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Abstract— Distributed formation tracking control of a system
of heterogeneous underactuated agents on a 2-D plane is
proposed based on the leader-follower approach and using
the inter-agent displacements. A typical example of such an
agent is an underactuated surface vessel whose planar surge-
sway-yaw motion is considered, while only two independent
controls are available, thus underactuated. Formation tracking
control law is developed to steer certain offset points on the
longitudinal axes of the agents, called hand points, to the
target formation asymptotically and exponentially fast in the
presence of bounded disturbances. A distinct feature of such
an underactuated planar vehicle is that its lateral motion
representing the non-actuated degree of freedom is unrestricted
and can be unstable. Thus, a sufficient condition on the the
leader’s velocity and the hand points’ locations for the stability
of the lateral motion of the agents is provided. Simulation
results of formation tracking control of underactuated surface
vessels support the theoretical analysis.

I. INTRODUCTION

Distributed coordination of a fleet of multiple autonomous
agents has attracted considerable research attention in the last
two decades [1]–[5]. In such a multi-agent system, the indi-
viduals sense nearby agents, communicate with each other,
and perform certain actions based on the local information
to achieve a group task.

Common planar agents, such as surface vessels, operating
on a two-dimensional horizontal plane possess three degrees-
of-freedom (surge, sway, and yaw) when neglecting the
heave, roll, and pitch dynamics [6]. If there exist only
two independent control forces, the system is said to be
underactuated since the dimension of the configuration space
(3 DOFs) is larger than the number of the control inputs.
Note importantly how an underactuated agent is essentially
different from a nonholonomic agent (e.g., wheeled vehicles
[7]). First, due to the lack of a lateral motion constraint,
the velocity of an underactuated vehicle need not be tan-
gent to the motion path, unlike that of a unicycle ground
vehicle. For unicycle robots, since their lateral motion is
constrained, a typical tracking control approach is aligning
their headings to a nominal control flow which is designed
at the kinematic level (i.e., as reference velocity) [8]. In
contrast, for the class of underactuated agents under study,
the sway velocity associated with the uncontrolled lateral
motion is free-floating and thus it can increase infinitely.
As a result, one cannot straightforwardly apply kinematic
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control laws for nonholonomic agents [8] to the tracking
control of underactuated agents. Therefore, one must design
a tracking controller as forces/torques based on the non-
linear dynamics of underactuated agents while ensuring the
ultimate boundedness of their lateral motion [9]. Third, the
proposed tracking controller needs to be robust to model
uncertainties and disturbances present in the environment.
For example, underactuated surface vessels working in a
marine environment are subject to ocean wind and water
waves.

The coordination control of a group of planar agents has
been investigated extensively [8], [10]–[13]. Nevertheless,
few formation tracking control protocols have been proposed
for planar agents with a free-floating lateral motion, e.g., sur-
face vehicles, based largely on the leader-follower approach
[9], [14]–[17] and virtual structure methods [9]. In virtual
structure methods, each agent keeps up with a virtual leader
which represents the agent’s desired location in the target
formation. As a result, the formation tracking task is decom-
posed into the tracking control of each agent. The simplest
leader-follower method is for each follower to maintain a
prespecified offset to a common leader [14], [15], resulting
in a star network with the leader at the center. The leader is
assumed to be able to follow a desired (formation) trajectory.
The works [9], [16] proposed tracking control protocols for
underactuated surface vessels with an acyclic (no directed
loops) directed graph and one leader being the root node. In
[9], sliding mode tracking controllers were presented based
on either the distances or the relative positions between
neighboring agents. The authors in [16] explored a control
law for formation tracking of underactuated surface vessels,
which requires a persistently exciting yaw rate of the leader.
[17] addressed scaling control for formation with acyclic
directed graphs based on inter-agent bearings. Formation
tracking controllers were presented in our recent work [13]
for underactuated surface vessels with a bearing rigid graph
and based on the inter-agent bearings.

