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Abstract— In this work, a distributed indirect adaptive con-
troller is designed for a group of robotic agents cooperatively
manipulating a common payload. Uncertainty on the model
of the manipulated object and limited actuation capabilities of
the single agents can significantly impact the overall behavior
of the control system. An indirect adaptive control scheme
is proposed in this paper to address these shortcomings. In
particular, model uncertainty and loss of effectiveness of the
actuators are handled in a unifying fashion by an adaptive
control architecture that preserves physical consistency of the
estimated inertial parameters of the manipulated object, while
simultaneously providing an anti-windup mechanism for the
estimated inertial parameters against actuator saturation. The
stability of the closed loop system is proven theoretically and the
performance and robustness of the control system are validated
by means of comparative simulations with respect to a baseline
state-of-the-art controller.

I. INTRODUCTION

In certain application domains, manipulating an object via
coordination of multiple agents may be more advantageous
or even necessary than manipulation via a single agent [1].
It is therefore unsurprising that cooperative manipulation
has attracted considerable attention in the robotics com-
munity. Early work involves multi-arm robots with only
a few agents and centralized architectures, and relies on
complete knowledge of the system dynamics. Recent efforts
attempt at relaxing such requirement. Specifically, in [2], a
fully decentralized robust control solution is designed for
cooperatively manipulating a shared load on a plane. Therein,
a decentralized estimator is employed to identify the inertial
parameters of the manipulated object. Similarly, the authors
of [3] propose a preliminary identification stage during which
the object is moved via specific contact wrenches to estimate
the kinematic and dynamic parameters of the object. A
distributed force controller is then developed to regulate the
tracking error and limit the internal forces on the object. In
[4], a passivity-based control design is proposed to deal with
the unknown manipulated object and environment.

Adaptive control has emerged as an alternative approach
to off-line systems identification when dealing with model
uncertainty arising from an unknown manipulated object.
Among early works employing adaptive technique, [5] and
[6] employ adaptation within a centralized robust control
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architecture. More recently, the authors of [7] proposed an
adaptive decentralized direct controller handling parameter
uncertainties of both the agents and the manipulated object.
It is noted, however, that uncertainty on the point of grasp
of each individual agent was not considered, as only masses
and inertia parameters were subjected to adaptation. In [8],
the previously cited method is extended to the case where
also the position of the center of mass of the payload and
the grasping points are assumed to be unknown. However,
in contrast to the previous work, the dynamics of the manip-
ulators were not considered.

Two distinct approaches to adaptive control exist: direct
and indirect adaptive control. In the former approach, the
parameters of the controller are adjusted online based on the
output of an error system. In the latter technique, the model
parameters are adjusted online using a predictor of the plant
model, and the controller gains are updated accordingly. To
the best of the authors knowledge, none of the works present
in the literature consider an indirect adaptive approach to
simultaneously dealing with model uncertainties (including
the manipulated object) and the presence of non-negligible
adversarial actuators effects. The lack of popularity of indi-
rect adaptive control schemes in robotics applications can
be traced to the necessity of guaranteeing at all times
invertibility of the estimated inertia matrix for a predictor of
the robotics dynamics to be employed. To fill this gap, this
work presents a novel distributed indirect adaptive control
scheme for a group of N cooperating agents manipulating
a common payload. Input saturation and agent efficiency
are directly considered alongside uncertainty on the location
of the points of grasp in a control architecture comprising
an observer-based dynamic estimator. Moreover, inspired
from [9], a natural adaptation law is employed for updating
online the inertial parameters of the manipulated object while
preserving their physical consistency. This results in an esti-
mated inertia matrix which is invertible at each time instant,
thus allowing a simple implementation of the predictor.

II. ASSUMPTIONS AND NOTATION

A. System and Environmental Assumptions

Similarly to the works [7], [8] the manipulated object is
considered to be passive and rigid, that is, it is not equipped
with any actuator and does not deform when wrenches are
applied. The object is manipulated from N contact points,
one for each autonomous agent acting on it. The grasps are
considered to be firm, allowing a full wrench to be applied
at each contact point. It is assumed that all the cooperating
agents are able to measure or receive from a leader agent
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Fig. 1: Passive object with the indication of the frames of interest.

the pose and velocity of a point on the manipulated object
called the measurement point with respect to the inertial
frame. The trajectory followed by the manipulated object is
assumed to be available to each agent. The uncertain inertial
parameters of the grasped object are assumed to range within
a known compact set. The effect of gravity is not considered
in this work. If necessary, it could easily be incorporated as
an external force applied to the system, to be compensated
by the manipulating agents.

