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Abstract—
Reinforcement Learning (RL) algorithms help in training an

autonomous agent to learn the optimal actions in an unknown
environment. RL, in conjunction with neural networks, known
as deep RL, has achieved remarkable success in many real-life
practical applications. However, most of these algorithms are
complex to train and require a lot of data to learn optimal
decisions. Hence, it is imperative to develop RL algorithms
that are simple and data efficient. In this work, we propose
off-policy RL algorithms that can exploit special structures
present in the optimal policy of the underlying Markov Decision
process. The off-policy learning enables us to make use of the
available data efficiently. To this end, we first propose an off-
policy algorithm that estimates the value function of only those
policies with the optimal policy structure to determine the
best policy. We then propose two novel off-policy algorithms
utilizing Upper Confidence Bound (UCB) with less time and
space complexity than our first algorithm. Through extensive
experimental evaluations on RL benchmark tasks, we illustrate
the efficacy of the proposed algorithms.

I. INTRODUCTION

The sequential decision-making problems are one of the
most commonly encountered problems in Artificial Intelli-
gence, e.g., self-driving cars ([1], [2], [3], [4]), managing
stock portfolio ([5], [6], [7]), playing card games ([8],
[9], [10]) etc. Reinforcement Learning [11], a paradigm of
machine learning is the most widely used technique to solve
sequential decision-making problems. The solution based on
RL has been successfully implemented in domains such as
robotics ([12], [13], [14], [15]), games ([16], [17], [18], [19]),
and recommendation systems ([20], [21], [22]).

The first step in solving a sequential decision-making
problem involves formulating it in the mathematical frame-
work of the Markov Decision Process (MDP). The next step
then involves learning the best action or decision to be taken
in any given state (i.e., the information available at each
instant). This mapping from state space to the action space
is called the policy function or simply policy, and the goal
here is to learn an optimal policy. If the complete model
information of the problem is known apriori, one could
solve MDPs efficiently using dynamic programming tech-
niques [23]. However, the model information is not known
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beforehand in many practical problems such as queuing
problems [24], inventory management problems [25] etc. The
objective in such problems is to learn the optimal policy
based on data-driven or simulation-based techniques [26].
The model-free data-driven methods for learning the optimal
actions or policy are known as Reinforcement Learning (RL)
algorithms.

The number of states and actions determines the size of an
MDP. Suppose there are m states and n actions possible in
each state for an MDP, the total number of possible policies
is nm, from which one needs to determine the optimal policy.
It is easy to see that if the number of states increase linearly,
the number of policies increase exponentially. This makes
training a standard RL algorithm and learning the optimal
policy challenging. However, some practical applications,
for example, machine Replacement problem [27], River-
swim problem [28], inventory management problem [29],
slow-server problem [26], etc. modeled as MDPs have a
special structure in the optimal policy which when exploited
can reduce the policy search space significantly [26]. Thus,
instead of searching for the best policy among all the policies
possible in the search space, exploring only those policies
that are members of the reduced policy space (policies with
structure) guarantees a significant reduction in the search
complexity (from exponential to polynomial time complex-
ity) [30].

Another important problem in determining the optimal
policy by an RL algorithm is related to the nature of data
used for training. As indicated earlier, RL is a data-driven
method where the best policy is learned iteratively over time
from the available data samples. There are two different
ways of obtaining the data samples for training. The first
is the on-policy training wherein the data can be obtained
by acting according to the policy obtained at each iteration.
Note that the data distribution changes according to the
policy at every iteration. The alternate way is the off-policy
training wherein either historic data is available or the data
at every training iteration can be obtained based on a known
policy (known as the behavior policy). In many realistic and
practical applications, executing different policies at each
iteration is not just undesirable but can also be catastrophic
[31]. The suitable paradigm in such settings is the off-policy
training.