This work addresses formation tracking control for a
system of heterogeneous underactuated agents in 2-D in
the presence of bounded disturbances using inter-agent dis-
placements. As the first contribution of this work, a general
nonlinear dynamics with two independent control forces is
presented for a type of planar agents, illustrated via the
dynamic model of underactuated surface vessels. Then, a
formation tracking control scheme is proposed for the system
with an interaction graph containing a spanning tree and a
leader being the root node, whose objective is steering certain
points on the longitudinal axes, referred to as hand points,
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of the agents to the target formation. Second, exponential
convergence to the target formation of the system is shown
and a sufficient condition for uniform ultimate boundedness
of the non-actuated lateral motion is provided. On the con-
trary, the boundedness of the lateral motion is often assumed
in related works [14]–[17]. As a development of [13], the
control approach developed for surface vessels is generalized
for a class of underactuated planar agents interacting over a
directed graph.

The remainder paper is structured as follows. Section II
gives preliminaries and the problem statement. The pro-
posed tracking control protocol is proposed and the stability
analysis is established in Section III. Simulation results are
provided in Section IV. Finally, Section V gives concluding
remarks on this work.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notation: We use R and Rd to denote the sets of real
numbers and real d-dimensional vectors, respectively. The
cross product is ×. Vectors expressed in a local coordinate
frame {Bi} and the inertial frame {I} are denoted as yi

with superscript and y, respectively. Free vectors with no
need for a coordinate system to express them are denoted
as #»a . For x ∈ Rn, sign(x) and |x| ∈ Rn are the element-
wise signum and absolute vectors, respectively. The n × n
identity matrix is In and 1n = [1, . . . , 1]> ∈ Rn. The
stack vector col(z1, . . . ,zn) = [z>1 , . . . ,z

>
n ]> is obtained by

placing z1, . . . ,zn vertically one on top of each other. The
notations || · ||1 and || · ||∞ denote the 1-norm and infinity
norm, respectively.

A. Mathematical structure of multi-agent networks

A multi-agent network is modeled as a directed graph
(digraph) G = (V, E) containing a set V = {1, . . . , n}
of n nodes and a set of edges E ⊆ V × V . Each edge
(i, j), i, j ∈ V , is directed with the source node i and sink
node j. An undirected edge (i, j) is considered as containing
two directed edges (i, j) and (j, i). The neighbor collection
of i is given by Ni = {j ∈ V : (i, j) ∈ E}. Fix an
orientation of the m edges {e1, . . . , em} between the nodes
in V (m = |E|), the incidence matrix is H = [hik] ∈ Rn×m
as hik = 1 if ek = (j, i), hik = −1 if ek = (i, j),
and hik = 0 otherwise. The Laplacian matrix L = [lij ]
associated with G is defined as lij = −1 for (i, j) ∈
E , i 6= j, lii = −

∑
j∈Ni

lij , ∀i = 1, . . . , n, and lij = 0
otherwise. If the undirected version of G is connected, we
have rank(H(G)) = n− 1 and H(G)>1n = 0 [18].

B. The dynamics of underactuated planar agents

A group of n underactuated planar agents consists of one
leader and n − 1 followers having a sensing digraph G =
(V, E). Provide each agent i with a local coordinate system,
{Bi(xbi, ybi)}, whose origin is at its center of mass or pivot
point (see Fig. 1), with regard to which it observes the outside
world. The position vector and yaw angle of agent i with
regard to the inertial coordinates are pi = [xi, yi]

> ∈ R2

and ψi ∈ R, respectively. The velocity of agent i in {Bi}

and its yaw rate are denoted as vii = [ui, νi]
> ∈ R2 and

ri ∈ R, respectively. The kinematics and a general nonlinear
dynamics in {Bi} of each agent i is

ṗi =

[
cos(ψi) − sin(ψi)
sin(ψi) cos(ψi)

] [
ui
νi

]
:= Ri(ψi)v

i
i , (1)

ψ̇i = ri, (2)
u̇i = fui(ui, νi, ri) + δui(t) + buiFi

ν̇i = fνi(ui, νi, ri) + δνi(t) + bνiTi

ṙi = fri(ui, νi, ri) + δri(t) + briTi.