B. Notation

The main reference frames and vectors used throughout
this work are shown in Fig. 1, where frame I represents
the inertial frame. First, a body-fixed frame P is placed
at the measurement point. A second body-fixed frame B is
placed at the center of mass of the passive object, and is
aligned with frame P . The position of the ith grasping point,
with i = 1, . . . , N , is identified by the origin of frame Gi.
Without loss of generality, in order to simplify the notation,
the Gi frames are also aligned with frame P . The vector
p ∈ R3 represents the position of the measurement point
with respect to the origin of the inertial frame I, expressed
in inertial coordinates. The orientation of frame P with
respect to the inertial frame I is described by the rotation
matrix R ∈ SO(3). The linear and angular velocities of
the measurement point with respect to the inertial frame I,
expressed in inertial coordinates, are denoted by v ∈ R3

and ω ∈ R3, respectively. The wrench applied at the mea-
surement point, expressed in I-coordinates, is represented
by τp =

[
fT
p , tTp

]T ∈ R6, where fp ∈ R3 and tp ∈ R3 are
the force and torque components, respectively. The position
of the ith grasping point and center of mass of the passive
object with respect to the measurement point (expressed in
P coordinates) are represented by the vectors ri ∈ R3 and
rb ∈ R3, respectively. The mass and inertia matrix of the
manipulated object with respect to frame P are denoted by
the symbols m ∈ R and I ∈ R3×3, respectively. The n× n
identity matrix and zero matrix are respectively denoted by
with In×n and 0n×n. The Euclidean norm is denoted by
|x| =

√
xTx, x ∈ Rn. Finally, the infinity and asymptotic

norms of a signal x(·) are defined as follows:

||x(·)||∞ := sup
t≥0

|x(t)|, ||x(·)||a := lim sup
t→0

|x(t)|

III. SYSTEM DYNAMICS

The dynamical model describing the motion of the passive
object referred to the measurement point can be readily

derived using the Newton-Euler formulation [8]

M(x)ẍ+C(x, ẋ)ẋ = τp (1)

with

M(x) =

[
mI3×3 −m [Rrb]×

m [Rrb]× RIRT

]
C(x, ẋ) =

[
03×3 −m [ω]× [Rrb]×

[ω]× [Rrb]× [ω]× RIRT −m
[
[Rrb]× v

]
×

]
where [·]× is the skew symmetric matrix representing the
cross product [v]×ω = v × ω with v,ω ∈ R3, and x :=
(p,R) ∈ R3 × SO(3) is the pose of the manipulated rigid
body. With a mild abuse of notation, generalized velocities
and accelerations are denoted by ẋ :=

[
vT ,ωT

]T ∈ R6 and
ẍ :=

[
v̇T , ω̇T

]T ∈ R6, respectively. The matrix M(x) ∈
R6×6 is the inertia matrix and C(x, ẋ) ∈ R6×6 is the matrix
of Coriolis and centrifugal forces and torques.

A. Linear formulation with respect to the inertial parameters

It is well known that the right-hand side of equation (1)
admits a linear parametrization with respect to the inertial
parameters of the manipulated object of the form

Yθ(x, ẋ, ẍ)θ = M(x,θ)ẍ+C(x, ẋ,θ)ẋ (2)

where Yθ(x, ẋ, ẍ) ∈ R6×10 is a regressor and θ ∈ Θ is a
vector collecting all inertia parameters where Θ ⊂ R10 is a
known compact and convex set. Specifically, θ is given by

θ =
[
m,hT

c , I
xx, Iyy, Izz, Ixy, Iyz, Izx

]T
where hc := mrb ∈ R3 and Iαβ ∈ R are the entries of
the inertia matrix I . The set of physically consistent inertial
parameters [10] does not span the entirety of R10, but only
a subset M ⊂ R10 which is convex as well [9]. For later
use, let Mc := M ∩ Θ be the set of physically consistent
parameters within the set Θ.

