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Abstract— This paper considers the resilient synchronization
problems of multiple Euler-Lagrange (EL) systems, where the
communication network is affected by the external attacks
or internal non-participant agents. The considered adversarial
environments can cover several types of cyber-attacks, such
as misbehaving agents and false data injection attacks. The
remaining normal agents aim to reach a common decision
despite the influence of faulty agents. To this end, a “safe kernel”
based secure control scheme is proposed for the networked
Lagrangian systems. According to the scheme, each healthy
agent generates a convex hull based on the states of its neighbors
and updates its reference state toward this kernel only in each
sampling instant to reduce the computational burden. The
“average sampling interval” is used to define the number of
sampling instants for faster convergence. With an assumption
on the number of misbehaving agents, the proposed scheme
guarantees consensus of Euler-Lagrange systems even in ad-
versarial environments. Mathematical proofs and a numerical
example are presented to verify the resilience and validity of
the proposed scheme.

I. INTRODUCTION

Over the past few decades, there has been considerable
research interests in the synchronization of multi-agent sys-
tems, which investigates how to design distributed controllers
such that agents can cooperate with each other to make a
common decision or optimum [1], [2]. In the early years,
synchronization protocols were primarily based on the as-
sumption that every agent in the network was trustworthy
and cooperatively followed the algorithm throughout its
execution, thus cooperative control problem has been well
resolved [3]–[5]. However, as the scale of these systems
has grown, it has become increasingly challenging to secure
each agent in adversarial environments. On the one hand,
external attackers can transmit malicious information through
the communication link between agents [6]. On the other
hand, some misbehaving or faulty agents may fail to follow
the predefined protocols [7]. In either case, the network may
be prevented from reaching the expected common decision
[8].
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Some resilient protocols have already been designed to
address security issues in the synchronization of multi-agent
systems. However, many of these protocols simply ignore
suspicious values. In one approach presented in [9], each
healthy agent discards the most extreme values of its neigh-
bors’ states and updates its own state with the remaining
values. Building on this idea, researchers have proposed a
resilient consensus algorithm called the Mean Subsequence
Reduced (MSR) protocol in several existing works [10]–[12].
This algorithm, which can tolerate up to F malicious agents,
selects updating values within a range limited by upper and
lower bounds or discards F largest or smallest incoming
values. The goal of this protocol is to ensure that the final
agreement is bounded by the minimum and maximum initial
values of the normal agents. However, because the bounds of
MSR are fixed, some valuable information may be lost during
the updating process. To address this issue, researchers in
[13] introduced a modified algorithm called the Weighted
Mean Subsequence Reduced (W-MSR) algorithm. This pro-
tocol only removes suspicious values that are significantly
larger or smaller than the current state value of the normal
agent.

The aforementioned resilient synchronization algorithms
assumed the states of agents are scalar variables. In most
practical scenarios, such as consensus problems in 3D spaces,
agents’ states should be modeled as multi-dimensional vec-
tors. Intuitively, applying W-MSR to each entry of state vec-
tors can allow the final states of healthy agents converges to
a multi-dimensional “box”. The edges of “box” are confined
by the maximum and minimum values of initial states of
healthy agents. However, the “box” is usually larger than the
convex hull formed by the initial states of healthy agents. A
specific explanation is presented in Fig. 1.

Fig. 1: In 2D plane, initial states of healthy agents are marked with black
circles. By applying W-MSR in each dimension, the final agreement is
guaranteed to stay within the gray rectangle, which is larger than the valid
solid gray area.

To provide a more accurate convergence result, Yan et al.
developed a resilient protocol in multi-dimensional spaces
named “safe kernel” in [14]. With the application of “safe
kernel”, each normal agent creates a kernel under certain con-
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ditions and updates its state toward this kernel. This updating
strategy ensures that the final agreement will converge to the
convex hull of initial values of benign agents. Since the syn-
chronization is one of fundamental concepts in designing a
distributed algorithm, the “safe kernel” rule is generalized in
some consensus-based scenarios such as containment control
[15], distributed optimization [16] to increase the security
and resilience. In [15], the “safe kernel” is generalized to
second-order systems. However, the mentioned algorithms
cannot be directly used to the networked EL systems due to
inherent nonlinearities of EL systems.