(3)

Here, Ri(ψi) ∈ SO(2) denotes the rotation from the
system {Bi} to {I}, fki(·), k ∈ {u, ν, r}, are locally
Lipschitz continuous functions, b()·’s are certain constants,
δ(·)’s are bounded disturbances, the scalars Fi and Ti are
two independent control inputs (e.g., longitudinal force and
yaw moment). Note how the lateral and rotational motions
(the second and third rows in (3)) cannot be controlled
independently by only one control, i.e., Ti. Furthermore,
the general nonlinear dynamics (3) can represent distinct
dynamical models of planar underactuated agents, as we now
illustrate using the dynamic model of surface vessel models.

Example 1: For illustration, consider the dynamics of
underactuated surface vessels i given as follows [6]m11 0 0

0 m22 m23

0 m23 m33

u̇iν̇i
ṙi

+

 −m22νiri −m23r
2
i

m11uiri
(m22 −m11)uiνi +m23uiri


+

d11 0 0
0 d22 d23
0 d23 d33

uiνi
ri

 =

Fi0
Ti

+

wuiwνi
wri

 , (4)

where, m(·)’s are the vessel’s inertia parameters, d(·)’s are
the hydrodynamic damping coefficients, Fi and Ti are the
surge force and yaw moment, and w(·)’s denote bounded
disturbances containing the model uncertainties and external
disturbances. Note importantly that the dynamics (4) can
represent those with general non-diagonal mass and non-
diagonal damping matrices.

One can rewrite the surge system in (4) into the nonlinear
system (3) with

fui =
m22νiri +m23r

2
i − d11ui

m11
, bui =

1

m11
, δui =

wui
m11

.

In addition, we rewrite the sway and yaw systems as follows[
ν̇i
ṙi

]
=

[
m22 m23

m23 m33

]−1 (
−
[

m11uiri
(m22 −m11)uiνi +m23uiri

]
−
[
d22 d23
d23 d33

] [
νi
ri

])
+

[
m22 m23

m23 m33

]−1 ([
wνi
wri

]
+

[
0
Ti

])
:=

[
fνi
fri

]
+

[
δνi
δri

]
+

1

m22m33 −m2
23

[
−m23Ti
m22Ti

]
, (5)

where fνi = fνi(ui, νi, ri), fri = fri(ui, νi, ri), and[
δνi
δri

]
:=

1

m22m33 −m2
23

[
m33 −m23

−m23 m22

] [
wνi
wri

]
.
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Fig. 1: Coordinate systems, the control system, and the
relative position hij ∈ R2 between two planar vehicles
(e.g., underactuated surface vessels). Each agent has 3 DOFs
(surge, sway, and yaw).

By (5), bνi and bri in (3) are respectively given as

bνi =
−m23

m22m33 −m2
23

, bri =
m22

m22m33 −m2
23

.

Note also that, in the above terms, we assume m22m33 −
m2

23 > 0, considering the fact that diagonal terms m22,m33

are usually larger than the coupling term m23 in practical
systems.

C. Formation tracking control problem

For each agent i, we select a hand point hi on the xbi-
axis with the relative vector to the central point pi being
li, ||li|| = li (Fig. 1). The displacement vector corresponding
to an edge (i, j) ∈ E is hij = hj−hi ∈ R2. For an ordering
of the edges in E , let H ∈ Rn×m be the corresponding
incidence matrix. We define z = col(. . . , (hij)k, . . .) ∈ R2m

corresponding the ordering of the edges, i.e., zk = hij
whenever the edge (i, j) is numbered as k. Then, z =
(H> ⊗ I2)h := H̄>h.

