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Abstract— This article considers the challenge of accommo-
dating outlier measurements in state estimation. The Risk-
Averse Performance-Specified (RAPS) state estimation ap-
proach addresses outliers as a measurement selection Bayesian
risk minimization problem subject to an information accuracy
constraint, which is a non-convex optimization problem. Prior
explorations into RAPS rely on exhaustive search, which
becomes computationally infeasible as the number of measure-
ments is increases. This paper derives a convex formulation
for the RAPS optimization problems via transforming the
mixed-binary variables into linear constraints. The convex
reformulation herein can be solved by convex programming
toolboxes, significantly enhancing computational efficiency. We
explore two specifications: Full-RAPS, utilizing the full infor-
mation matrix, and Diag-RAPS, focusing on diagonal elements
only. The simulation comparison demonstrates that Diag-RAPS
is faster and more efficient than Full-RAPS. In comparison
with Kalman Filter (KF) and Threshold Decisions (TD), Diag-
RAPS consistently achieves the lowest risk, while achieving the
performance specification when it is feasible.

I. INTRODUCTION

The rapid decrease in the cost and size of sensors has
led to an abundant number of measurements, far exceeding
the number required for state observability. For instance,
position determination using Global Navigation Satellite
Systems (GNSS) is possible with pseudorange measurements
from four spatially diverse satellites [1]. There are now
four globally operational satellite constellations (e.g., Bei-
Dou, GPS, Galileo, GLONASS) each providing pseudorange
measurements on multi-frequencies. The number of GNSS
measurements per epoch, under open-sky conditions, is pre-
dicted to increase toward 100 in the near future [2]. Similarly,
feature-based navigation only requires four features with di-
verse directions for observability [3], [4], while cameras can
provide hundreds of features per image. Such applications,
where the number of available measurements far exceeds the
number required for observability are signal-rich.

For signal-rich applications, there is an important perfor-
mance versus Bayesian risk trade-off. If all measurements
were outlier-free with known accuracy, then using all mea-
surements within a maximum a posteriori framework would
yield the optimal state estimation performance [5]. However,
in typical applications some measurements are affected by
outliers. Therefore, each measurement that is used has the po-
tential to provide enhanced estimation accuracy as quantified
through the state error covariance matrix, if the measurement
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is outlier-free. Alternatively, there is the risk that outlier
affected measurements will corrupt the state estimate while
causing the estimator to be overly confident in that corrupted
estimate (i.e., the error covariance matrix is too small).

This trade-off and methods to directly address it are crit-
ically important because at any measurement epoch several
measurements may contain outliers. When the number of
measurements that are used is large, adding one additional
valid measurement increases the accuracy only marginally
(i.e., covariance decreases proportional to 1

m , where m is the
number of measurements used); however, use of a single
outlier-affected measurement can destroy the validity of all
subsequent information processing by corrupting both the
mean and covariance of the state estimate.

State estimation using discrete-time measurements in-
volves two steps. The time update propagates the posterior
state estimate from the previous measurement epoch across
the time span between measurements, to provide a prior state
estimate at the next measurement epoch. The measurement
update incorporates the measurement information to correct
the prior state estimate to produce a posterior state estimate at
the measurement time. Because outliers only affect the mea-
surement update, this paper focuses entirely on the problem
of measurement selection for the measurement update, with
a focus on signal-rich environments.

Outliers are the measurements that are inconsistent with
the model and the remainder of the set of measurements
[6]. Accommodation of outliers in state estimation is a well-
studied problem. Standard methods for state estimation and
control (see e.g.: [7], [8]) evaluate measurement residuals
against their expected values using a fixed or an adaptive
threshold test, as will be reviewed in Section III-A. More
advanced outlier accommodation methods have been pre-
sented in other applications [9]–[11], such as Least Squares-
based linear model fitting. These methods either detect
and ignore outliers or de-weight measurements with large
residuals. None of these approaches consider the risk-versus-
performance trade-off involved with all measurements.