Unlike on-policy training, off-policy RL training is chal-
lenging and requires correction to the state and state-action
distribution in the update rules arising from discrepancies
between the target and behavior policies at each training
time step. To correctly handle this, most of the state-of-
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the-art off-policy algorithms utilize the idea of importance
sampling [32]. However, a significant limitation of the im-
portance sampling estimator is high variance problem which
greatly affects learning. To mitigate the high variance prob-
lem, importance sampling estimators based on the stationary
distribution of the policies rather than on trajectories have
been proposed [33]. In [34], a complete off-policy actor-critic
algorithm utilizing the value function estimation procedure
given in [33] has been proposed. However, the correction
proposed in [34] in the actor-critic algorithm is not exact, due
to which it may not converge. The exact correction is utilized
in [35], and an off-policy natural actor-critic algorithm has
been proposed with convergence guarantees.

This work proposes three efficient and simple off-policy
algorithms for structured MDPs. Unlike the deep RL tech-
niques [36] that do not have robust convergence guarantees
and require large amounts of training data, our proposed
algorithms converge to optimal policy through intelligent
utilization of off-policy data. Our first proposed algorithm
computes the stationary distribution ratio between the behav-
ior policy and all the structured policies and subsequently
uses the ratios to estimate the average reward of these
policies. Though efficient, this method requires simultane-
ous average value estimation of all structured policies at
each training instant, thereby incurring high time and space
complexities. In our second algorithm, the Upper Confidence
Bound (UCB) [37] technique is employed to reduce the
time complexity whereby only one of the policies that is
likely to be the optimal policy is selected at each instant for
the update. Further, another UCB-based algorithm is also
proposed to tackle the space complexity where the station-
ary distribution of all structured policies can be computed
efficiently. We now summarize our contributions as follows:

• We propose three efficient algorithms to find the optimal
policy in a structured MDP.

• Our algorithms converge to the optimal policy with lim-
ited data samples and do not suffer from high variance
problems.

• Through extensive experiments on benchmark RL tasks,
we demonstrate that our algorithms perform better than
the Q-learning (one of the most widely used off-policy
algorithms).

II. PROBLEM STATEMENT AND BACKGROUND

A. Structured Markov Decision Process (MDP)

Markov Decision Processes (MDPs) consists of four com-
ponents - a set of states called the state space (S), a set
of actions (that defines all the possible actions that can be
taken in a state) called the action space (A), a transition
probability function P(s′|s, a) that gives the probability of
transitioning to the state s′ when action a is taken in state
s, and a single-stage reward function R(s, a) that provides
numerical feedback for taking action a in state s.

We define a stationary policy function µ : S → ∆(A)
as a mapping from state space to distribution over actions.
In the average reward MDP settings [38], the objective is to

learn an optimal policy µ∗ that maximizes the objective ρ(µ)
given by,

ρ(µ) = lim
T→∞

1

T
E

[
T−1∑
t=0

R(st, at)|s0 ∼ d0, at ∼ µ(st)

]
,

(1)

=
∑
s,a

dµ(s)µ(s, a)R(s, a), (2)

where d0 is an initial distribution over states, the expectation
E[·] is taken over the set of states and actions sampled
at time steps t. Under mild technical conditions [39], (1)
can be compactly written as (2), where dµ is the stationary
distribution of the states by following policy µ, i.e.,

dµ(s) = lim
T→∞

1

T

T−1∑
t=0

Pr{st = s|s0 ∼ d0, µ}, ∀s ∈ S.