The leader is labeled as 1 and the set of followers is
Vf = {2, . . . , n}. The stacked vectors containing the follow-
ers’ positions and all the agents’ positions are respectively
defined as

hf = col(h2, . . . ,hn) ∈ R2n−2,

h = col(h1, . . . ,hn) ∈ R2n.

A formation (G,h) is specified by the graph G and the (hand)
configuration h. The moving target formation of the system
h∗(t) = col(h∗1(t), . . . ,h∗n(t)) ∈ R2n is characterized by
the desired displacements{

h∗ij : h∗ij = h∗j − h∗i , (i, j) ∈ Ē
}
. (6)

Each leader is assumed to follow the reference trajectory

h∗1(t) = h∗1(0) +

∫ t

0

v∗1(τ)dτ, (7)

i.e., h1(t) = h∗1(t), with a piece-wise constant velocity v∗1 ∈
R2. Whereas, each follower i ∈ Vf is provided with only the
desired displacements {h∗ij}j∈Ni to its neighbors. The graph
G that embeds the displacement constraints hij between the
agents satisfy the following assumption.

Assumption 1: The graph G contains a spanning tree
rooted in the leader node.

The Laplacian matrix associated with the graph G is L.
Define L̄ =: L ⊗ I2 ∈ R2n×2n and a partition of it as

L̄ =

[
L̄ll L̄lf

L̄fl L̄ff

]
,

where L̄ll ∈ R2×2, L̄lf , L̄
>
fl ∈ R2×2(n−1) and L̄ff ∈

R2(n−1)×2(n−1). Note importantly that under Assumption
1 and the presence of the leader 1, L̄ff is invertible [19,
Corollary 3] and has positive eigenvalues. Furthermore, one
can compute the unique followers’ positions in the target
formation (relative to the leader’s position h1(t)) as [19]

h∗f (t) = −L̄−1ff L̄flh1(t)− L̄−1ff
[
L̄fl L̄ff

]
h∗(t). (8)

That is, the desired positions of the followers h∗f can be
uniquely computed from h∗1(t) and the desired displacements
{h∗ij}, as inferred from the product

[
L̄fl L̄ff

]
h∗.

Define the control error vectors δ(t) := h(t) − h∗(t) ∈
R2n1 and δf (t) := hf (t) − h∗f (t) ∈ R2n−2. Consequently,
δ = col(02, δf ) since h1(t) = h∗1(t) by assumption.

Since the sway speed is not controlled (see (4)), its bound-
edness might not be guaranteed. To simplify the stability
analysis, the stability of the lateral motion is often assumed in
works that address the coordination control of underactuated
surface vessels [14]–[16].

The tracking control problem under investigation is now
stated.

Problem 1: Let Assumption 1 hold, design a tracking
control law at the dynamic level (Fi, Ti) for each agent
i ∈ Vf so that δ(t) → 0 asymptotically based on the inter-
agent displacements {hij(t)}j∈Ni

.

III. PROPOSED TRACKING CONTROL SCHEME

A tracking controller is proposed based on inter-agent
displacements for a group of underactuated agents whose
dynamics is described by (3). For this, the motion equation
of the hand point as an output regulation system is derived
[13]; while the vessel’s internal dynamics is composed of
the sway and yaw dynamics. Lastly, we prove the global
exponential stability of the target formation.

A. The motion of the hand points

Let vihi ∈ R2 and aihi ∈ R2 be the local coordinates of the
velocity and acceleration of the hand point hi, respectively.
We have the following relations

vihi = R>i ḣi and aihi = R>i ḧi,∀i ∈ V.

Let
#»

k be the normal vector of the motion plane. Thus, the
hand point’s velocity and acceleration can be respectively
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computed using the geometric constraint hi = pi + li by
#»v hi = #»v i + ri

#»

k × #»

l i,
#»a hi = #̇»v i + ṙi

#»

k × #»

l i − r2i
#»

l i.