B. Actuators dynamics

The passive object is manipulated from the N grasping
points. Consequently, the right-hand side of equation (1) is
rewritten as follows [8]

τp =

N∑
i=1

τpi =

N∑
i=1

H(R, ri)τgi (3)

where τpi
∈ R6 is the portion of the wrench τp applied by

the ith agent at the measurement point, and

H(R, ri) =

[
I3×3 03×3

[Rri]× I3×3

]
∈ R6×6

is the grasp matrix mapping the wrench τgi applied at the
grasping point ri to the resulting wrench τpi

.

Property 1. The following properties of the grasp matrix
arise from its structure and the linearity of the [·]× operator:

a) H(R, ra)H(R, rb) = H(R, ra + rb)
b) The grasp matrix is always invertible, since it consists

of a lower left triangular matrix with positive elements
on its diagonal and it holds H−1(R, r) = H(R,−r)
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c) There exist a regressor Yr(R, τ ) ∈ R6×3 such that
H(R, r)τ = τ + Yr(R, τ )r holds

The dynamics of the agents generating the wrenches τgi ,
i = 1, . . . , N can be very different depending on the
scenario considered. However, it is reasonable to assume that
every agent is able to produce a wrench that is limited in
magnitude, and the actuators are subject to possible loss of
efficiency related to performance degradation. On the basis
of these considerations, equation (3) is rewritten as

τp =

N∑
i=1

H(R, ri)Λisati(u
cmd
i ) (4)

where ucmd
i is the wrench applied at Gi by the ith agent,

sati(·) is the saturation function of the ith agent, and Λi =
diag(λi) ∈ R6×6 represents the efficiency of the actuation
provided by the ith agent. The vector λi collecting the
entries on the diagonal of Λi ranges in the convex and
compact set Λ := {λi ∈ R6|λmin ≤ λi,j ≤ 1 with j =
1, . . . , 6 and λmin ∈ (0, 1]}. In addition, the vectors ri are
assumed to range on a convex and compact set R ⊂ R3.

Using the property (1.a) and linearity, it is possible to
rewrite equation (4) in two new forms, one that is more
suitable for estimation (5a) and the other for control (5b)

τpi
= H(R, ri)Λiui = Λiui + Yr(R,Λiui)ri

= Yλ(ui)λi + Yρ(R,ui)ρi (5a)
= H̄(R,λi,ρi)ui (5b)

where ui := sati(u
cmd
i ) is the ith saturated commanded

control input, Yλ(ui) ∈ R6×6 and Yρ(R,ui) ∈ R6×9

are two regressors, ρi = [rTi λi,1, r
T
i λi,2, r

T
i λi,3]

T ∈ R
where R ⊂ R9 is a known compact and convex set, and
H̄(R,λi,ρi) ∈ R6×6. It is noted that H̄(R,λi,ρi) is
also invertible since it is a lower left-triangular matrix with
positive elements on its diagonal.

IV. INDIRECT ADAPTIVE CONTROLLER

In this section, a distributed indirect adaptive controller
is designed for the group of agents manipulating the passive
object with the aim of making the measurement point follow
a given trajectory. This controller is designed to handle model
parameter uncertainties and a potential loss of efficiency in
the actuators of the agents. In addition, an anti-windup-like
mechanism is embedded in the adaptive laws to deal with the
saturation of the actuators. In the proposed solution, every
agent employs a dynamic parameter estimator, consisting
of an adaptive observer, to tune online the parameters of
the model. The controller is distributed, since the ith agent
controls the portion of the dynamics that are only related
to the ith actuator. However, the controller is not fully
decentralized, since it is required that a leader agent collects
all the velocity estimates ξi ∈ R6 and broadcasts the
reconstructed total velocities estimate ξ ∈ R6.

A. Adaptive Observer

The adaptive observer of the ith agent has the form

M(x, θ̂i)ξ̇i = τ̂pi
−C(x, ẋ, θ̂i)ξi −Kobs(ξi − αiẋ) (6)

ξi(0) = ξi0 ∈ R6

with

τ̂pi
= H(R, r̂i)Λ̂iui = H̄(R, λ̂i, ρ̂i)ui (7a)

= Yλ(ui)λ̂i + Yρ(R,ui)ρ̂i (7b)

where Kobs ∈ R6×6 is a symmetric positive definite
gain matrix, αi ∈ R, i = 1, . . . , N are scalars such that∑N

i=1 αi = 1, θ̂i = θ+ θ̃i is the estimated inertial parameter
vector with estimation error θ̃i, τ̂pi is the estimate of the
wrench applied by the agent ith at the measurement point,
obtained using the estimates λ̂i = λi+ λ̃i and ρ̂i = ρi+ ρ̃i

with estimation errors λ̃i and ρ̃i. In (6), the dependence of
M(·) and C(·) on the estimated inertial parameters θ̂i is
highlighted. In addition, if θ̂i is physically consistent then
M(x, θ̂i) is positive definite (hence invertible).

