in Section III. For example, Fig. 2 shows the pro-

file, in space and time, of the average traffic speed predicted

at tb0, showing that the bus travels in free-flow conditions

from Savona to Spotorno, while it finds congestion from
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TABLE II: Application of Algorithm 1 to the case study.

s tbs t
b,pred
s+1 Priority Computational time [s]

0 07:13:00 07:19:00 F2 1003.07
1 07:25:00 07:29:00 F2 45.51
2 07:30:00 07:34:00 F2 20.51
3 07:35:00 07:40:00 F1 1.45
4 07:40:00 07:46:00 F1 0.47
5 07:46:00 07:53:00 F1 0.23
6 07:53:00 07:56:00 F1 0.09
7 07:56:00 08:00:00 F1 0.04

Spotorno to the final destination. Figure 3 shows the values

of all the optimal control variables wb
s(h) obtained in the

eight executions of the Algorithm 1. Note that the values of

wb
s(h) coincide with the values of cbs(h) for this case study.

7:13 7:25 7.30 7:35 7:40 7:45 7:52 7:55 8:00 8:10

Time [h]

Savona

Vado Ligure

Bergeggi

Spotorno

Noli

Varigotti

Finalpia
Finalmarina

Finalborgo

20

30

40

50

60

70

80

Fig. 2: Average speed [km/h] predicted at tb0 = 1.

As it is show in Table II, for the first three runs of

Algorithm 1 the bus speed and the charging and dwell times

at stops are found by prioritizing F2, i.e. the objective related

to the final level of energy. Indeed, by observing Fig. 3, it

is possible to notice that the dwell and charging times, at

the first three stops, have durations which are longer than

those expected from the timetable. From the Spotorno stop

and for all the subsequent stops, Algorithm 1 gives priority

to objective F1, i.e., adherence to the bus timetable, and thus

reducing the dwell and charging time at stops. Applying the

control approach proposed in this paper, the final energy level

achieved by the bus is about 191 [kWh], that corresponds to

a SOC of approximately 64%, while the maximum delay at

the stops is 1 minute with respect to the timetable but within

the tolerance windows defined for each stop (red dashed line

in Fig. 3).
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Fig. 3: Control variables wb
s(h) (black line) and target values

w̄b
s(h) (red dashed line).

As for the computational effort shown in Table II, it can

be stated that the proposed methodology can be implemented

in a real-world application. In fact, the greatest computa-

tional effort (16 minutes) is required at the first run of the

algorithm, which in a real-world application can also be

performed off line; for the other runs of the algorithm the

required execution times are lower than 1 minute, that is,

they are shorter than the minimum bus stop time.

VI. CONCLUSIONS

This paper deals with automated electric buses that have

to follow a given route in inter-urban roads. The proposed

control scheme is devised to define the speed profile of the

buses and the time spent at the stops for waiting passen-

gers and for charging the battery. Two main objectives are

considered, i.e. the minimization of the deviations from the

timetable and the minimization of the energy lack at the end

of the bus route. Since the priority between them can change

in real time, the proposed control scheme switches between

two lexicographic algorithms. The application of this control

strategy to a real case study shows the effectiveness of the

time-varying objective prioritization.
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