RAPS is an alternative approach to addressing outliers
in state estimation [12]–[14]. This approach, reviewed in
Section III-B, selects measurements to minimize a cost
function that quantifies Bayesian risk while satisfying a
performance constraint specified through the information
matrix. Prior work on RAPS presented the optimization
problem in its natural non-convex form. To achieve the global
optimal solution, an Depth-First Search (DFS) approach was
suggested to examine all 2m combinations of the binary
measurement selection vector. This strategy becomes compu-
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tationally infeasible as m increases. This article presents and
demonstrates a convex reformulation of the RAPS optimiza-
tion problems by converting transforming the mixed-binary
variables into linear constraints, enabling efficient solution
using modern optimization tools. We explore and evaluate
two approaches to specifying performance: one involving
the full information matrix and another focusing solely on
its diagonal elements. Additionally, this paper includes a
simulation comparison of the information and risk outcomes
from KF using all measurement, TD for outlier removal, and
RAPS for measurement selection.

II. PROBLEM STATEMENT

The discrete-time evolution of the linear system is

xk = Fxk−1 +wk (1)

where xk ∈ Rn is the state vector at discrete-time tk = k T
where T is the sampling interval, F is the known transition
matrix and wk ∼N (0, Q) is white Gaussian process noise
with covariance matrix Q. The time propagation of the state
vector xk and its covariance Pk is assumed to be unaffected
by outliers. Given the Gaussian probability density function
of the posterior N (x̂+k−1, P+

k−1), the state estimate and its
error covariance are propagated through time as

x̂−k
.
= Fx̂+k−1 (2)

P−k
.
= FP+

k−1 F>+Q (3)

The measurement vector at time tk is modeled as:

yk = Hxk +ηk (4)

where yk ∈Rm, H∈Rm×n is the known measurement matrix,
and ηk ∼N (0, Rk) represents the white Gaussian measure-
ment noise. The measurement noise matrix Rk ∈ Rm×m is
assumed to be diagonal and invertible. Therefore, it can be
written as R = ∑

m
i=1 σ2

i ei ei
>, where ei is the ith standard

basis vector.
Some measurements might be affected by outliers. Outlier

measurements are those that are improbable relative to the
model stated in eqn. (4). They may described as

yk(i) = hi xk +ηk(i)+ si, (5)

where yk(i) represents the i-th element of yk, that is affected
by the outlier si, ηk(i) is the i-th element of ηk, and hi is the i-
th row of H. The outlier si is unknown and has no established
model. The challenge lies in accommodating these outlier
measurements during the measurement update process.

III. STATE ESTIMATION USING SELECTED
MEASUREMENTS

This section reviews different strategies to accommodate
outliers in the state estimation measurement update. Each
strategy either selects or discards certain measurements. The
discussion is facilitated by introducing a binary vector b =
[b1, ... ,bm]

>. The binary element bi indicates whether to
include (bi = 1) or exclude (bi = 0) measurement yk(i) [15].

For a given value of b, the maximum-a-posteriori (MAP)
approach estimates the state by minimizing the cost function

x̂+k = argmin
xk

C(xk, b), (6)

where the cost function (see [12]) is

C(xk, b) = ‖xk− x̂−k ‖
2
P−k

+‖ΣR Φ(b)(yk−Hxk)‖2

= ‖xk− x̂−k ‖
2
P−k

+
m

∑
i=1

b2
i

σ2
i
(yi−hix)2 (7)

= ‖xk− x̂−k ‖
2
P−k

+
m

∑
i=1

bi

σ2
i
(yi−hix)2 (8)

where ∀ f ∈ ℜ`, Φ(f) = diag(f) : ℜ` 7→ ℜ`×` and b2
i = bi

due to the binary nature of bi. The covariance matrices
R−1 = ΣR

>ΣR and (P−k )
−1 = ΣP

>ΣP are represented
using the squared Mahalanobis distance (e.g., ‖xk− x̂−k ‖

2
P−k

=

‖ΣP (xk− x̂−k )‖
2 see [16]).

The posterior information matrix is computed as

J+k = H>Φ(b)>R−1
k Φ(b)H+J−k

=
m

∑
i=1

bi

σ2
i

h>i hi +J−k (9)

where J−k = (P−k )
−1 denotes the prior information matrix.

The corresponding posterior covariance matrix is computed
as P+

k = (J+k )
−1. Two approaches to calculate the measure-

ment selection vector b are considered below.