Euler-Lagrange equation has been used to formulate a
wide range of physical systems. For instance, four-wheel
intelligent vehicles are modeled using EL systems in [17],
and 6-DOF vehicles are described by EL systems in [18].
The synchronization issues of networked Lagrangian systems
are investigated with the assumption that each agent could
exchange information with its neighbors continuously in
[19], [20]. In more practical applications, synchronization
algorithms are implemented in digital platforms, which
means the communication between agents can only happen
at sampling instants. This setting stimulates the sampled-
data control of networked EL systems [21], [22]. Because
of nonlinearities of EL systems, sampled-data control is
more complex as illustrated in [23]. In [24] the control
protocols are assumed to be unchanged during each sampling
interval, which may lead to overprovisioning of hardware, as
mentioned in [25]. Consequently, a time-varying sampled-
data control method is proposed to handle this problem.
The control inputs are designed to be time-varying during
each sampling interval and only needs to work on a specific
duration in the sampling interval. It is worth noting that these
approaches ignore cybersecurity threats and cannot handle
the misbehaving agents.

In this paper, we focus on the synchronization problems
of networked EL systems in adversarial environments. The
approaches and main contributions of this paper are summa-
rized as below:

• The “safe kernel” technique is generalized into net-
worked EL systems to achieve a resilient synchroniza-
tion with the presence of attackers or non-participant
agents. Specifically, we derive the reference states of
healthy agents by “safe kernel” which will converge into
an agreement and then design a proportional derivative
(PD) controller to drive the actual states of EL systems
towards reference values.

• The approach of characterizing the sampling frequency
through the “average sampling interval” is inspired
by the concept of “average dwell time” in switching
control. We apply this technique to determine the ref-
erence states at each sampling instant, thereby reducing
the computational workload. By incorporating a time-
varying term into control inputs, this method can ad-
dress the issue of overprovisioning in systems.

The rest parts of this paper are structured as follows:
Section II introduces some preliminaries results about EL
systems and robust networks. Section III gives a detailed

explanation of the research problem. A resilient synchroniza-
tion algorithm is proposed in section IV and the analysis of
the algorithm is presented in section V. A numerical example
is provided in section VI and the paper is conclude in section
VII.

II. PRELIMINARIES

A. Networked Euler-Lagrange systems

Consider a group of N agents as follows

Mi (xi) ẍi + Ci (xi, ẋi) ẋi + gi (xi) = τi (1)

where i = 1, 2, ..., N, the vector xi = [xi1, xi2, . . . , xim]
T ∈

Rm represents the configuration variable, Mi (xi) ∈ Rm×m

denotes the inertia matrix, Ci (xi, ẋi) ∈ Rm×m is the Cori-
olis and centrifugal torques, τi = [τi1, τi2, . . . , τim]

T ∈ Rm

is the control input, and gi(xi) ∈ Rm is gravitational torque
vector.

The properties associated with the networked Euler-
Lagrange systems are shown as follows

(i) Mi (xi) is a positive definite symmetric matrix.
(ii) For any y ∈ Rm, yT

(
Ṁi (xi)− 2Ci (xi, ẋi)

)
y = 0,

which means Ṁi (xi)−2Ci (xi, ẋi) is skew-symmetric
matrix.

B. Robust network

Denote G = {V, E} as the graph of the networked Euler-
Lagrangian systems, where V is the set of nodes, and E ⊂
V × V is the set of edges. eij ∈ E denotes an edge between
agents i and j. Any two nodes connected by an edge can
exchange information directly with each other. The set of
neighbors of node i is Ni = {j ∈ V | eij ∈ E}.

As introduced in [13], the implementation of W-MSR
requires a close coupling in graph structure. A new property,
network robustness is hereby introduced to characterize the
connectivity of the network. The formal definitions in [16]
are given as follows

Definition 1. [16] For any disjoint and nonempty subsets
V1,V2 ⊊ V , if at least one of the following statements holds:

1) ∃ i ∈ V1, s.t. node i has at least r neighbors outside V1,
2) ∃ i ∈ V2, s.t. node i has at least r neighbors outside V2,

then, the network G = {V, E} is said to be r-robustness.