The update laws for θ̂i, λ̂i, ρ̂i, i = 1, . . . , N , are selected
as follows

˙̂
θi = Proj

θ̂i∈Θ

{γig−1(θ̂i)Ȳ
T
θ (x, ẋ, ξi, ξ̇i)ξ̃} (8)

˙̂
λi = Proj

λ̂i∈Λ

{−TiY
T
λ (ui)ξ̃} (9)

˙̂ρi = Proj
ρ̂i∈R

{−ΥiY
T
ρ (R,ui)ξ̃} (10)

where θ̂i(0)∈ int{Θ}, λ̂i(0)∈ int{Λ}, ρ̂i(0)∈ int{R}, and

Ȳθ(x, ẋ, ξi, ξ̇i)θ := M(x,θ)ξ̇i +C(x, ẋ,θ)ξi (11)

The variables ξ̃i := ξi−αiẋ and ξ̃ :=
∑N

i=1 ξ̃i =
∑N

i=1(ξi−
αiẋ) = ξ − ẋ denote the partial and the total velocity
estimation errors, respectively, γi ∈ R is a positive scalar,
and Ti ∈ R6×6,Υi ∈ R9×9 are positive definite symmetric
gain matrices. The operator Proj{·} is the smooth projection
defined in [11] whereas g(·) ∈ R10×10 is the pullback of the
affine-invariant Riemannian metric on the manifold of the
positive definite symmetric matrices to R10 defined in [12].
It should be noted that, since θ̂i is projected into Θ, and the
pullback g(θ̂i) ensures that θ̂i(t) ∈ M, then θ̂i(t) ∈ Mc

for all t ≥ 0. Consequently, the matrix g(θ̂i(t)) is symmetric
and positive definite for all t ≥ 0. Asymptotic convergence
to zero of the errors ξ̃i(t) is proven in Theorem 1.

B. Adaptive Controller

In this subsection, a distributed controller for the ith

agent is designed based on its observer dynamics. Position,
orientation and velocity errors are defined with respect to a
smooth reference trajectory of the rigid body at measurement
point as follows

p̃ = p− pref , ṽ = v − vref

R̃ = RRT
ref , ω̃ = ω − R̃ωref

(12)
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The kinematic relation between p̃ and ṽ is ˙̃p = ṽ. The
Modified Rodriguez Parameters (MRP) [13] are used to
parameterize the orientation error R̃ ∈ SO(3). Note that
R̃ = I3×3 ⇔ σ̃ = 0. The propagation equation of the MRP
is

˙̃σ =
1

2
G(σ̃)ω̃ (13)

where G(σ̃) := 1−σ̃T σ̃
2 I3×3 − [σ̃]× + [σ̃]

2
×. Define the

augmented velocity errors

verr := v − vcmd = v − vref +Kpp̃ = ṽ +Kpp̃ (14)

ωerr := ω − ωcmd = ω−R̃ωref +Kσσ̃ = ω̃ +Kσσ̃ (15)

where vcmd := vref −Kpp̃ and ωcmd := R̃ωref −Kσσ̃ are
the commanded linear and angular velocities, respectively,
and Kp ∈ R3×3,Kσ ∈ R3×3 are symmetric positive
definite matrices. To simplify the upcoming discussion, it
is convenient to define the signals x̃ :=

[
p̃T , σ̃T

]T ∈ R6,
ẋerr :=

[
vT
err,ω

T
err

]T ∈ R6 and ẋcmd :=
[
vT
cmd,ω

T
cmd

]T ∈
R6. Combining equations (14), (15) and (13) the dynamics
of the pose error x̃ is given by