A. Threshold Decisions (TD)

The traditional method utilizes a threshold test to decide
whether a measurement is compromised by an outlier:

bi
.
=

{
0, when |ri| ≥ λσri

1, when |ri|< λσri
(10)

where λ > 0 is the decision threshold, σ2
ri
= hi P−h>i +σ2

i is
the covariance of residual component ri (see e.g.: [7], [8]).
The residuals are computed as

ri
.
= yi−hi x̂−k . (11)

After bT D is determined by eqn. (10), the optimal estimate
and information are the solutions of eqn. (6) and eqn. (9).

Many studies have critiqued the TD method for its failure
to reliably detect outliers, pointing out its susceptibility to
missed detections and false alarms [12], [17]. Missed detec-
tions can result in corrupted state estimates and overconfident
covariance matrices, creating inconsistencies between actual
and estimated uncertainties. This discrepancy can signif-
icantly impair the reliability of future subsequent outlier
decisions. In addition, fixed decision threshold means that
outlier decisions do not take into account any performance
specifications.
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B. Risk-Averse Optimization

The RAPS approach selects an optimal subset of mea-
surements that to minimize the Bayesian risk as quantified
by eqn. (8), subject to a specified performance criteria [12],
[14]. Two constraint implementations are considered herein.

To facilitate the discussion, we define two symbols. Drop-
ping the subscript k, starting from eqn. (9) the posterior
information matrix computed for a specific choice of b is

J+(b) =
m

∑
i=1

bi

σ2
i

h>i hi +J−. (12)

1) Full-RAPS: This approach constrains the posterior in-
formation matrix within a semi-definite framework: J+(b)<
Φ(Jd) where the symbol Jd represents a user-defined non-
negative performance lower bound vector.. Defining Fi =

1
σ2

i
h>i hi, eqn. (12) becomes

m

∑
i=1

Fi bi < Φ(Jd)−J−, (13)

With this Linear Matrix Inequality (LMI), the Full-RAPS
optimization problem is

x+k ,b
? = argmin

xk,b
C(xk,b)

s.t.:
m

∑
i=1

Fi bi < Φ(Jd)−J−

bi ∈ {0, 1} for i = 1, ..., m

 (14)

where the cost C(xk,b) is defined in eqn. (8).
2) Diag-RAPS: This approach chooses the constraint

diag(J+(b)) ≥ Jd . By constraining only the diagonal el-
ements of the posterior information matrix computational
complexity is reduced relative to the semi-definiteness check
in eqn. (13). Appendix A of [18], shows this constraint is
equivalent to

Gb≥ d where d = Jd−diag(J−k ) (15)

and G =


h2

11
σ2

1
. . .

h2
m1

σ2
m

...
. . .

...
h2

1n
σ2

1
. . . h2

mn
σ2

m

 . With this linear constraint on b,

the Diag-RAPS optimization problem is

x+k ,b
? = argmin

xk,b
C(xk,b)

s.t.: Gb≥ d
bi ∈ {0, 1} for i = 1, ..., m

 (16)

3) Comparison of Full and Diagonal RAPS: The cost
function of eqn. (8) is quadratic in xk and linear in b
when these variables are treated separately; however, it is
jointly non-convex. Therefore, Problems (14) and (16) are
each mixed-integer non-convex problems. Given the binary
nature of b, [14] proposed exhaustive search methods with
worst-case time complexity O(m!). For each choice of b,
the optimization which is quadratic in xk is straightforward.

The search over b could be implemented using an m-layer
binary tree search, leveraging the standard branch-and-bound
(BNB) with worst-case time complexity to O(2m).

IV. CONVEX REFORMULATION

There now exist software packages to solve convex mixed-
integer programming problems; however, Problems (14) and
(16) are characterized by non-convex objective functions
coupled with convex constraints. This section transforms
the non-convex cost function into a convex format, thereby
transforming Problems (14) and (16) into convex problems.

