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Abstract— This paper presents a scenario-based hybrid
model predictive control (MPC) design approach for coopera-
tive adaptive cruise control (CACC) in mixed-autonomy traffic
environments with uncertainties stemming from unexpected
maneuvers of human-driven vehicles. Different from the past
works that consider one possible realization of uncertainty, the
proposed approach here considers multiple scenarios based on
the uncertainty description that varies with the relative location
of the human-driven vehicles (HVs) and the connected and
automated vehicles (CAVs). For each scenario, a mixed integer
quadratic programming problem is formulated for the control
of CAVs with four operating modes, namely free following,
braking, danger, and lane change. Each CAV’s operating
mode is determined based on the predictive information it
receives from its predecessors and the anticipated behaviors of
surrounding HVs. All the scenarios are handled simultaneously
using the scenario-based MPC approach for a robust CACC.
Simulations in a mixed-autonomy traffic system including two
lanes demonstrate that the proposed scenario-based hybrid
MPC approach significantly reduces deviations from the desired
spacing policy and the desired velocity in the platoon during
unexpected human-driven vehicle maneuvers, compared with
the past work, particularly, a discrete hybrid stochastic (DHSA)
MPC approach.

I. INTRODUCTION

Lane change is a common driving maneuver. Inappropriate
lane changes would result in fatal accidents. The acquisi-
tion of onboard sensor data and the information received
through vehicle-to-vehicle (V2V) communication would im-
prove safety and comfort during a lane-change maneuver
[1]. Numerous researchers have concentrated on the problem
of trajectory planning and control for a safe and efficient
lane-change maneuver for autonomous vehicles [2]–[4]. In
the existing literature, lane-change maneuvers have been
investigated from different viewpoints, namely how an auto-
mated vehicle (AV) performs a collision-free lane change
and how an AV or a platoon of CAVs react when an
adjacent vehicle decides to change lane to robustify the traffic
flow against lane-change maneuvers. Recently, in [5], the
authors addressed the problem of robustifying CACC against
HVs’ maneuvers and maintaining the desired formation and
spacing among vehicles in mixed autonomy traffic.

As demonstrated by our previous research study [5],
integrating operating modes directly into the controller de-
sign yields optimal behavior of CAVs while considering
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uncertainties in the environment. While the controller mainly
focuses on maintaining the desired velocity and distance
among CAVs, it may switch the CAV’s operating mode to
respond to an HV’s random behavior. In our previous study,
we optimized control inputs and the uncertainty variables
simultaneously to minimize the control cost. However, in
the case that optimized uncertainty variables do not match
the realizations of uncertainties, the CAV cannot achieve
its optimal performance. Hence, in this study, we aim to
address the aforementioned issue using scenario-based model
predictive control (SMPC). SMPC has been developed to
account for system uncertainties for robust control design
purposes by representing uncertainties using a scenario tree
in the optimal control problem and reduce the conserva-
tiveness inherent to open-loop robust MPC by introducing
recourse into optimal control problem [6]. The scenarios
in the scenario tree can be generated by any model-based
or data-driven approach. Moreover, online adaptive scenario
generation has been proposed to reduce the conservativeness
of scenario tree construction [7].

In this work, we propose to leverage the scenario trees
to represent the uncertainties of the environments for MPC
design, where the uncertainties can arise from unexpected
maneuvers of human-driven vehicles. We incorporate the
environment uncertainties represented by scenario trees into
the structures of our previously proposed stochastic CACC
approaches [5], [8]. In particular, we consider four operating
modes including free following, braking, danger, and lane
change to assure the desired performance while preserving
safety in a mixed-traffic environment. To properly model the
CAV’s behaviors that include both continuous and binary
variables, a hybrid mathematical model is required. We lever-
age the discrete hybrid automata to capture both continuous
and binary variables. Finally, we present a scenario-based
hybrid MPC as the optimal stochastic controller for each
CAV. The operating mode of each CAV would be decided
automatically depending on the status of the uncertainties
that are captured through the scenario tree.