Expressing the preceding relations in each local coordinate
system {Bi} gives

vihi =

[
ui

νi + rili

]
, (9)

aihi =

[
u̇i − r2i li
ν̇i + ṙili

]
(3)
=

[
fui + δui − r2i li + buiFui

fνi + lifri + δνi + liδri + (bνi + brili)τri

]
, (10)

which implies that hi(t) can be regulated by designing
(Fui, τri). In the following subsections, a control protocol
will be proposed based on this system to drive the agents’
hand points to the target formation, thus solving Problem
1. Nevertheless, as can be seen from (9), the (νi, ri)-system
in (3) constituting the vehicle’s internal dynamics is uncon-
trolled. The stability of the internal dynamics of the agents
under certain conditions will be investigated later.

B. Formation tracking controller with a constant velocity
leader

Define a sliding surface vector si = Ri(ψi)s
i
i for each

agent i with the local coordinates sii = [s1i, s2i]
> as follows

si = ḣi − kP
∑
j∈Ni

(hij − h∗ij)

− kI
∫ t

0

∑
j∈Ni

(hij(τ)− h∗ij)dτ, (11)

where kP , kI > 0 are control gains. The goal is to stabilize
the sliding surface vector si to the origin exponentially
fast, on the sliding surface si = 0, as we will show, hi
converge to the desired formation asymptotically. To proceed,
we compute the derivative of the vector sii (since sii =
Ri(ψi)

>si) as

ṡii = Ṙ>i si +R>i ṡi = ri

[
s2i
−s1i

]
+R>i ṡi

(11)
= ri

[
s2i
−s1i

]
+ aihi −R>i

∑
j∈Ni

(
kP (ḣj − ḣi)

+ kI(hj − hi)
)

(12)

The control input for each agent i can be designed as[
buiFui

(bνili + bri)τri

]
= −kssii − β sign(sii)−

[
fui − r2i li
fνi + lifri

]
+R>i

∑
j∈Ni

(
kP (ḣj − ḣi) + kI(hj − hi)

)
. (13)

Here, ks > 0 and β > 0 is a sufficiently large constant
such that β > ‖[δui, δνi + liδri]‖∞. When the upper bounds
|δui| ≤ ∆u,i, |δνi| ≤ ∆ν,i and |δri| ≤ ∆r,i are known
by each agent i, one can choose β > max{∆u,i,∆ν,i +
li∆r,i}. The displacements and relative velocities between

neighboring agents are required to compute the control law
(13).

C. Stability analysis

Exponential convergence to the origin of the sliding sur-
face variable si is proved for each agent as follows.

Lemma 1: Under Assumption 1 and the control law (13)
with β > ‖[δui, δνi + liδri]‖∞, si → 0 exponentially as time
diverges.

Proof: The time derivative of the Lyapunov function
V = 1

2 ||si||
2 = 1

2 ||s
i
i||2 under the evolution of (12) with

respect to time can be proved to be negative definite

V̇ (t) = (sii)
>ṡii

= −k‖sii‖2 − β(sii)
> sign(sii) + (sii)

>
[

δui
δνi + liδri

]
≤ −k‖sii‖2 ≤ −k‖si‖2. (14)

It follows that si → 0 exponentially fast as t→∞.
Let

ξi = −
∫ t

0

∑
j∈Ni

(hij(τ)− h∗ij),

s = col(s2, . . . , sn), ξf = col(ξ2, . . . , ξn) ∈ R2(n−1).

We can now obtain the following theorem.
Theorem 1: Let Assumption 1 hold. Under the action of

controller (13) with β > ‖[δui, δνi + liδri]‖∞, the system
achieves the target formation asymptotically and exponen-
tially fast as time diverges.