Definition 2. [16] For any disjoint and nonempty subsets
V1,V2 ⊊ V , if at least one of the following statements holds

1) ∀ i ∈ V1 has at least r neighbors outside V1,
2) ∀ i ∈ V2 has at least r neighbors outside V2,
3) There are no less than s nodes in V1 ∪ V2, s.t. each of

them has at least r neighbors outside the set it belongs
to,

then, the network G = {V, E} is said to be (r,s)-robustness.
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III. PROBLEM FORMULATION

A. Resilient synchronization problems

Suppose there are N agents modeled as EL systems which
cooperate over an undirected graph G = {V, E} and xi(tk)
denotes the state of node i at time tk. Consider the influence
of attackers or faulty agents in adversarial environments,
the resilient synchronization is said to be achieved if the
following conditions are satisfied:

• Agreement : For normal agents i, j ∈ V , it holds that

lim
t→∞

(xi (t)− xj (t)) = 0, lim
t→∞

ẋi (t) = 0, (2)

where ẋi (t) represents the velocity of agent i.
• Validity: At each update iteration, the state of any

normal agent is preserved in the convex hull formed
by the initial states of all normal agents.

B. Attack model

In this subsection, the scope of threats is characterized. We
denote F as the set of malicious agents and B as the set of
benign agents, where F∩B = ∅ and F∪B = V . Considering
F faulty nodes in the network, the formal definitions of two
attack models given in [16] are described as follows:

1) F -total attack model: |F| ≤ F , that is, the number of
faulty agents is no more than F .

2) F -local attack model:|F ∩ Ni| ≤ F , that is, for any
agent i ∈ V , there are no more than F misbehaviors in
the neighborhood of agent i.

There is no restriction on the transmitted information of
the adversarial agents in the network. Since we need to con-
sider the worst case of communication situations. However,
the number of neighbors of any node in the topology should
satisfy the following assumption:

Assumption 1. For any agent in the network, it is held that
|Ni| ≥ (d+1)F +1, where d is the dimensionality of states.

Since the ”safe kernel” is the intersection of some par-
ticular convex hulls. This assumption is used to ensure the
existence of the intersection.

IV. A RESILIENT SYNCHRONIZATION ALGORITHM

Before proposing the resilient synchronization algorithm,
some definitions are given to identify the “safe kernel” and
“average sampling interval”.

A. Safe kernel

Definition 3. X i(t) ⊂ Rd with cardinality |Ni| denotes the
set states received from neighbors of agent i ∈ B at time
instant t. For someF ∈ Z≥0 and F < |Ni|, let S(X i(t),F)
denote the set of all its subsets with cardinality Ni − F .

The set S
(
X i(t), F

)
contains

(
|Ni|
F

)
elements, each

of which is associated with a convex hull. The intersection
of these convex hulls is exactly what is called ”safe kernel”.
The formal definition is given as follows:

Definition 4. Given a set Xi(t) ⊂ Rd with cardinality |Ni|,
for the number of misbehaviors F ∈ Z≥0 and F < |Ni|, we
define the intersection as the set

Ψ
(
Xi(t), F

)
≜

⋂
S∈S(Xi(t),F )

Conv (S) (3)

For simplicity, Conv(S) is the set of all convex combina-
tions of the points in a set S ⊂ Rd and denote Ψ

(
X i(t), F

)
as Si(t). From (3), we know that Si(t) is a subset of convex
hulls. To give an intuitive representation of the intersection
set, a 2D example with 6 nodes in total and 1 faulty node is
shown in 2.

Fig. 2: A 2D example of “safe kernel”, where each black circle stands for
the location (state) of the agent in the network. The number of each agent’s
neighbor is 5 and F = 1. The deep gray region represents the “safe kernel”,
Ψ

(
Xi(t), F

)
.

B. Average sampling interval

In this paper, the networked EL systems are operated at
a digital platform which is sampled at time instants tk, k =
0, 1, 2, . . . (t0 = 0 and tk → ∞ as t → ∞). The sampling
interval is defined as hk = tk+1 − tk. The formal definition
of ”average sampling interval” introduced in [25] is shown
as below.

Definition 5. The “average sampling interval” is said to be
no more than T , if ∃T > 0 and N0 > 0, s.t.

N (t, t0) ≥
t− t0
T

−N0, (4)

where t > t0 and N(t, t0) denotes the number of sampling
instants in the interval [t0, t).

Remark 1. Definition 5 is intended to characterize the sam-
pling frequency of the controller. In early states, increasing
the sampling frequency can provide more information for
achieving faster tracking of actual states to reference states.
In later stages, when the actual and reference states are
very close, we can consider lowering the sampling frequency
as compensation. Overall, we only need to ensure that the
number of sampling instants is greater than N (t, t0) within
a certain interval. The performance of “average sampling
interval” is compared with the fixed sampling interval in
Section VI.