The contributions of the paper are as follows. This paper
presents a scenario-based hybrid MPC design method for
CACC in order to cope with the uncertainties in mixed-
autonomy traffic environments. The controller allows to au-
tomatically switch between danger and lane-change modes,
as well as adjust the steering angle to perform a lane-
change maneuver when needed. The scenario tree allows
the controller to capture possible realizations of uncertainties
and thus robustify the CAV’s performance against sudden
changes in the environment caused by human-driven vehi-
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cles’ maneuvers.

II. PROBLEM STATEMENT AND RELATED PRELIMINARIES

Considering a CACC system with Nv CAVs, i ∈
{0, 1, . . . , Nv − 1} denotes the ith vehicle (CAVi), and
i = 0 is the leader vehicle. CAVs’ longitudinal and lateral
movements are studied here where the goal of each CAV
in the longitudinal movement is to reach a relatively small
headway while preserving safety during sudden changes
in the platoon, e.g., sudden deceleration or lane change
performed by adjacent HVs. When an HV enters into the
CAVs’ platoon, CAVs may require a lane change to pass the
interrupting HV and achieve their desired distance from their
predecessor. Therefore, CAVs need to consider the uncertain
maneuvers of HVs for robust and safe CACC.

Similar to [5], we consider the ith vehicle’s bicycle model
as follows

Ẋm
i (t) =

ẋi(t)
ẏi(t)

θ̇i(t)

 ≈

 vi(t)
θi(t) vi(t0)
uφ
i (t) vi(t0)

 , (1)

where xi and yi indicate the vehicle’s longitudinal and lateral
location from a specified reference, respectively; φi is the
steering angle, θi is the vehicle’s body angle with the X-
axis, vi is the vehicle’s velocity, and the input uφ

i denotes
the steering rate. The distance between ith vehicle and its
preceding vehicle at time t is denoted by di(t) and defined
as

di(t) = xi−1(t)− xi(t)− lvi , (2)

where xi and lvi are the longitude of the ith CAV’s rear
bumper, and the length of the ith vehicle, respectively. A
fixed time headway gap spacing policy, which can improve
the string stability and safety [9], is considered as follows

d∗i (t) = Ti vi(t) + d0i , (3)

where Ti is the time gap, and d0i is the standstill distance. The
difference between the gap and its desired value is defined
as ∆di(t) = di(t)− d∗i (t). Hence, ∆ḋi turns into ∆ḋi(t) =
vi−1(t)− vi(t)− Ti ai(t), where ai denotes the acceleration
of the ith vehicle. By taking the driveline dynamics τi into
account, the derivative of the acceleration for vehicle i is
ȧi(t) = − 1

τi
ai(t)+

1
τi
ua
i (t), where ua

i (t) acts as the vehicle’s
acceleration input.

Considering xi(t) = [∆di(t) yi(t) θi(t) vi(t) ai(t)]
T ,

the state-space representation for CAVi becomes

ẋi(t) = Ai xi(t) +Bi ui(t) + Ci vi−1(t)

=


0 0 0 −1 −Ti

0 0 vi(t0) 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 −1/τi



∆di(t)
yi(t)
θi(t)
vi(t)
ai(t)



+


0 0
0 0
0 vi(t0)
0 0

1/τi 0


[
ua
i (t)

uφ
i (t)

]
+


1
0
0
0
0

 vi−1(t). (4)

For the leader vehicle (i = 0), the term vi−1(t) in (4)
is replaced by its desired speed trajectory. Using forward-
time approximation for the first-order derivative, (4) can be
expressed in discrete time as

xi(k+ 1) = (I + ts Ai)xi(k) + ts Bi ui(k) + ts Ci vi−1(k),
(5)

where I is the identity matrix and ts is the sampling time.
Next, we will introduce the preliminaries of SMPC which
will be used to handle the uncertainties of HVs’ maneuvers.