The cost function in eqn. (7) is equivalent to

C(xk, b) = ‖xk− x̂−k ‖
2
P−k

+
m

∑
i=1

1
σ2

i
(yi bi−hi bi x)2. (17)

Let q = [q1; ...; qi; ...; qm] ∈ Rn×m, where qi = bi x =
[qi1, , ..., ,qi j, , ..., ,qin]

> ∈ Rn with qi j = bi x j. Although the
product bi x j is inherently non-convex and mixed-binary, it
can be encapsulated within a linear constraint set:

A (xk,b,q) =


A1 : xmin ≤ x≤ xmax,

A2 : x−xmax(1−bi)≤ qi ≤ bi xmax,

A3 : bi xmin ≤ qi ≤ x−xmin(1−bi),

(18)

where xmin and xmax denote lower and upper bounds on x,
respectively. For state estimation problems, the posterior state
estimate is typically within a limited distance to the prior
state. Therefore, these bounds can be configured as x̂−±∆,
with ∆ being a suitably large positive value.

The linear constraints in eqn. A2 and eqn. A3 establish
important properties for q:

1) For bi = 1, A2 simplifies to x ≤ qi ≤ xmax, and A3
simplifies to xmin ≤ qi ≤ x, ensuring qi = x.

2) For bi = 0, A2 becomes x− xmax ≤ qi ≤ 0, and A3
becomes 0≤ qi ≤ x−xmin, ensuring qi = 0.

These linear (convex) constraints therefore ensure qi j = bi x j.
Note that the binary vector b cannot be relaxed to a non-
binary variable, as that would compromises the require
property that qi = bi,x.

For binary b, with the constraints in eqns. (18), the cost
function in eqn. (7) has the convex form:

Cc(xk,b,q) = ‖xk− x̂−k ‖
2
P−k

+
m

∑
i=1

(yi bi−hi qi)
2

σ2
i

.

Both Problems (14) and (16)) can now be written in convex
form. RAPS Optimization using Full Information matrix
(Full-RAPS) is equivalent to

x+k ,b
?,q = argmin

xk,b,q
Cc(xk,b,q)

s.t.:
m

∑
i=1

Fi bi < Ψ(Jd)−J−k

bi ∈ {0, 1} for i = 1, ..., m

A (xk,b,q),


(19)
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RAPS Optimization using Diagonal Information matrix
(Diag-RAPS) is equivalent to

x+k ,b
?,q = argmin

xk,b,q
Cc(xk,b,q)

s.t.: Gb≥ d
bi ∈ {0, 1} for i = 1, ..., m

A (xk,b,q).

 (20)

Both Problem (19) and Problem (20) are convex mixed-
integer optimization problems featuring nonlinear objective
functions. Problem (20) incorporates linear constraints. In
contrast, Problem (19), not only has linear constraints, but
also involves a LMI constraint, adding a layer of complexity
to its formulation. Both involve binary variables.

Both problems are solvable using the BNB algorithm in
YALMIP [19]. While in the worst case the BNB algorithm
exhibits exponential time complexity, on average it is more
efficient than the previously proposed DFS strategy. In
principle, both Problem (19) and Problem (20) could be
solved more efficiently by combining the BNB algorithm
with convex optimization. However, contemporary solvers
like MOSEK and Gurobi [20], [21], that are commonly used
in the CVX [22] and YALMIP optimization environments,
do not currently support integer variables with semi-definite
matrix inequalities. Therefore, MOSEK and Gurobi are suit-
able for Problem (20), but not Problem (19). A comparative
analysis of computation times is presented in Sec. V-D, using
YALMIP BNB for Full-RAPS and CVX MOSEK for Diag-
RAPS.

V. EVALUATION IN SIMULATION

This section evaluates and compares Full-RAPS and Diag-
RAPS on computation time. Then, state estimation perfor-
mance is evaluated for: the KF without outlier removal, the
KF equipped with TD outlier removal as discussed in Section
III-A with λ = 2, and Diag-RAPS solved using MOSEK. The
performance evaluation was conducted in MATLAB on an
AMD 5800X CPU.

A. System Model

The systems that is simulated has the state vector

x =
[
p v a

]> ∈ R9

where p∈R3 represents position (components denoted as N,
E, and D), v ∈R3 represents velocity, and a ∈R3 represents
acceleration. Therefore, n = 9. During the simulation, the
acceleration signal is selected to cause the vehicle to follow
a trajectory similar to a vehicle driving around a city block
that is square with each edge being 200 meters long. The
origin of the coordinate system is at the center of this square.
The D component undulates in a slow sinusoidal fashion as
the vehicle traces its trajectory.