(3)

In what follows, we will restrict our discussion to the space
of deterministic policies, that are mappings from state space
to action space (instead of distribution over actions). It has
been shown in the literature that a finite MDP has a stationary
optimal deterministic policy [23]. If there are m states in
the state space and n actions in the action space, then the
total number of stationary policies is nm. In certain MDPs,
the optimal policy is known to possess a special structure.
To understand this, let us consider an example of an MDP
with three states a, b, c and two actions 1, 2. In this example,
there are a total of 8 stationary policies. However, if we
assume that the optimal policy is a threshold policy [26],
then it can only be one of the four threshold policies given
as: µ1 = {a : 1, b : 1, c : 1}, µ2 = {a : 1, b : 1, c : 2}, µ3 =
{a : 1, b : 2, c : 2}, µ4 = {a : 2, b : 2, c : 2}. For example,
the structure here is such that once the action 2 is decided in
state b, it is not optimal to go back to action 1 in subsequent
states. It means a policy such as µ = {a : 1, b : 2, c : 1}
need not be considered in the search for the optimal policy.
Hence, if such threshold structure can be exploited in the
search for optimal policy, the solution space can reduce from
exponential to polynomial in states.

B. Regret

In “online” RL settings when the policy need to be
applied in real-time at each instant, it is critical that the
algorithm learns to choose the optimal policy significantly
more number of times over a sub-optimal policy. This idea
can formalized using the notion of “Regret” [26] and is
defined as follows:

R(T ) = ρ(µ∗)(T − 1)−
T−1

Σ
t=0

E [R(s, µt(s)] , (4)

where µt represents the policy chosen at time t. The expected
regret until time t is a measure indicating the average
number of times the optimal policy gets to be chosen by the
algorithm in the time t = {0, . . . , T − 1}. In our work, we
consider “regret” as the measure of performance to analyze
the proposed algorithms.
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C. Off-Policy learning

RL algorithms are model-free in the sense that they do
not have access to the model (transition probability) of the
environment and instead rely on the data to minimize the
cumulative regret [40]. There has been two approaches using
which the agent can obtain the data for its training. In the
first approach, the agent learns by directly interacting with
the environment and tries to improve the policy. In other
words, the agent utilizes the current policy to explore the
environment, gather experience, and update its policy param-
eters. This approach is called on-policy learning. However, as
discussed earlier, on-policy learning is not a suitable setting
in many safety critical applications. In the second approach,
the agent interacts with the environment by executing a
behavior policy and learns about the optimal policy or any
other policy without executing it. Specifically, the agent uses
the behavior policy to interact with the environment and
gather experience but updates the target policy based on the
experience collected. Unlike on-policy learning, off-policy
learning allows the agent to explore alternative policies,
making it more flexible and potentially more efficient in
finding the optimal policy.

In the off-policy setting, there is a shift in the state and
action distributions between target and behavior policies.
Thus, one must account for this discrepancy in the policy
update rules for successfully learning the optimal policy.
In the literature, several methods have been attempted to
accomplish this, such as Weighted Importance Sampling
(WIS) [41], Doubly Robust (DR) [42], Self normalized
importance sampling (SNIS) [43], Retrace estimator [44],
Stochastic Gradient Importance Sampling [45] etc.

Importance Sampling (IS): The IS method [46], [47] is
a technique for obtaining long-run rewards of a given target
policy while following the behavior policy. Let us denote the
behavior and target policies by π and µ, respectively. We
denote an infinite length trajectory τ = (si, ai, ri, si+1)

∞
i=0

when actions are sampled according to policy π and Pπ

the probability of obtaining such a trajectory, i.e., ai ∼
π(·|si), 0 ≤ i < ∞. Moreover, we denote the long-
run average cost associated with a trajectory τ as R(τ) =

lim
T→∞

1

T

T−1∑
t=0

rt Then, from (1), we have

ρ(µ) = E
τ∼Pµ

[R(τ)] (5)

= E
τ∼Pπ

[ω(τ)R(τ)] , (6)

where, ω(τ) = lim
T→∞

T∏
t=0

µ(st)