Proof: By (11), one gets the following system

ḣf = −kP
[
L̄fl L̄ff

]
(h− h∗)− kIξf + s(t)

= −kP
(
L̄flh1 − L̄ffhf −

[
L̄fl L̄ff

]
h∗
)

+ kIξf + s(t), (15)

ξ̇f =
[
L̄fl L̄ff

]
(h− h∗). (16)

By (8), the formation error is given as

δf := hf − h∗f
(8)
= hf + L̄−1ff L̄flh1 + L̄−1ff [L̄fl L̄ff ]h∗,

and hence δ̇f = ḣf + L̄−1ff L̄flḣ1 := ḣf − ḣ∗f , where ḣ∗f
denotes the desired velocity of the followers. As a result,
we express the preceding system as a linear system with an
input [

δ̇f
ξ̇f

]
=

[
−kP L̄ff −kIIn−1
L̄ff 0

] [
δf
ξf

]
+

[
L̄−1ff L̄flḣ1 + s(t)

0

]
. (17)

One can show that the state matrix in (17) is Hurwitz and
hence (δf , ξf ) in (17) is uniformly ultimately bounded.
This together with the fact that s(t) vanishes exponentially
as time diverges imply the exponential convergence of the
equilibrium of the system (17). Setting δ̇f = 0, ξ̇f = 0
and s = 0 yield the steady-state vectors δf (∞) = 0 and
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ξf (∞) = L̄−1ff L̄flḣ1/kI . Asymptotic stability and expo-
nential convergence to the target formation of the followers
follow from δ̇f → 0 and δf → 0 as t→∞.

Remark 1: When the velocity of the leader is time-
varying, the following sliding surface vector can be designed

si = ḣi − |Ni|−1
∑
j∈Ni

(hij − h∗ij + ḣj), (18)

where ḣj’s are velocity feedback from neighbors. On the
sliding surface s = 0, one has∑

j∈Ni

(ḣj − ḣi) +
∑
j∈Ni

(hj − hi − h∗ij) = 0,

which implies that
∑
j∈Ni

(hij − h∗ij) → 0 asymptotically
and exponentially fast as t → ∞ for i = 2, . . . , n. Thus,
[L̄fl L̄ff ](h − h∗) = L̄ffδf → 0 as t → ∞, that is,
the system achieves the target formation asymptotically. The
derivative of the sliding surface vector is given as

ṡii = ri

[
s2i
−s1i

]
+ aihi − |Ni|−1R>i

∑
j∈Ni

(ḣj − ḣi + ḧj).

Thus, the control input for vessel i can be proposed
as in (13) with the last term in (13) replaced with
|Ni|−1R>i

∑
j∈Ni

(ḣj − ḣi + ḧj). However, this controller
requires the acceleration feedback, it is hard to measure it
precisely in practice.

D. Sufficient condition for stable internal dynamics

This subsection provides a sufficient condition on the
leader’s velocity and hand points’ positions for stable internal
dynamics. From the relation vihi = R>i ḣi = [ui, νi + rili]

>

(see (9)) and the exponential convergence of ḣi to ḣ∗i
(Theorem 1), ui and νi+rili are ultimately bounded. It thus
suffices to show the uniform ultimate boundedness (UUB)
of νi, implying the UUB of the yaw rate ri.

The sway dynamics is given as the second row of (4), i.e.,

ν̇i =
1

m22
(−m23ṙi−m11uiri−d22νi−d23ri+wνi). (19)

Let the local and global coordinates of the hand point’s veloc-
ity be vihi := [uhi

, νhi
]> and ḣi = [ḣix, ḣiy]>, respectively.

As a result, uhi
, νhi

are bounded due to ||vihi|| = ||R>i ḣi|| =
||ḣi||. By (9), the sway velocity and yaw rate respectively
are

ui = uhi
, ri =

1

li
(νhi
− νi). (20)

Substituting the preceding relations into (19) yields the
internal dynamics of the vessels

ν̇i =
1

m22

[
−m23ṙi −m11l

−1
i uhi(νhi − νi)− d22νi

− d23l−1i (νhi − νi) + wνi
]

= −m23

m22
ṙi −

1

m22
(d22 −m11l

−1
i uhi − d23l−1i )νi

+
1

m22
(−m11l

−1
i uhiνhi − d23l−1i νhi + wνi). (21)

Theorem 2: Suppose that Assumption 1 holds and con-
sider the internal dynamics (19). If the target velocity of
vessel i satisfies ||ḣ∗i (t)|| < d22li−d23

m11
and the hand point’s

offset li > max{d23/d22,m23/m22} then under the action
of the controller (13), the internal dynamics of the system is
uniformly ultimately bounded (UUB).
The proof of Theorem 2 can be shown by following similar
lines as Proofs of Lemma 1 and Theorem 3 in [13] and thus
omitted to save space.