The navigation system does not know the acceleration
of the vehicle. For the purpose of state estimation, the
differential equations for this system are

ṗ(t) = v(t), v̇(t) = a(t), and ȧ(t) = ω(t) (21)

where ω(t) is continuous-time white Gaussian process noise
with power spectral density S. This is referred to a position-
velocity-acceleration model and is frequently used in GNSS
applications [18].

To estimate the state vector, each state estimator uses a
vector of measurements that occurs every T = 1 second. Each
estimator is designed based on the model in eqn. (4). Each
row of the measurement matrix has the form

hi =
[
hiN hiE hiD 0 0 0 0 0 0

]
, (22)

where ‖hi‖2 = 1 and hiz > 0. These first three components,
related to the position vector, represent the line-of-sight unit
vector pointing from the receiver antenna to the satellite (see
Section 8.2 in [23]). The simulation considers m satellites,
with randomly distributed azimuth and elevation, that are
fixed during the duration of the simulation.

B. Measurements and Outliers

The simulated measurements are produced using the
model in eqn. (5), where var(ηi) = σ2

i with σi = 1.5 m. The
ground truth trajectory and outlier corrupted measurements
were created once and then used by all three estimators.

Each measurement outlier signal si(kT ) was defined to
have properties similar to multipath in GNSS. Dropping the
i, because the model is the same for all measurements, the
variance of each outlier is

σ
2
s = σ

2
el +σ

2
az,

where σel =
0.6
|ψ|+ε

and σaz =
0.3

θ+ε
. In this expression, θ > 0

and ψ represent the radian elevation and azimuth angles
of the satellite relative to the receiver and ε is a small
positive number to prevent division by zero. For the i-th
measurement, at each time tk = k T , an outlier si(kT ) is
computed as a zero mean Gaussian random variable with
standard deviation σ2

si
based on θi and ψi.

Because the number of reflecting surfaces along the signal
path that can cause multipath increases as elevation de-
creases, the outlier variance is designed to increase rapidly
as the satellite elevation decreases. The variance of the
outlier with respect to azimuth is designed to correspond
to a building or other reflecting surface near the origin of
the simulated system that causes high multipath. Because
the vehicle trajectory goes around the building the specific
direction corresponding to the high variance changes with
the vehicle location.

C. Performance Specification

The performance specification Jd , defines a the lower
bound in the constraint in Problems (19) and (20). It was se-
lected to only constrain the information required for the three
position variables. The Society of Automotive Engineers
(SAE) specification for positioning accuracy in highway
vehicle applications requires the horizontal accuracy better
than 1.5 meters and vertical accuracy 3 meters, both at a
68% probability level. The determination of Jd based on the
SAE criteria is discussed in Section 7.2 of [18], yielding

Jd = [1.389, 1.389, 0.347].
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Fig. 1: Runtime comparison between Full-RAPS (blue) vs
Diag-RAPS (orange). Each point represents the mean of the
per epoch runtime for an experiment with the number of
measurements specified along the horizontal axis. The values
above the points represent the STD.

Additional states could be constrained, but this constraint
is appropriate for this application. If constraints were desired
for velocity (or acceleration) which are not observable until
position measurements are available for at least two (three)
distinct times, then the lower bound would need to change
with time.

D. Runtime comparison between Full-RAPS and Diag-RAPS

This section evaluates the real-time feasibility of the Full-
RAPS and Diag-RAPS approaches. Four experiments were
conducted, each utilizing a fixed number of 15, 20, 25, and
30 measurements per epoch. The Full-RAPS measurement
update corresponds to the solutions of the optimization
problems defined in Problem (19), solved using the YALMIP
BNB toolbox. The Diag-RAPS update pertains to the solu-
tions of the optimization problems defined in Problem (20),
solved via CVX MOSEK toolbox. The exhaustive search
strategy in [14] was not included in this study due to the
prohibitive computational cost (e.g., more than 10 minutes
for a single epoch with m = 15), especially as m increases.