π(st)
is called importance sam-

pling weights [11]. It is defined as the ratio of the probability
of taking action a in a state s following the target policy µ
to the probability of taking the same action a in the same
state s following the behavior policy π. Note the important
difference in the computation of expectations in (5) and
(6). In (5), the trajectories are obtained according to the
target policy µ whereas in (6) the trajectories are obtained

according to the behavior policy π.
By application of the law of large numbers to (6), one can

estimate ρµ based on the data samples obtained from π. In
practice, however, only finite length trajectories are sampled,
and hence the finite average of this trajectory is used as a
substitute for R(τ) in (6). However, it has been noted in the
literature that the variance of importance sampling weights
w(τ) are very high [11]. Hence, the estimates obtained using
(6) are far from optimal. This has led researchers to consider
alternate viewpoints and attempt to obtain efficient off-
policy solutions. The following subsection briefly discusses
an efficient off-policy value function estimation procedure
proposed in [33] that we use in our work.

D. Efficient Off-policy estimation

Recall that our objective is to estimate the long-run
average of a given target policy µ given the samples from
the behavior policy π. In the previous subsection, we have
seen many off-policy estimation procedures suffer from high
variance. To mitigate this problem, in [33], a solution was
proposed based on (2) (instead of (1)). Here, the long-run
average reward of the target policy µ can be written as:

ρ(µ) =
∑
s,a

dµ(s)µ(s, a)R(s, a) (7)

=
∑
s,a

w(s)βµ/π(a|s)dπ(s)π(s, a)R(s, a) (8)

= E(s,a)∼dπ [w(s)βµ/π(a|s)R(s, a)], (9)

where w(s) = dµ(s)
dπ(s) is the ratio of stationary distributions

and βµ/π(a|s) = µ(s,a)
π(s,a) is the ratio of action distributions

(for a deterministic policy µ, we say µ(s, a) = 1 for the
action chosen in state s). While computing βµ/π(a|s) is
straightforward, the w(s) computation is non-trivial. In [33],
an efficient technique has been proposed to estimate the ratio
of stationary distributions from data samples. Once the ratios
w(s), ∀s have been estimated, (9) can be invoked to estimate
the long-run average reward from the off-policy samples. We
refer to this estimation procedure as “Off-policy estimation
through ratio of stationary distributions”. We now briefly
discuss the procedure to estimate the ratio of stationary
distribution between target and behavior policies.

As stationary distribution of a Markov chain under
mild technical conditions satisfies dµ(s

′) =
∑

s∈S P(s′ |
s, µ(s)) dµ(s), ∀s′, w(s) the ratio of stationary distribution
can be shown to satisfy a similar recursion (see Theorem 1
and eqn. 9 in [33]). We can now parameterize this w(s) using
a neural network and minimize a min-max loss function (see
eqn. 10 in [33]) given by:

min
w

{D(w) := max
f∈F

L(w/zw, f)
2}, (10)

where

L(w, f) = E(s,a,s′ )∼ρπ

[
∆(w; s, a, s

′
)f(s

′
)
]
. (11)

In (11), ∆(w; s, a, s
′
) = w(s)βµ/π(a|s) − w(s

′
), zw =

E[w(s)], and F is a set of all functions. By restricting the
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set of all functions F to the space of all functions in a
reproducing kernel Hilbert space (RKHS), the maximum loss
value within RKHS can be computed (see (10) in [33]) as

max
f∈F

L(w, f)2 = E
[
∆(w; s, a, s

′
)∆(w; s̄, ā, s̄

′
)k(s

′
, s̄

′
)
]
,

(12)

where (s, a, s
′
) and (s̄, ā, s̄

′
) are two independent samples

from Pπ and k is the positive definite kernel of the RKHS.
In this way, the long-run average reward for a given target

policy µ can be estimated using data samples from a behavior
policy π. However, the main objective of the RL agent is to
learn the optimal policy referred to as the control problem.
In the next section, we develop three algorithms for learning
the optimal policies that incurs low regret.