A. Scenario-based model predictive control

SMPC uses a tree of discrete scenarios to describe the
system uncertainties. Any branch stemming from a node
represents a scenario of an unknown, uncertain influence
(e.g., from a disturbance or model error) [6]. The scenario-
based optimal control problem for an uncertain system at
time step k can be formulated as follows

min
xj ,uj

S∑
j=1

pj

[
N−1∑
i=0

ℓ
(
xj(i|k), uj(i|k)

)
+ VN

(
xj(N |k)

)]
s.t. xj(i+ 1|k) = f

(
xj(i|k), uj(i|k), ŷj(i|k)

)
, (6a)(

xj(i|k), uj(i|k)
)
∈ X × U , (6b)

xj(0|k) = x(k), (6c)

uj(i|k) = ul(i|k) if xp(j)(i|k) = xp(l)(i|k), (6d)

where pj is the probability of the j-th scenario;
ℓ
(
xj(i|k), uj(i|k)

)
and VN

(
xj(N |k)

)
are the stage cost

and terminal cost for the j-th scenario, respectively; N is
the prediction horizon, ŷj(i|k) is the uncertainty realization
considered at time instant i for the j-th scenario; (6d)
enforces a non-anticipativity constraint, which represents the
fact that each control input that branches from the same
parent node must be equal (xp(j)(i|k) is the parent state
of xj(i + 1|k)). The non-anticipativity constraint is crucial
in order to accurately model the real-time decision problem
such that the control inputs do not anticipate the future (i.e.,
decisions cannot realize the uncertainty). The solution to this
optimization problem is used to generate the control law,
presented as

κ (x(k)) = u⋆(0|k). (7)

To reduce computational complexity, we utilize a robust
horizon Nr < N defined in [6]. This robust horizon stops
the branching of the scenario tree up to a certain stage, and
the uncertainty is assumed to be constant thereafter. Conse-
quently, assuming the number of scenarios s at each node
of a stage is constant, the total number of scenarios S can
be represented by S = sNr . For scenario generation, several
methods of scenario generation have been proposed in the
literature, including Monte Carlo sampling methods [10],
moment matching methods [11], [12], and even machine
learning techniques [13], [14]. The objective of scenario tree
construction is to accurately approximate (6) with a relatively
small number of scenarios.
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III. SYSTEM MODEL IN THE MIXED LOGICAL
DYNAMICAL FORM

The discrete hybrid automata (DHA) [15] unit is used to
describe each CAV dynamics and constraints together with
its four operating modes, namely free following (FF), danger
(D), braking (B), and lane change (LC). In the control unit,
the DHA is transformed into Mixed Logical Dynamical
(MLD) form and then used to solve the scenario-based hybrid
MPC problem. The optimal control input is applied to the
system actuator(s), and the predictive speed trajectory is
shared with follower vehicles through V2V communication.
In the remainder of this section, additional details are pro-
vided on how to represent CAV equations in the MLD form.

The constraints on the system include

amin
i ≤ ai(k) ≤ amax

i , (8a)

umin
i ≤ ua

i (k) ≤ umax
i , (8b)

vi(k) ≤ vmax, (8c)
di(k) > 0. (8d)

In our CACC design, the following four operating modes are
considered with the transition diagram shown in Fig. 1:

1) free-following mode, where each CAV attempts to keep
a desired distance from its CAV predecessors;

2) braking mode, where CAV attempts to slightly increase
its headway and reduce its speed to avoid a possible
accident;

3) danger mode, where an HV is changing (or has
changed) its lane and is moving in front of the CAV
(in this case, the CAV right behind the HV adjusts its
headway according to the preceding HV’s location;

4) lane-change mode, in which the CAV tries to overtake
an HV and reduces the distance between itself and its
preceding CAV.

Four binary auxiliary variables representing system events
are defined as follows

δNi (k) = 1 ⇐⇒ free-following event is activated;

δDi (k) = 1 ⇐⇒ danger event is activated;

δBi (k) = 1 ⇐⇒ braking event is activated;

δLi (k) = 1 ⇐⇒ lane-change event is activated.

1) Braking event: The speed difference between CAVi

and its predecessor is efined as ∆vi(k) = vi−1(k) − vi(k).
As long as ∆vi(k) is greater than a safety threshold vsi < 0,
the vehicle operates in the free-following mode. However,
if ∆vi(k) goes below the safety threshold, the ith vehicle
enters braking mode. Therefore,

∆vi(k) ≤ vsi ⇐⇒ δBi = 1. (9)

To preserve safety, when a vehicle’s braking event is acti-
vated (δBi = 1), its target velocity will change from vi−1 to
a smaller value vi−1− vbi while its target headway increases
by vbi Ti, where vbi is a design parameter.