C. Algorithm design

The security updating protocol is composed of two exist-
ing approaches, namely, ”safe kernel” and ”average sampling
interval”. The state of agent i is denoted as xi (tk) ∈ Rd at
time instant tk. The sampling sequence {tk} satisfies the
property introduced in Definition 5. Each benign agent has
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an initial state xi(0). At any sampling instant tk > 0, all
normal agents will update their own states as outlined in
Algorithm 1.

Algorithm 1 Resilient synchronization of EL systems

1: Receive the states xj(tk), j ∈ Ni from all neighbors of
agent i and collect them in X i(tk).

2: Compute Ψ
(
X i(tk), F

)
with the method in [26] and

denote this set as Si(tk) for simplicity.
3: Let p = tk mod d. Compute lp(x) = eTp x, where ep

is the p-th canonical basis vector in Rd and each state
x ∈ X i(tk).

4: Let ml be the dF+1 smallest value among lp(x). Derive
yi (tk) ∈ Si (tk), such that lp (yi (tk)) ≤ ml.

5: Let M l be the dF +1 largest value among lp(x). Derive
zi (tk) ∈ Si (tk), such that lp (zi (tk)) ≥ M l.

6: Compute the reference states of agent i in [tk, tk+1):

xr,i (t) =
xi (tk) + yi (tk) + zi (tk)

3
. (5)

7: Design PD control torque τi for agent i:

τi = −Kpx̃i −KDẋi + g(xi), (6)

where x̃i = xi (t) − xr,i (t), KD and KP are constant
symmetric positive definite matrices. The sampling pe-
riods are defined in (4).

Remark 2. The reference state of each faulty-free agent
is computed by “safe kernel” method in Steps 1 to 6.
To decrease computational workload, the reference states
for the next sampling interval is only calculated in the
sampling instant. Unlike simply using W-MSR to remove
extreme information in each dimension, the “safe kernel”
only requires each faulty-free agent to sort all neighbor
state vectors in dimension p at time tk, obtaining vectors
yi(tk) and zi(tk) that do not contain the F largest and
F smallest information, respectively. These two vectors are
then averaged with the agent’s actual state at instant tk to
obtain a reference state for the next sampling interval. This
reference state fully utilizes the information of all neighbors
and limits the impact of F faulty agents. The following
lemmas will prove that the healthy agents will not update
their reference states outside the “safe kernel,” and the “safe
kernel” is vanishing exponentially, which means that the
reference states will achieve an agreement exponentially. To
enable each healthy agent’s actual state to track its reference
state, we design distributed PD controllers.

V. ALGORITHM ANALYSIS

A. Reliability

To guarantee the implementation of the algorithm, we need
to analyze the nonempty property of Si (tk) and the existence
of yi (tk) and zi (tk). The Helly’s Theorem [27] is a useful
tool to demonstrate that Si (tk) is nonempty:
Helly’s Theorem: Let X1, X2, . . . , Xp be a finite set consist-
ing of convex subsets in Rd, where p > d. If the intersection

of every d+ 1 convex hulls is nonempty, then we have:
p⋂

j=1

Xj ̸= ∅. (7)

From the definition of S
(
Xi(t), F

)
, each convex hull is

constructed by deleting F elements in Xi (tk). Then, if we
select any d + 1 convex hulls, at most F (d + 1) elements
in Xi (tk) will be removed. According to Assumption 1, the
cardinality of Xi (tk) is larger than or equal to (d + 1)F+
1 , which guarantees that at least one point is retained by
all convex hulls. This means that any d + 1 convex hulls
have a nonempty intersection. With the application of Helly’s
Theorem, Si (tk) is said to be nonempty.

To verify the existence of yi (tk), we firstly introduce a
lemma in [16] which has been well proved.

Lemma 1. [16] If any two sets, A1 with cardinality m1

and A2 with cardinality m2, satisfy A1 ⊂ A2, then for any
n ≤ m1 ≤ m2,Ψ(A1, n) ⊂ Ψ(A2, n) holds.