˙̃p = −Kpp̃+ verr, ˙̃σ =
1

2
G(σ̃) [−Kσσ̃ + ωerr] (16)

Proposition 1. Assume that ẋerr ∈ L∞,e. Then, the dynam-
ics of the position and orientation error (16) are ISS with
respect to the inputs v̇err and ω̇err, respectively. In particular,
the bounds

||p̃(·)||∞ ≤ max

{
|p̃(0)|, 1

λmin(Kp)
||verr(·)||∞

}
(17a)

||σ̃(·)||∞ ≤ max

{
|σ̃(0)|, 1

λmin(Kσ)
||ωerr(·)||∞

}
(17b)

hold, where p̃(0) ∈ R3, σ̃(0) ∈ R3 are the initial conditions
of the respective signals and λmin(·) denotes the minimum
eigenvalue of the argument matrix.

Proof. The result follows immediately from [11, Lemma
3.3] applied to the Lyapunov functions V1(p̃) =

1
2 p̃

T p̃ and
V2(σ̃) = 2 ln(1 + σ̃T σ̃).

As a result, it is sufficient to regulate ẋerr(t), to zero
to regulate the pose error to zero. However, the dynamics
of ẋerr depend on the unknown parameter θ. This can be
easily noticed by substituting (1) in the expression of the
time derivative of (14) and (15). To avoid the occurrence of
θ, the commanded error for the ith agent is defined as

zi := ξi − αiẋcmd, i = 1, . . . , N. (18)

and the cumulative error as z :=
∑N

i=1 zi. Since

z =

N∑
i=1

(ξi − αiẋcmd) = ξ − ẋcmd = ξ̃ + ẋerr (19)

if ξ̃(t) → 0 and z(t) → 0, then also ẋerr(t) → 0 by
virtue of (19). The occurrence of the former condition is
provided in the proof of Theorem 1. Next, the control ucmd

i

is designed to regulate zi(t) to zero in absence of saturation.
Substituting (6) in the time derivative of (18) yields

M(x, θ̂i)żi =−C(x, ẋ, θ̂i)ξi −Kobs(ξi − αiẋ)

+ H̄(R, λ̂i, ρ̂i)ui −M(x, θ̂i)αiẍcmd

where ui = ucmd
i − dzi(u

cmd
i ), being dzi(·) the deadzone

associated with sati(·). In the following, the contribution
of the deadzone to the control input is considered to be a
disturbance since it can not be eliminated. The control input

ucmd
i = H̄−1(R, λ̂i, ρ̂i)

[
C(x, ẋ, θ̂i)ξi +Kobs(ξi − αiẋ)

+M(x, θ̂i)αiẍcmd −M(x, θ̂i)Nizi

]
(20)

where Ni ∈ R6×6 is a symmetric positive definite gain
matrix, yields the closed loop dynamics

żi = −Nizi −M−1(x, θ̂i)H̄(R, λ̂i, ρ̂i)dzi(u
cmd
i ) (21)

which are globally exponentially stable in absence of satu-
ration (i.e., when dzi(u

cmd
i ) = 0 for all i = 1, . . . , N ). The

following theorem establishes the properties of the closed-
loop system when no saturation occurs.

Theorem 1. Assume that the reference trajectories satisfy
xref(·), ẋref(·), ẍref(·) ∈ L∞. Then, for all initial conditions
x(0) ∈ SE(3), ẋ(0) ∈ R6, ξi(0) ∈ R6, λ̂i(0) ∈ int{Λ},
ρ̂i(0) ∈ int{R}, and θ̂i(0) ∈ int{Mc} with i = 1, . . . , N
the forward trajectories of the closed-loop system given by
the cascade of the observer (6), the controller (20) and the
plant (1) under the update laws (8), (9) and (10) are bounded
and satisfy

||ξ̃(·)||a = 0, ||x̃(·)||a = 0 (22)

Proof. In order to simplify the notation, the dependency of
M(·) and C(·) on signals x(t), ẋ(t) is represented by a
dependency on t. Consider the Lyapunov function candidate

V (t, ξ̃, λ̃, ρ̃, θ̃) = Ve(t, ξ̃, λ̃, ρ̃) + Vp(θ̃) (23)

where λ̃ = [λ̃T
1 , . . . , λ̃

T
N ]T ∈ R6N , ρ̃ = [ρ̃T

1 , . . . , ρ̃
T
N ]T ∈

R9N , θ̃ = [θ̃T
1 , . . . , θ̃

T
N ]T ∈ R10N and

Ve =
1

2
ξ̃TM(t,θ)ξ̃+

1

2

N∑
i=1

(
ρ̃T
i Υ

−1
i ρ̃i+λ̃T

i T
−1
i λ̃i

)
(24)