Fig. 1: Diagram of the proposed scenario-based hybrid MPC
design for CACC. The scenario generator block uses the clos-
est HV’s location to generate the scenario tree. The control
unit translates the CAV’s model into MLD and employs a
scenario-based hybrid MPC to find the optimal control input.
Each CAV uses the future profiles of its predecessors, which
are received through V2V communication, for finding its
optimal control actions.

The representation of (9) in the MLD form is as follows:

∆vi(k)− vsi ≤ Mf
i [1− δBi ],

∆vi(k)− vsi ≥ ε+ δBi [mf
i − ε],

(10)

where ε is the machine precision, and mf
i and Mf

i denote
lower and upper bounds on ∆vi(k)− vf , respectively.

2) Danger event: When an HV starts to switch lane and
moves in front of a CAV (which can be detected through the
CAV sensors and cameras), a danger event occurs. In this
case, the CAV in danger mode should adjust its headway
based on the HV position instead of the preceding CAV’s
position. So, the auxiliary binary variable δDi (k) is defined
such that

yhi+1(k)− yi(k) ≤ ythi → δDi (k) = 1, (11)

where ythi is the danger event threshold. Danger event for
CAVi occurs for one of the following two reasons:

a) the CAV is in free-following mode, and the adjacent
HV begins changing its lane and entering the CAVs’
platoon.

b) CAVi is in the free-following mode, and CAVi−1 is
doing a lane change; hence, the ith CAV’s immediate
predecessor in the lane becomes an HV. In this case,
CAVi−1 announces its lane-change decision as a binary
flag fLC

i−1 to its follower CAV through communication.
Hence, the following statement should hold true

fLC
i−1(k) = 1 → δDi (k) = 1.
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Remark 1: When the danger event occurs, the CAV ad-
justs its velocity and headway based on the HV that causes
the danger. Hence, the CAV’s distance from its preceding
vehicle (can be either a CAV or an HV) di(k) can be
redefined as

di(k) = (1− δDi (k))xi−1(k) + δDi (k)xh
i (k)− xi(k)− lvi ,

and ∆di(k) changes accordingly.
3) Lane-change event: When a CAV is in the danger

mode, and its longitudinal distance from its preceding CAV
exceeds a predefined threshold, the CAV should perform a
lane change to be able to reach its desired spacing policy,
and hence

δLi (k) = 1 ⇐⇒ xi−1(k)−xi(k)− lvi −(Ti+αi) vi(k) ≥ 0,

where αi > 0 is the threshold mentioned above. Whenever
the lane-change mode activates, the lateral reference for the
CAV changes to the desired lateral location in the adjacent
lane.

To ensure a collision-free lane change, CAVs should also
consider HVs in the target lane. To this aim, the lane-change
mode for a CAV should not activate unless there is no vehicle
in the target lane behind the CAV or the CAV is able to
preserve a minimum distance from that vehicle during the
lane-change maneuver; the latter for CAVi is addressed using
the following constraint

xi(k)− xh
i+1(k)− lhi+1(k)− βi v

h
i+1 ≥ 0,

where βi represents the minimum allowed time gap from the
rear HV in the target lane, xh

i+1, lhi+1 and vhi+1 are location,
length, and velocity of the HV in the CAV’s target lane,
respectively. It is noted that whenever the lane-change mode
activates for CAVi, danger event for that vehicle terminates.

4) Free-following event: Free-following event for ith

CAV occurs when none of the three other events are activated
for the CAV.

Considering the aforementioned events changes the differ-
ence equations in (5) to the following form

xi(k + 1) = (I + ts Ai)xi(k) + ts Bi ui(k)

+ ts Ci [(1− δDi (k)) vi−1(k) + δDi (k) vhi (k)], (12)

where vhi (k) is the velocity of the HV that activates the
danger event for the ith CAV.