Then, define a set A ⊂ Xi (tk) with cardinality (d+1)F+
1, such that it contains dF+1 points x̄ satisfying lp(x̄) ≤ ml.
Because Ψ(A, F ) ⊂ Ψ

(
Xi (tk) , F

)
from Lemma 1 , we

have that any x in Si (tk) also has lp(x) ≤ ml. So, there
must exist yi (tk). And the existence of zi (tk) can be proved
similarly.

B. Validity

For simplicity, we denote the convex hull formed by the
benign agents’ states at time tk as Ω (tk).

Lemma 2. If the misbehaving agents in graph G = {V, E}
follow the F-total or F-local attack model, we have the
following relation with the application of Algorithm 1:

Ω (tk+1) ⊂ Ω (tk) . (8)

Proof. With the existence of F misbehaving agents, Ω (tk)
is constructed by |Ni| − F state values of healthy agents.
Since Si (tk) is the intersection of all convex hulls formed
by |Ni|−F neighboring states, we can derive that Si (tk) ⊂
Ω (tk). From the definition of ”safe kernel”, the reference
state of each healthy agent holds that xr,i (tk+1) ∈ Ω (tk).
Lemma 1 is proved.

Hence, by lemma 2, the benign agents will never update
their states out of the convex hull formed by initial states,
namely Ω(0). So far, the validity of Algorithm 1 is guaran-
teed.

C. Agreement

Now two lemmas are established to show the consensus
of all benign agents’ reference states.

Lemma 3. Consider a network with [(d + 1)F + 1]-
robustness. Suppose that the misbehaving agents follow the
F -local attack model. With the application of “safe kernel”,
the reference states of healthy agents are guaranteed to be
exponential synchronization, regardless misbehaviors’ states.
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Lemma 4. Consider a network with (dF + 1, F + 1)-
robustness. Suppose that the misbehaving agents follow the
F -total attack model. With the application of “safe kernel”,
the reference states of healthy agents are guaranteed to
be exponential synchronization, regardless of misbehaviors’
states.

Proof. To prove Lemma 3, two extreme values among p−th
components of normal agents’ reference states at instant tk
are defined as follows

mp (tk) ≜ min
i∈B

xp
r,i (tk) ,M

p (tk) ≜ max
i∈B

xp
r,i (tk) . (9)

Considering the symmetry property between each di-
mension, we will analyze the synchronization condition at
the first component for simplicity. Let ∆1(tk) denote the
difference between its minimum and maximum values, i.e.

∆1(tk) = M1(tk)−m1(tk). (10)

The consensus of reference states can be achieved when
∆1(tk) approaches 0 exponentially. Throughout the proof,
we suppose ∆1(tk) > 0. Then, for t̄k ≥ tk, t̄k mod d = 1
and ϵ ∈ R, we define two sets:

VM (tk, t̄k, ϵ) ≜
{
i ∈ V : x1

i (t̄k) > M1 (tk)− ϵ
}
,

Vm (tk, t̄k, ϵ) ≜
{
i ∈ V : x1

i (t̄k) < m1 (tk) + ϵ
}
.

(11)

Let BM (tk, t̄k, ϵ) and Bm (tk, t̄k, ϵ) be two disjoint sets
containing only benign agents’ states in VM (tk, t̄k, ϵ) and
Vm (tk, t̄k, ϵ)

BM (tk, t̄k, ϵ) ≜ VM (tk, t̄k, ϵ) ∩ B
Bm (tk, t̄k, ϵ) ≜ Vm (tk, t̄k, ϵ) ∩ B,

(12)

which satisfy∣∣BM (tk, t̄k, ϵ)
∣∣+ |Bm (tk, t̄k, ϵ)| ≤ |B|. (13)

In the proof procedure, we also suppose ∆1 (tk) > 0.
Define ϵ0 = ∆1(tk)

2 . From the definition of [(d + 1)F+
1]-robustness network, BM (tk, tk, ϵ0) or Bm (tk, tk, ϵ0) has
at least one healthy agent with no less than (d + 1)F + 1
neighbors outside its own set at sampling instant tk. Under
the F -local attack model, at least dF + 1 neighbors in
V\BM (tk, tk, ϵ0) have the property that x1

i (tk) ≤ M1 (tk)−
ϵ0. In the algorithm, ml is the dF + 1 smallest values.
Therefore, we have y1i (tk) ≤ ml ≤ M1 (tk) − ϵ0. Then,
the reference state of agent i at next sampling instant can be
transformed into

xr,i (tk+1) =
xi (tk) + yi (tk) + zi (tk)