III. PROPOSED ALGORITHMS

In this section, three efficient off-policy algorithms for
structured MDPs are proposed. All the algorithms aim to
be sample efficient in that the algorithms converge to the
optimal policy with fewer data samples. In the following
algorithms, as the MDP under assumption has structured
optimal policy, let K denote the number of policies with the
threshold structure (usually K is polynomial in the number
of states instead of being exponential due to the assumption),
nS and nA denote the total number of states and all possible
actions, respectively. Let T denote the number of time
horizons we want to run our algorithm. We assume that the
data is collected in batches and provided to the algorithm for
learning the optimal policy. Let b denote the batch size (we
set it to 50 in our experiments) and dπ denote the stationary
state distribution of the behaviour policy π (can be easily
computed from the behaviour policy data). Finally, G denotes
the total number of gradient update steps we perform per
iteration to compute the stationary distribution ratio.

Structured Off-policy Control (SOC) is the first algorithm
that is proposed in this paper. In this algorithm, ratios of
the stationary distribution of all the structured policies are
updated at each iteration using the algorithm discussed in
the Section II-D. Utilizing these ratios, estimates of the
average reward of each policy are estimated using (9). Let
wµk

t denote the estimate of the ratio of stationary distribution
between target policy µk and the behavior policy π at time t,
corresponding to iteratively solving the optimization problem
in (12). Then, the average reward of the policy µk, 1 ≤ k ≤
K, denoted by ρt(µk) can be estimated as follows:

ρt(µk) =
∑
s

d
(µk)
t (s)R(s, µk(s)), (13)

where

d
(µk)
t (s) =

wµk
t (s)dπ(s)∑

s w
µk
t (s)dπ(s)

, ∀s ∈ S. (14)

The best policy at time t is obtained as:

µt = argmax
k

ρt(µk)

If we have full parameterization of wµk
t (s) (tabular

form for wµk
t ) and the kernel chosen is a zero one-kernel

(k(s, s′) = 1 if s = s′ and 0 otherwise), it can be seen that as
t → ∞, the estimates of ratios of the stationary distribution
of all the target policies converge to the actual ratios (up to
a constant factor), i.e.,

wµk
t → wµkas t → ∞, ∀k ∈ {1, . . . ,K}, (15)

where wµk is the true ratio of stationary distributions (up to
a constant factor) between policies µk and π.

From (13) and (15), under the full parameterization and
zero-one kernel assumptions, we can infer that:

ρt(µk) → ρ(µk), as t → ∞, ∀k ∈ {1, . . . ,K}, (16)

The complete description of this algorithm is presented in
Algorithm 1. Note that the training is performed in off-policy
data batches, i.e., (state, action, next state) samples collected
from π, as it is seen to be more stable than the traditional
single-sample training.

Algorithm 1 Structured Off-policy Control (SOC) algorithm

1: Input: Behaviour policy π, Target Policies {µk}Kk=1,
nS, nA, T, b, dπ

2: Output: L : a list of policies selected at each training
instance l = 1, 2, . . . , ⌊T/b⌋

3: Initialize: K neural networks, each corresponding to the
ratio of stationary distributions w.r.t to policies {µk}Kk=0,
D = empty list

4: for t = 0, 1 . . . T − 1 do
5: a = π(.|s), s′ ∼ P(.|s, a)
6: Append (s, a, s

′
) to D

7: if (t+ 1) modulus b = 0 then
8: for k = 1, . . .K do
9: Update the neural network k utilising the data D

and estimate wµk
t (see Section II-D) )

10: d
(µk)
t (s) =

w
µk
t (s)∗dπ(s)

Σ
s
w

µk
t (s)∗dπ(s)

∀s ∈ S
11: end for

12: µt = argmax
i

(∑
s

d
(µi)
t (s) ∗R(s, µi(s))

)
13: Append µt to L
14: end if
15: s = s

′

16: end for
17: Output: Return L

The “SOC” algorithm is effective and converges to the
optimal solution. However, note that at each training step, the
neural networks corresponding to the ratios of the stationary
distribution of all K policies are updated and thus incurs
higher computational time.