Theorem 2 implies that to guarantee the boundedness of
the internal dynamics (21) one should select the desired
formation velocity sufficiently small and the hand points’
locations are large enough.

IV. SIMULATION

Simulation results of the formation tracking control of six
underactuated surface vehicles with a constant velocity leader
under the controller (13) are provided in Fig. 2. The target
formation (Ḡ,h∗) of the multi-vessel system is depicted
in Fig. 2a, which is formed by two squares of length 10
meters. It is checked that the graph contains a spanning tree
rooted at the leader node 1 (Fig. 2a). For the simulation, the
dynamical models of the agents are chosen differently. The
dynamical parameters for vessels 5 and 6 with diagonal mass
and hydrodynamic damping matrices are given as m11 = 200
kg, m22 = 250 kg, m23 = 0 kg, m33 = 700 kg.m2, d11 = 70
kg/s, d22 = 100 kg/s, d33 = 50 kg.m2/s, d23 = 0 kgm/s,
and li = 1.6 (m). The model parameters of vessels from
1 to 4 are m11 = 200 kg, m22 = 300 kg, m33 = 750
kg.m2, m23 = 3 kgm, d11 = 70 kg/s, d22 = 100 kg/s,
d33 = 50 kg.m2/s, d23 = −30 kgm/s, and li = 1.4 m.
The disturbance components acted upon (3) are given as
δui = 0.5 + 0.15 sin(2t) + 0.15 sin(10t), δνi = 0, and
δri = (3/7) + (6/7) sin(2t) + (4/7) sin(10t).

In the simulation, the leader agent 1 moves with the
constant surge speed u1 = 0.5 m/s and constant yaw angle
ψ1 = π/6 rad. The control gains are selected as ks = 5, β =
2, kP = 2 and kI = 1. One verifies that ||ḣ∗i || = 0.5 <
d22li−d23
m11

= 0.85 m/s for vessels from 1 to 4 (< 0.8 for
vessels 5 and 6) and li > max{d23/d22,m23/m22} = 0.012
m for all vessels, satisfying the conditions in Theorem 2. As
observed from Fig. 2d, the vessel system arrives at the target
formation asymptotically since the control errors δf → 0 and
δ̇f → 0 as t→∞ (Fig. 2c). The yaw angles of the vessels
tend to converge to that of the leader vessel asymptotically,
as depicted in Fig. 2b.

V. CONCLUSION

In this work, a robust formation tracking control scheme
was proposed for a group of heterogeneous underactuated
agents based on the inter-agent displacements. Due to the
underactuation of the agents, the presented control protocol
aims to regulate certain points on the longitudinal axis,
different from the central points, to track the moving forma-
tion. Specifically, under the action of the proposed tracking
controller, the hand points of the agents are steered to the
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(a) The interaction graph G and the desired formation (two squares
of side length 10 m) of the system.
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(b) Yaw angles [rad] vs time.
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(c) Tracking control errors vs time.
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(d) Trajectories of the agents under the control law (13).

Fig. 2: Six heterogeneous surface vessels track a moving formation.

target formation asymptotically and with an exponential con-
vergence rate. We subsequently showed that to guarantee the
boundedness of the internal dynamics, the desired formation
velocity is required to be sufficiently small and the hand
points’ locations large enough. A potential extension of the
proposed control approach is investigating model-free robust
formation tracking control schemes for underactuated planar
agents.
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