3

≤ 1

3
M1 (tk) +

1

3

(
M1 (tk)− ϵ0

)
+

1

3
M1 (tk)

= M1 (tk)−
1

3
ϵ0. (14)

This upper bound also applies to any healthy agents in
V\VM (tk, t̄k, ϵ). Similarly, we have xr,i (tk+1) ≥ m1 (tk)+
1
3ϵ0 for any benign agent in Bm (tk, tk, ϵ) from z1i (tk) ≥
M l ≥ m1 (tk) +

1
3ϵ0. Also, this lower bound can apply to

any healthy agent in V\Vm (tk, t̄k, ϵ).

Let ϵ1 = ϵ0/3. From above, it can be deduced
that no less than one healthy agent in BM (tk, tk, ϵ0)
[resp.Bm (tk, tk, ϵ0)] has its reference state’ first compo-
nent decreased below M1 (tk) − ϵ1 [resp. increased above
m1 (tk) + ϵ1]. Thus, BM (tk, tk+1, ϵ1) ⊊ BM (tk, tk, ϵ0), or
Bm (tk, tk+1, ϵ1) ⊊ Bm (tk, tk, ϵ0), or both hold.

Now, we consider the next updating instant tk+2. We have
y1i (tk+1) ≤ ml ≤ M1 (tk) − ϵ1. For any benign agent in
V\VM (tk, tk+1, ϵ), we can obtain:

xr,i (tk+2) =
xi (tk+1) + yi (tk+1) + zi (tk+1)

3

≤ 1

3
M1 (tk+1) +

1

3

(
M1 (tk)− ϵ1

)
+

1

3
M1 (tk+1)

≤ 1

3

(
M1 (tk)− ϵ1

)
+

2

3
M1 (tk)

= M1 (tk)−
1

3
ϵ1

= M1 (tk)− ϵ2 (15)

Define ϵd = ϵ0
3d

where integer d ≥ 1. From the recursive
process above, one can derive that BM (tk, tk+d, ϵd) ⊂
BM (tk, tk+d−1, ϵd−1) ⊂ · · · ⊂ BM (tk, tk+1, ϵ1) ⊊
BM (tk, tk, ϵ0) as long as BM (tk, tk+d, ϵd) is nonempty.
Similarly, Bm (tk, tk+d, ϵd) ⊊ Bm (tk, tk, ϵ0). It is clear that
one of sets BM (tk, t̄k, ϵ) and Bm (tk, t̄k, ϵ) will vanish at
next sampling instant. Because ϵd < ϵ0, nonempty sets
BM (tk, tk+d, ϵd) and Bm (tk, tk+d, ϵd) are always disjoint.
With the fact (12), at least one of the following conditions
holds

BM
(
tk, tk+|B|, ϵ|B|

)
= ∅,Bm

(
tk, tk+|B|, ϵ|B|

)
= ∅. (16)

From (16), at instant t + |B|, reference states’ first compo-
nents of all benign agents satisfy

M1
(
tk+|B|

)
≤ M1 (tk)− ϵ|B|,

m1
(
tk+|B|

)
≥ m1 (tk) + ϵ|B|.

(17)

Combining the two inequalities above, it yields

∆1
(
tk+|B|

)
≤

(
1− 1

2× 3|B|

)
∆1 (tk) . (18)

As a result, the differences between maximum and min-
imum of healthy agents’ reference states in the first entry
will shrink exponentially. This proof is applicable in each
dimension of the reference state vector. Similarly, we can
prove Lemma 4.

Based on the established lemmas above, we have the
following main theorem.

Theorem 1. Consider the networked Lagrangian systems
under an undirected graph G = {V, E}, with the sampling
instants sequence satisfying condition (4). Suppose one of
the following conditions is satisfied:

1) The network is ((d+1)F+1)-robust and under F-local
attack model.

2) The network is (dF+1,F+1)-robust and under F-total
attack model.
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With the application of Algorithm 1, normal agents asymp-
totically reach the resilient synchronization.