We now propose a new algorithm, Structured Off-policy
Control using UCB (SOCU), that is computationally effi-
cient. The idea here is to choose a policy at each time instant
and update the neural network corresponding to the selected
policy alone (instead of updating all neural networks). The
natural question now is regarding the selection of the policy
to be updated at each instant. It might appear appealing
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to update the current best policy at each time instant (i.e.,
greedy exploitation). However, this strategy might lead to
sub-optimal policy evolution [11]. At the extreme end lies the
strategy of randomly selecting a policy at each instant (i.e.,
random exploration). While the latter strategy works well
theoretically, converging to the optimal policy would take a
long time. Hence there is a need to balance exploitation and
exploration intelligently. This suggests utilizing the Upper
Confidence Bound (UCB) algorithm [37].

UCB is a well-known algorithm widely used in Multi-arm
Bandit problems to balance exploration and exploitation in
the agent’s decision-making process. Let rk(t) denote the
estimate of the long-run average of policy µk at time t. It is
calculated as follows:

rk(0) = 0, vk(t) =

(∑
s

d
(µk)
t (s) ∗R(s, µk(s))

)
(17)

rk(t) = (1− α)rk(t− 1) + α ∗ vk(t) ∀k = {1, . . . ,K},
(18)

where α is the threshold for the moving average. Let nk(t)
denote the number of times the policy µk has been selected
until time t. Then, the policy selected at time t is as follows:

µt = argmax
k∈K

(
rk(t) + β

√
2 ∗ log(t)
nk(t)

)
, (19)

where β is a threshold that balances exploration and ex-
ploitation. Say there are two policies µi and µj that have
a very similar long-run average estimates ri(t) and rj(t),
respectively. Then, (19) dictates that the policy that has been
explored less, i.e., argmin{ni(t), nj(t)} will be selected at
time t. On the other hand, if the policies i and j have been ex-
plored a similar number of times until time t, then the policy
that has the highest estimate, i.e., argmax{ri(t), rj(t)} will
be selected. In this manner, the UCB policy selection scheme
in (19) intelligently balances exploration and exploitation,
which we leverage in our algorithm to learn the optimal
policy with fewer computations efficiently. The complete
description of this algorithm is presented in Algorithm 2.

The Algorithm 2 successfully reduces the computational
time of the solution. However, it still suffers from high
space complexity. The neural networks corresponding to all
structured policies µk, k ∈ {1, . . . ,K} must be stored in
Algorithm 2. When the number of states is huge (resulting
in more possible policies), a significant storage space is
required to store all the networks. Our next algorithm,
Structured Off-policy Control using UCB - Variant 2 (SOCU-
V2) is aimed at reducing the storage space by storing and
updating a single neural network at each time instant rather
than K neural networks.

The complete description of this algorithm is presented in
Algorithm 3. In this algorithm, the neural network weights
are updated corresponding to the policy selected at time
t, i.e., µt. As t → ∞, the UCB algorithm selects the
optimal policy more often under the full parametrization of
wµk

t and zero-one kernel assumptions. Hence, the network
optimally learns the ratio of stationary distribution between

Algorithm 2 Structured Off-policy Control using UCB
(SOCU) algorithm

1: Input: Behaviour policy π, list of target policies
{µk}Kk=1, nS, nA, T, b, dπ, α, β

2: Output: L : a list of policies selected at each training
instance l = 1, 2, . . . , ⌊T/b⌋

3: Initialize: K neural networks, each corresponding to the
ratio of stationary distributions w.r.t to policies {µk}Kk=0,
nk(0) = 1, 1 ≤ k ≤ K, D = empty list

4: for t = 0, 1 . . . T − 1 do
5: a = π(.|s), s′ ∼ P(.|s, a)
6: Append (s, a, s

′
) to D

7: if (t+ 1) modulus b = 0 then
8: µt = argmaxk∈K

(
rk(t) + β

√
2∗log(t)
nk(t)