Vp =

N∑
i=1

γ−1
i DM(θ̂i||θ) (25)

with

DM(θ̂i||θ) = − log

(
det
(
f(θ̂i)

)
det
(
f(θ)

) )+ tr
(
f−1(θ̂i)f(θ)

)
− 4

f(θ) =

[
0.5 tr (I) I3×3 − I hc

hT
c m

]
where Ve is related to the observer error and Vp is related
to the estimation error of the inertial parameters of the
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manipulated object. It is well known that the inertia matrix
of a rigid body satisfies the following property:

moI6×6 ≤ M(x,θ) ≤ m1I6×6 ∀x ∈ SE(3), ∀θ ∈ Mc

where 0 < m0 ≤ m1 and m0,m1 ∈ R. This property,
together with the fact that Υ−1 and T−1 are positive
definite constant matrices, imply that Ve(·) is positive defi-
nite, radially unbounded, and decrescent. In [9], the authors
proved that the pseudo distance (25) is a suitable Lyapunov
candidate function. To facilitate the next steps of the proof,
notice that

M(t,θ)
˙̃
ξ =

N∑
i=1

M(t,θ)ξ̇i −M(t,θ)ẍ

=

N∑
i=1

M(t, θ̂i)ξ̇i −
N∑
i=1

M(t, θ̃i)ξ̇i −M(t,θ)ẍ

Substituting the dynamics of the ith observer (6) and the
system dynamics (1) in the above identity leads to

M(t,θ)
˙̃
ξ =

N∑
i=1

[
τ̂pi

−C(t, θ̂i)ξi −Kobs(ξi − αiẋ)
]

−
N∑
i=1

M(t, θ̃i)ξ̇i +C(t,θ)ẋ− τp

Easy but tedious computations lead to the following inequal-
ity for the Lyapunov equation:

V̇e ≤ −ξ̃TKobsξ̃ −
N∑
i=1

ξTYθ(x, ẋ, ξi, ξ̇i)θ̃i (26)

In [9], it is proven that the Lie derivative of Vp is

V̇p =

N∑
i=1

γ−1
i

˙̂
θT
i g(θ̂i)θ̃i (27)

Substituting the update law of the inertial parameter esti-
mates in (27) and using the properties of the projection
operator, one obtains

V̇p ≤
N∑
i=1

ξ̃TYθ(x, ẋ, ξi, ξ̇i)θ̃i (28)

Combining (28) and (26) the Lie derivative of V is bounded
as follows

V̇ ≤ −ξ̃TKobsξ̃ ≤ 0 (29)

Equation (29) implies that for all ξ(0), λ̂(0), ρ̂(0), θ̂(0)

V (t, ξ̃(t), λ̃(t), ρ̃(t), θ̃(t)) ≤ V (0, ξ̃(0), λ̃(0), ρ̃(0), θ̃(0))

for all t ∈ [0, Tmax) where Tmax is the maximal interval
of existence and uniqueness of the forward trajectories of
the overall closed-loop system. It is then easy to show that
the previously defined bounds lead to the conclusion that
all signals are bounded over the maximal interval [0, Tmax),
hence Tmax = +∞. Convergence of the velocity estimation
error ξ̃(t) is proven applying LaSalle/Yoshizawa theorem
to the Lyapunov function (23). This fact, together with the

TABLE I: Direct Adaptive Controller Performance

Scenario 1 Scenario 2

Position Err. [mm] 0.851 1.56

Orientation Err. ×10−3 0.501 0.894

Fuel Force [N2 s] 140.9 132.7

Fuel Torque [N2m2 s] 460.7 457.9

exponential stability of (21) and the identity (19) prove that
ẋerr(t) converges asymptotically. Convergence of the pose
error x̃(t) follows by Proposition 1.

V. SIMULATIONS

The performance of the adaptive controller proposed in
this work is evaluated in comparative simulations with the
direct adaptive controller presented in [8]. A challenging
scenario is considered to evaluate the effects of the actuators
nonlinearities on the stability of the closed-loop system. In
particular, a scenario where a group of N = 4 space robots
are manipulating a cube-shaped passive object is considered.