IV. SCENARIO-BASED MPC DESIGN FOR CACC

The proposed controller design approach for CACC is shown
in Fig. 1. CAVs leverage an m look-ahead communication
topology, and each CAV shares its predictive speed trajectory
with a number of its followers. The scenario tree construction
for the SMPC depends on the description of uncertainties.
In this work, we assume that the lateral velocity of the
HVs comes from a Gaussian distribution. The distribution
varies based on the relative location of the HV and the CAV.
For example, in Fig. 2, four clusters are considered, and a
specific distribution over the clusters is used to model the
HV’s uncertain lateral behavior. In general, the distributions

Fig. 2: The representation of the clusters considered for the
HV’s behavior. Orange and blue vehicles represent CAVs
while the rest represent HVs.

can be learned using real data of HVs’ lateral behavior. It is
noted that, if the HV does not belong to any of the clusters,
its lateral velocity is assumed to be zero.

In particular, the distribution for cluster j is considered as
a Gaussian distribution N (µj , σ

2
j ) which can be discretized

and used to create the scenario tree. In this paper, the dis-
tribution corresponding to cluster j is discretized into three
levels, namely, µj−σj , µj and µj+σj with the probabilities
of 0.159 , 0.682, 0.159, respectively. This means that when
branching a node, three new nodes are added to the tree. The
model predictive problem constructed upon the scenario tree
for CAVi is formulated as follows

min
uj
i ,z

j
i

S∑
j=1

P j

[
N−1∑
k=0

(
(xj

i (k)−Rj
i )

T Qi (x
j
i (k)−Rj

i )
)]

+

i−1∑
n=i−m

[
cdi,n

(
xn(k)− xj

i (k)−
i∑

r=n+1

(d∗r(k) + lvr )

−δBi (k) vbiTi

)2

+cvi,n

(
vn(k)− vji (k)− δBi (k) vbi

)2]
+ cEi

]
,

subject to: MLD system equations,

uj
i (k) = ul

i(k) if xp(j)
i (k) = x

p(l)
i (k),

(13)
where the superscript j is used to distinguish the system
states and inputs for different scenarios, uj

i and zji are the
system inputs and the vector of auxiliary variables from
k = 0 to k = N − 1, respectively. The positive coefficients
cdi,j > 0 and cvi,j penalize the distance and speed difference
between CAVi and CAVn (n < i), the terms δBi (k) vbi and
δBi (k) vbiTi are used to reduce the desired velocity and in-
crease the desired distance in braking mode, respectively, and
m denotes the number of predecessors sharing information
with the ith CAV. In (13), each vehicle tends to achieve the
desired distances from its m predecessors while adjusting its
velocity based on the predecessors’ velocities. It is noted that
when m > i (number of predecessors is less than m), CAVi

replaces m with i in (13).

V. SIMULATION RESULTS AND DISCUSSION

For the CACC problem, the performance of the proposed
scenario-based MPC is evaluated in a mixed-autonomy traffic
system including two lanes, where HVs may perform lane
change and merge into the CAVs’ platoon. Parameters used
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in the simulation study can be found in [5]. In the MPC
problem (13), the vector Ri is chosen as follows

Ri =
[
0.7 δDi (k)Ti vi(0) + δBi (k) vbiTi 0 yrefi (k)

(1− δDi (k)) vi−1(k)− δDi (k) vhi (k) + δBi (k) vbi 0
]T

.

Such selection for Ri implies that if a danger event does
not occur (or will not occur within the prediction horizon),
CAVi only considers its m predecessor CAVs’ information
for adjusting its speed. However, according to Remark 1, the
activation of the danger event results in taking the distance
from the adjacent HV and the HV’s velocity into account in
finding the optimal control input. It is noted that CAVi uses
Ti(vi(k) + 0.7 vi(0)) + d0i as its desired distance from the
adjacent HV in danger mode. In addition, the terms δBi (k) vbi
and δBi (k) vbiTi are used to reduce the desired velocity and
increase the desired distance in braking mode, respectively.
The parameter vbi is considered as 0.01 vi(t). In this study,
it is assumed that each HV’s lateral velocity comes from the
following Gaussian distributions: N (0, 0.252) for Cluster 1,
N (0, 0.52) for Cluster 2, N (0, 12) for Cluster 3, N (0, 22)
for Cluster 4. The underlying mixed-integer optimization
problems are solved using CVXPY package, and Gurobi
solver in Python. It is also assumed that HVs may perform
lane change only once during the simulation study. The
results are also compared against the previously developed
discrete hybrid stochastic MPC design (DHSA MPC) [5].
In our experiments, a platoon of seven CAVs is considered
while three HVs are assumed to move initially in the adjacent
lane next to the CAVs. A graphical representation of the
simulation results at eight different moments is illustrated in
Fig. 3, and the location of the vehicles at the beginning of the
simulation is shown in the first subplot. The subplots showing
∆di, yi, vi, and ai are given in Fig. 4 for the scenario-based
MPC, and Fig. 5 for DHSA MPC. Initially, the velocity of
both HV0 and HV1 is 26m/s while the velocity of HV2