)
,

9: Update the neural network corresponding to the
policy µt, and update wµt

t (see Section II-D)
10: d

(µk)
t (s) =

w
µk
t (s)∗dπ(s)

Σ
s
w

µk
t (s)∗dπ(s)

, ∀s ∈ S, 1 ≤ k ≤ K

11: rk(t + 1) = (1 − α)rk(t) + α ∗(∑
s d

(µk)
t (s) ∗R(s, µk(s))

)
, 1 ≤ k ≤ K

12: nk(t+ 1) = nk(t) + 1{µk == µt}, 1 ≤ k ≤ K
13: Append µt to L
14: end if
15: s = s

′

16: end for
17: Output: Return L

the behavior policy and the optimal policy. As a result,
the long-run average corresponding to the optimal policy is
computed using this ratio.

Remark 1: Please note that our proposed algorithms could
also be easily applied to the general MDPs (in addition
to structured MDPs). However, in general, the number of
policies can be very high and scale exponentially with an
increase in the number of states and actions that can affect
the practical performance in real time. On the other hand,
the number of policies in structured MDPs is typically small
and it is polynomial in the number of states. This makes
our algorithms more suited to structured MDP problems. To
utilize our algorithm for general MDPs, we could choose
a candidate set of policies and aim to find the best policy
among the candidate policies utilizing our algorithms.

Algorithm Time Complexity Space Complexity
SOC O(T ×K ×G× b2) O(K)

SOCU O(T ×G× b2) O(K)

SOCU-V2 O(T ×G× b2) O(1)

TABLE I: Time and space complexity comparison between
the three proposed algorithms. It can be observed that the
“SOC” algorithm has higher time complexity compared to
the other two proposed algorithms. Moreover, the “SOCU-
V2” has least time and space complexities
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Algorithm 3 Structured Off-policy Control using UCB -
Variant 2 (SOCU-V2) algorithm

1: Input: Behaviour policy π, list of target policies
{µk}Kk=1, nS, nA, T, b, dπ, α, β

2: Output:L : a list of policies selected at each training
instance l = 1, 2, . . . , ⌊T/b⌋

3: Initialize: One neural network, nk(0) = 1, 1 ≤ k ≤
K, D = empty list

4: for t = 0, 1 . . . T − 1 do
5: a = π(.|s), s′ ∼ P(.|s, a)
6: Append (s, a, s

′
) to D

7: if (t+ 1) modulus b = 0 then
8: µt = argmaxk∈K

(
rk(t) + β

√
2∗log(t)
nk(t)

)
,

9: Update the neural network utilising the data D, and
update wµt

t (see Section II-D)
10: d

(µk)
t (s) =

w
µk
t (s)∗dπ(s)

Σ
s
w

µk
t (s)∗dπ(s)

, ∀s ∈ S, 1 ≤ k ≤ K

11: rk(t + 1) = (1 − α)rk(t) + α ∗(
Σ
s
d
(µk)
k (s) ∗R(s, µk(s))

)
, 1 ≤ k ≤ K

12: nk(t+ 1) = nk(t) + 1{µk == µt}, 1 ≤ k ≤ K
13: Append µt to L
14: end if
15: s = s