Proof. Lemmas 3 and 4 imply that normal agents’ reference
states will approach an agreement exponentially with the
increment of sampling instants. Now, we need to ensure
that actual states approach reference states asymptotically
as follows

lim
t→∞

x̃i(t) = 0, lim
t→∞

ẋi (t) = 0, (19)

where i ∈ B. To this end, we construct a Lyapunov function
inspired by the mechanical energy of EL systems, namely

V (t) =
1

2

N∑
i=1

(
ẋT
i Mi (xi) ẋi + x̃T

i KP x̃i

)
, (20)

Taking derivative of (20) over [0,+∞), applying (6) and
properties (i), (ii) of EL systems, we obtain:

V̇ (t) =

N∑
i=1

(
ẋT
i Miẍi

)
+

1

2

N∑
i=1

(
ẋT
i Ṁiẋi

)
+

N∑
i=1

(
˙̃xT
i KP x̃i

)
=

N∑
i=1

[
ẋT
i (Miẍi + Ci(xi, ẋiẋi))

]
+

N∑
i=1

(
ẋT
i KP x̃i

)
=

N∑
i=1

(
ẋT
i (−KD)ẋi

)
≤ 0

as KD is symmetric positive definite and α (t, tk) is a
semi-positive time-varying function. We have to ensure that
closed-loop systems cannot be ”stuck” at a point where
V̇ = 0 while x̃i ̸= 0. For this purpose, we invoke the Global
La Salle’s Invariant Set Theorem[28]. As V̇ (t) = 0 results
in ẋi = 0, i ∈ B, it follows that ẍi = M−1

i KP x̃i. Therefore,
V̇ (t) can only be 0 if x̃i = 0, which implies EL systems do
converge to the reference states asymptotically.

VI. NUMERICAL EXAMPLE

The established theoretical results are now illustrated and
verified by the following example. Given an undirected graph
G = {V, E}, we present the communication topology in Fig.
3. The network is with [(d + 1)F + 1]−robustness, where
d = 2, F = 1. The attack model is F -local type.

Fig. 3: Communication network

We suppose that Agent 2 is a faulty one, which will update
its state as x1

2 = 1.5 sin t
5 , x

2
2 = t

25 + 1. Other benign
agents’ states are initialized as: x1(0) = (0, 0), x3(0) =
(2, 0), x4(0) = (1, 3), x5(0) = (2, 4), x6(0) = (3, 3).

The specific settings of EL equations are shown below:

Mi (xi) =

[
Mi11 Mi12

Mi21 Mi22

]
, (21)

where Mi11 = a1 + 2a3 cos
(
x2
i

)
+ 2a4 sin

(
x2
i

)
,Mi22 =

a2, Ci (xi, ẋi) =

[
−bẋ2

i −b
(
ẋ1
i + ẋ2

i

)
bẋ1

i 0

]
, a1 =

3.93, a2 = 1.53, a3 = 1.6 cos π
6 , a4 = 1.6 sin π

6 , b =
1.6 cos π

6 sin
(
x2
i

)
− 1.6 sin π

6 cos
(
x2
i

)
, and gi(xi) =[

9.8x1
i

9.8(x1
i − x2

1)

]
. Given KD = 5I2 and KP = 10KD, the

PD control input is designed as:

τi = −KDẋi −Kpx̃i + gi (xi) . (22)

To satisfy the requirements of Definition 5, we suppose
that sampling interval T1 = 0.25s in t ∈ [0, 20) and
T2 = 0.375s in t ∈ [20, 40]. All the simulations are
implemented in MATLAB. The performance of Algorithm 1
is represented in Fig. 4, which verifies the result in Theorem
1.For comparisons, we also conducted a simulation with a
fixed sampling length T = 0.3125s to maintain the total
number of sampling instants. Results of states x1

i of Agent
i, i=1,2,...., 6, from the comparison simulations are shown in
Fig. 5 as an example, which demonstrate that the “average
sampling interval” can indeed accelerate the convergence of
networked EL systems.

Fig. 4: Simulation results with application of Algorithm 1 (x1
i and x2

i against
time(sec)). Red curve denoted the malicious agent.

VII. CONCLUSION

In this paper, we proposed a resilient synchronization
scheme for networked Lagrangian systems. The key concept
of this strategy is driving reference states of healthy agents
into “safe kernel” and designing distributed PD controllers
to enable actual states to track the reference states. Under
the robust network and for certain attacks, normal agents
asymptotically achieve consensus with application of our
proposed scheme. Moreover, the “average sampling interval”
is applied to adjust the sampling frequency for good tracking
of actual states to reference states.
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Fig. 5: State x1
i of two different sampling schemes.
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