As m increases to 20, the Full-RAPS runtime extends
beyond one minute per measurement epoch, rendering the
evaluation of the complete dataset impractical. Consequently,
the comparison focuses on a subset of 20 measurement
epochs. Fig. 1 compares the computational times for each
method as a function of the number of measurements. The
average computation time trends upward with the number
of measurements. Diag-RAPS achieves a significantly lower
computational cost, approximately 100 times faster than Full-
RAPS, and exhibits a reduced Standard Deviation (STD).
Based on these findings, only Diag-RAPS was investigated
for state estimation performance comparisons.

E. Estimator Implementations

The time propagation for all three estimators is identical,
using the state and covariance propagation stated in eqns.
(2) and (3). The computation of the parameters F and Q for
the discrete-time model discussed in Section 4.7 of [23] and
derived in Appendix B of [18].

In this section, the number of measurements is m = 50.
Each estimator implements the measurement update differ-
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Fig. 2: Simulation results comparing the square root of the
posterior information and of the risk for Kalman filter (KF)
in blue, Kalman filter with threshold detection (TD) in red,
and Diag-RAPS in green. The solid black line shows the
corresponding square root of the diagonal element of Jd .
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Fig. 3: Diag-RAPS computation time probability histogram.

ently resulting in a different risk as quantified by a cost
equivalent to eqn. (17).
• KF: The standard KF uses the x that minimizes the

MAP cost in eqn. (6) for b = 1.
• TD: The KF with TD uses the x that minimizes the

MAP cost in eqn. (6) with b = bT D (see eqn. (10)).
• RAPS: Diag-RAPS uses the x that solves Problem 20.

F. Results

The estimation accuracies for the three estimators are
shown in Fig. 2. The top three subplots show the square
root of diagonal elements of the posterior information matrix,
which correspond to the north, east, and down position states.
The bottom subplot shows the square root of the risk incurred
by each estimator.

Each plot of the square root of the posterior information
shows: the information achieved by the KF as blue dots; the
information achieved by the TD as red dots; the information
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achieved by Diag-RAPS as green dots; the specified level of
performance (i.e., square root of the corresponding compo-
nent of Jd) as a solid black line. The same color scheme is
used for the plot of the square root of the risk.

The KF graphs always achieves the highest (predicted)
information for all components, but also the highest risk,
because it uses all measurements. The TD graphs show that,
by ignoring those measurements whose normalized residual
fails the threshold test, it is able to reduce the risk. The
trade-off is that less (predicted) information is extracted
from the measurements. The Diag-RAPS graphs show that it
consistently maintains the lowest risk while always achieving
the specified performance levels. It is critical to understand
that a high-level of predicted information is not likely to be
achieved when the outlier risk is also high.

In terms of computational efficiency, both KF and TD
methods require only a few milliseconds per measurement
epoch, as they do not involve real-time optimization prob-
lems. Fig. 3 presents a histogram showing the percentage of
computation times (per measurement epoch) within each bin
for Diag-RAPS over 240 epochs, showing that it typically
resolves within a few seconds.

VI. CONCLUSION AND FUTURE RESEARCH

The main contributions of this article are the presenta-
tion and demonstration of a convex reformulation of the
RAPS state estimation problem. The article applied this
novel approach to two variations of RAPS to attain their
globally optimal solution. The Full-RAPS approach imposes
constraints on the full information matrix, whereas the Diag-
RAPS approach constrains the diagonal elements of the
information matrix. Both of them yield a mixed-integer
convex programming problem that can be resolved using ex-
isting software optimization tools. Our simulation evaluations
demonstrate that Diag-RAPS is approximately 100 times
faster than Full-RAPS, making it a more practical choice
for real-world applications. The state estimation performance
of Diag-RAPS is benchmarked against a standard KF using
all measurements and the TD approach based on checking
normalized residual magnitudes against a threshold. The
convex reformulation has proven effective, with simulation
outcomes indicating that the RAPS solution meets the de-
fined performance specifications while minimizing risk.

Regarding future research, this paper has concentrated
on the solvability aspects of the RAPS problem. A very
interesting next step is to study the actual positioning perfor-
mance of Diag-RAPS using real-world data. This necessitates
reducing computation costs to facilitate real-time application
feasibility. On alternative approach to drastically improving
computation time is based on the idea that the globally
optimal measurement selection is not required; instead, what
is required is a feasible solution that is not high risk [12].
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