′

16: end for
17: Output: Return L

IV. EXPERIMENTS AND RESULTS

In this section, we discuss the results of our proposed
algorithms on two benchmark RL tasks. We compare our
algorithms with two variants of Q-learning. First is the
standard Q-learning algorithm, where the action selection at
each training step is through ϵ−greedy policy. For a more
accurate comparison, we implement another variant of Q-
learning, which we refer to as “Q-learning bp”, where the
actions for Q-value updates are sampled from the behavior
policy instead of the preferred greedy policy based on the
Q-values. Note that the “Q-learning bp” algorithm is trained
on the same data used to train our proposed algorithms, thus
an accurate comparison. The performance metric we use to
compare is the notion of regret (please refer to (4)). We com-
pare our algorithms on two RL tasks whose optimal policy
has structure, viz., (1) machine replacement problem [26] (2)
river swim [48] problem. In the machine replacement task,
the objective is to decide between performing maintenance or
replacing a machine with a new one depending on the current
state of the machine. In our experiments, we considered 3
configurations of machine replacement based on the number
of states, i.e., nS = 4, 10, and 20. In the river swim task,
a swimmer’s objective is to decide whether to swim left or
right, depending on her current position, to reach the correct
destination. In both tasks, we set the behaviour policy to be
the one that gives equal probability to all actions in any state.
Detailed descriptions of the two benchmark tasks along with

the complete implementation codes are given here1.

Fig. 1: Comparison between algorithms on four state ma-
chine replacement task averaged across five random runs

Fig. 2: Comparison between algorithms on ten state machine
replacement task averaged across five random runs

A. Discussion

We plot the results obtained on the machine replace-
ment and river swim problems in Fig. 1,2,3 and Fig. 4,
respectively. In the figures, we plot the instance (50 training
time steps) on the x-axis and the regret on the Y-axis. The
following are the observations from the experiments.

1) The SOC algorithm has the least regret among all the
proposed algorithms and Q-learning variants. This is
because the SOC algorithm efficiently uses the off-
policy data at every instant. In this algorithm, the
neural networks corresponding to all the policies are
simultaneously updated at every time instant. This

1https://github.com/Sourav1429/Off_policy_
algorithms.git
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Fig. 3: Comparison between algorithms on twenty state
machine replacement task averaged across five random runs

Fig. 4: Comparison between algorithms on river swim task
averaged across five random runs

results in the faster convergence of the ratios of sta-
tionary distributions of all the policies. This enables
the algorithm to learn the best policy in fewer time
steps.

2) Although the SOC algorithm has the least regret,
updating the weights of all the neural networks at each
instance is a costly step, as shown in Table II. Hence,
in the SOCU algorithm, one policy is intelligently se-
lected using the UCB algorithm, and only the weights
corresponding to the selected policy are updated at
each instant. This results in a higher regret (compared
to the SOC algorithm). However, the time complexity
of the SOCU is significantly better compared to the
SOC algorithm (please refer to Table II).

3) The SOC algorithm maintains K neural networks,
one for each policy, requiring more storage space. In
order to optimize for the space as well, the SOCU-V2

maintains and updates only a single neural network at
each training instance. As a result of this trade-off, the
regret of the SOCU-V2 is higher than the SOC and the
SOCU algorithms.

The results show that our proposed algorithms have lower
regret than the off-policy Q-learning algorithms on both
benchmark tasks.

Algorithm Environment Time taken(in seconds)
SOC MR (4 states) 58

SOC MR (10 states) 150

SOC MR (20 states) 300

SOC RS 100

SOCU MR (4 states) 16

SOCU MR (10 states) 16

SOCU MR (20 states) 17

SOCU RS 16

SOCU-V2 MR (4 states) 15

SOCU-V2 MR (10 states) 16

SOCU-V2 MR (20 states) 16

SOCU-V2 RS 15

TABLE II: Execution time per gradient step in a run by
all the three proposed algorithms. MR stands for machine
replacement task and RS stands for river swim problem

V. CONCLUSIONS

In this work, we have proposed three efficient off-policy
control algorithms for learning the best policy in structured
MDPs. Our algorithms optimally utilize the off-policy data
and efficiently select the target policy at each training step.
We demonstrate the advantages of the proposed algorithms
through experimental evaluations on two benchmark RL
tasks. An interesting future direction would be to extend the
proposed algorithms to continuous state space environments
such as Atari games that would require leveraging the deep
neural networks to generalize state-action distribution.
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