is 20m/s. HV0 performs a lane change at t = 9 s while
keeping the same speed. However, when HV1 changes its
lane at t = 12 s, it also reduces its speed to 23m/s. HV3

does not perform a lane change. The initial velocity for all
CAVs is 20m/s while their desired velocity is 29m/s.

At the beginning of the simulation, all CAVs operate in
free-following mode (first subplot at Fig. 3). In between
t = 5s-t = 10s, CAV1 and CAV6 slightly deviate from the
desired policy due to considering possible HVs’ lane-change
maneuver through the decision tree. At around t = 9.3s,
HV0 initiates the lane-change maneuver, which results in
CAV1 lane change at around t = 9.5s as the reaction
to such an event. CAV2, however, does not immediately
perform a lane change due to possible danger because of
the presence of another HV in the target lane, and waits
until around t = 12.6s to change its lane. This results in a
noticeable deviation from the desired spacing and velocity
policy during t = 9.5 − 12.6s. At t = 12.3s, HV1 starts
its lane-change maneuver, causing CAV3 to slightly deviate
from its desired spacing and velocity policy. CAV3 reacts
quickly to this event and enters lane-change mode. Other

Fig. 3: The graphical representation of the scenario-based
MPC performance for a fleet including 7 CAVs and 3 HVs
where αi = 0.25 s. HVs in the top lane are shown in black,
while after beginning a lane change, their color is changed to
gray. CAVs are shown using blue color, and after their lane-
change mode activates, their color is changed to orange.

CAVs in the platoon (CAV4−CAV7) do the same thing one
after another to avoid their distance from their predecessor
increasing. As shown in Fig. 4, after t = 18s all CAVs

Fig. 4: Performance of the CAVs employing the scenario-
based MPC scheme for a fleet including 7 CAVs and 3 HVs.

are able to achieve their desired behavior. Considering the
same initial conditions, Fig. 5 shows the simulation results
when using DHSA MPC. The DHSA MPC behavior shows
significant deviations from the desired spacing and velocity
policies, and noticeable variations in CAVs’ acceleration
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Fig. 5: Performance of the CAVs employing the DHSA MPC
scheme for a fleet including 7 CAVs and 3 HVs.

Fig. 6: Comparing the mean squared error for two control
approaches: scenario-based MPC and DHSA MPC.
profiles, compared with the scenario-based approach. The
main reason behind such differences in the closed-loop be-
haviors under DHSA MPC and the proposed scenario-based
MPC is as follows. The DHSA MPC controller chooses
a single realization of uncertainties that yields the lowest
cost to the controller and optimizes the control input for
that specific trajectory; on the other hand, the scenario-
based MPC controller optimizes the behavior of CAVs over
multiple realizations of uncertainties that are considered in
the scenario tree. The Mean Squared Error (MSE) measure
is also used to compare the two aforementioned control
approaches. The MSE of ∆di, vi, and ai are considered for
all CAVs, and the values at each time step are plotted in Fig.
6, which shows that scenario-based MPC provided significant
improvements compared to DHSA MPC.

VI. CONCLUDING REMARKS

In this paper, a scenario-based hybrid MPC design was
developed for cooperative adaptive cruise control to deal

with uncertainties in the environment. In particular, the
uncertainty that arises from unpredictable human-driven ve-
hicles’ maneuvers in a mixed-autonomy traffic environment
was considered. Several operating modes, namely free fol-
lowing, braking, danger, and lane change, for each CAV
were considered to adapt the CAV’s behavior based on the
HVs maneuvers. Each CAV’s operating mode was chosen
based on the predictive information it receives from its
predecessors and the anticipated behaviors of surrounding
HVs. Employing scenario-based MPC design improved the
robustness of the controller against the uncertainties in the
environment.
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