A. Simulation Setup

Simulations are performed in the Matlab-Simulink® en-
vironment using the Mechanics toolbox. A one-meter-long
cube is considered as passive manipulated object. The mea-
surement point is placed at the center of one of the cube
faces, where the z-axis of the frame P is aligned with the
normal outward vector, and the other two axes are aligned
with the cube sides. A white Gaussian noise with zero mean
and standard deviation σ = 10−3 is added to the measured
position, attitude, and velocities signals to simulate sensor
noise. The assigned reference trajectory makes the geometric
center of the passive object move along an eight-shaped
path. The trajectory is periodic in the spatial domain with
respect to the geometric center of the manipulated object, and
requires continuous application of a control wrench. During
the reference motion, the object is rotated three times along
the path. The gains of the controller proposed in this work
and of the one presented in [8] have been tuned to obtain
similar closed-loop performance in terms of regulated error
and energy consumption in absence of loss of efficiency and
saturation of the actuators. To ensure a fair comparison, the
natural adaptive law of [9] is employed in the update of the
estimated inertial parameters of the passive object for the
adaptive controller of [8] as well.

B. Comparative Simulation Study

First, a scenario with nominal actuator efficiency, Λi =
I6×6, and no saturation is considered to establish a baseline
for comparison. Table I and Table II present (for both
controllers) the average of the norm of the position and
orientation errors along with the integral of the norm-squared
of the control wrenches applied to the object. A similar
performance is obtained by the two controllers, as it can
be inferred from the reported data.

The second scenario concerns the analysis of the effect
of a partial failure of the actuation system of two agents
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TABLE II: Indirect Adaptive Controller Performance

Scenario 1 Scenario 2 Scenario 3

Position Err. [mm] 1.11 1.35 12.6

Orientation Err. ×10−3 0.503 1.3 1.69

Fuel Force [N2 s] 118.2 114.7 119.1

Fuel Torque [N2m2 s] 457.1 453.2 467.3

occurring at t = 85 [s] during a simulation employing the
same reference trajectory as the baseline case. Specifically,
the actuator efficiency of agent no. 2 is reduced by 70% in
all directions of the input space, and the control efficiency
for agent no. 4 is reduced by 70% along the x-axis and
by 50% along the y-axis, both in terms of force and torque
exerted on the object. A comparable level of performance for
both controllers is evident from the data reported in Table I
and Table II. Finally, the effect of actuator saturations on the
performance of the two controllers are studied in the third
scenario. In addition to the setup considered in the second
simulation, herein a maximum deliverable force of 0.5 [N]
and a maximum deliverable torque of 0.5 [Nm] along each
axis is imposed on each agent. In this case, after the time
instant t = 85 [s] when the efficiency loss occurs, agents
no. 1 and no. 3 are required to apply a larger control wrench
than the nominal one, which results in these two agents
hitting their actuator saturation limits. As a consequence, the
direct controller fails to maintain closed-loop stability, as its
update law reacts abnormally to the occurrence of actuator
saturation, which is interpreted as a parameter variation,
resulting in a behavior akin to integrator wind-up (see the
bottom plot of Figure 2). Conversely, the indirect controller
uses the correct information on the actuator behavior in the
regressor employed in the update law, hence the dynamics
of the parameter estimates do not exhibit integrator wind-up
– see the top plot of Figure 2. As expected, the tracking
performance worsens while the saturations are active, as can
be noticed from the average position and orientation errors
reported in Table II, but regulation is recovered once nominal
operating conditions are restored.

VI. CONCLUSIONS

A distributed indirect adaptive controller has been pro-
posed for trajectory tracking of a passive object manipulated
cooperatively by a group of robotic agents. The controller
architecture is comprised of a distributed observer that is
centrally coordinated by a leading agent, which has the
purpose of realizing a distributed dynamic update law for the
adaptive control action performed by each agent. The advan-
tage of the scheme with respect to distributed direct control
schemes lies in enhanced robustness against saturation and
loss of effectiveness of the actuators. Comparative simulation
studies have shown the advantages of the proposed approach
versus state-of-the-art distributed direct adaptive solutions in
terms of robustness with respect to actuator uncertainty.
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