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Abstract— We present a local minimax lower bound on the
excess cost of designing a linear-quadratic controller from
offline data. The bound is valid for any offline exploration policy
that consists of a stabilizing controller and an energy bounded
exploratory input. The derivation leverages a relaxation of
the minimax estimation problem to Bayesian estimation, and
an application of van Trees inequality. We show that the
bound aligns with system-theoretic intuition. In particular,
we demonstrate that the lower bound increases when the
optimal control objective value increases. We also show that
the lower bound increases when the system is poorly excitable,
as characterized by the spectrum of the controllability gramian
of the system mapping the noise to the state and the H∞
norm of the system mapping the input to the state. We further
show that for some classes of systems, the lower bound may be
exponential in the state dimension, demonstrating exponential
sample complexity for learning the linear-quadratic regulator.

I. INTRODUCTION

Reinforcement Learning (RL) has demonstrated success
in a variety of domains, including robotics [1] and games
[2]. However, it is known to be very data intensive, making
it challenging to apply to complex control tasks. This has
motivated efforts by both the machine learning and control
communities to understand the statistical hardness of RL
in analytically tractable settings, such as the tabular setting
[3] and the linear-quadratic control setting [4]. Such studies
provide insights into the fundamental limitations of RL, and
the efficiency of particular algorithms.

There are two common problems of interest for under-
standing the statistical hardness of RL from the perspective
of learning a linear-quadratic regulator (LQR): online LQR,
and offline LQR. Online LQR models an interactive problem
in which the learning agent attempts to minimize a regret-
based objective, while simultaneously learning the dynamics
[5]. Offline LQR models a two-step pipeline, where data
from the system is collected, and then used to design a
controller [6]. Guarantees in the online setting are in the
form of regret bounds, whereas the offline setting focuses
on Probably Approximately Correct (PAC) guarantees. The
high data requirements of RL often render offline approaches
the only feasible option for physical systems [7]. Despite
this fact, recent years have seen greater efforts to provide
lower bounds for the online LQR problem [8], [9]. Mean-
while, lower bounds that illustrate the hardness of learning
in terms of interpretable system-theoretic parameters are
conspicuously absent for the offline setting. Motivated by this

fact, we derive lower bounds for designing a linear-quadratic
controller from offline data.

Notation: The Euclidean norm of a vector x is denoted
by ∥x∥. The quadratic norm of a vector x with respect to
a matrix P is denoted ∥x∥P =

√
x⊤Px. For a matrix A,

the spectral norm is denoted ∥A∥ and the Frobenius norm
is denoted ∥A∥F . The spectral radius of a square matrix A
is denoted ρ(A). A symmetric, positive semidefinite matrix
A = A⊤ is denoted A ⪰ 0, and a symmetric, positive
definite matrix is denoted A ≻ 0. Similarly, A ⪰ B denotes
that A − B is positive semidefinite. The eigenvalues of a
symmetric positive definite matrix A ∈ Rn×n are denoted
λ1(A), . . . , λn(A), and are sorted in non-ascending order.
We also denote λ1(A) = λmax(A), and λn(A) = λmin(A).
For a matrix A, the vectorization operator vecA maps A to a
column vector by stacking the columns of A. The kronecker
product of A with B is denoted A ⊗ B. Expectation and
probability with respect to all the randomness of the under-
lying probability space are denoted E and P, respectively.
Conditional expectation and probability given the random
variable X are denoted by E[·|X] and P[·|X]. For an event
G, 1G denotes the indicator function for G. For a matrix
A ∈ RdX×dX and a symmetric matrix Q ∈ RdX×dX , we
denote the solution P to the discrete Lyapunov equation,
A⊤PA − P + Q = 0, by dlyap(A,Q). If we also have
B ∈ RdU×dU and R ∈ RdU×dU , R ≻ 0, we denote the solution
P to the discrete algebraic Riccati equation Q + A⊤PA −
A⊤PB(B⊤PB + R)−1B⊤PA = 0 by DARE(A,B,Q,R).
We use the indexing shorthand [K] := {1, . . . ,K}.

a) Problem Formulation: Let θ ∈ RdΘ be an unknown
parameter. We study the fundamental limitations to learning
to control the following parametric system model:

Xt+1=A(θ)Xt+B(θ)Ut+Wt, X0=0, t=0, 1, . . . . (1)

The noise process Wt is assumed to be iid mean zero Gaus-
sian with fixed covariance matrices ΣW ≻ 0. The matrices
A(θ) ∈ RdX×dX and B(θ) ∈ RdX×dU are known continuously
differentiable functions of the unknown parameter. We also
assume that these functions are Ldyn-Lipschitz in the spectral
norm. The system (A(θ), B(θ)) is assumed to be stabilizable.

We assume that the learner is given access to N ∈ N
experiments (X0,n, . . . , XT−1,n), n ∈ [N ] from (1) of length
T ∈ N. The input signal during these experiments is

Ut,n = FXt,n + Ũt,n, (2)
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where F renders the system stable1, i.e. ρ(A(θ) +
B(θ)F ) < 1. Meanwhile, Ũt,n is an exploration com-
ponent with energy budget σ2

ũNT ,2 where σũ ∈ R+.
More precisely, Ũt,n may be selected as a function
of past observations (X0,n, . . . , Xt,n), past trajectories
(X0,m, . . . , XT−1,m),m < n and possible auxiliary random-
ization, while being constrained to an energy budget

1

NT

N∑
n=1

T−1∑
t=0

Eθ Ũ
⊤
t,nŨt,n ≤ σ2

ũ. (3)

This formulation allows both open- and closed-loop experi-
ments, but normalizes the average exploratory input energy
to σ2

ũ. The subscript θ on the expectation denotes that the
system is rolled out with parameter θ. For a fixed parameter
θ, we denote the data collected from these experiments by
the random variable Z := {{(Xt,n, Ut,n}T−1

t=0 }Nn=1.
The learner deploys a policy π which is a measurable

function of the N offline experiments and the current state.
In particular, the learner maps the offline data and the current
state to the control input, Ut = π(Xt;Z). This is the case if
the learner outputs a non-adaptive state feedback controller
designed with the offline data. The goal of the learner is to
minimize the cost defined by:

V π
T (θ) :=

1

T
Eπ
θ

[
T−1∑
t=0

(
∥Xt∥2Q + ∥Ut∥2R

)
+∥XT ∥2QT (A(θ),B(θ))

]
.

The expectation is over both the offline experiments, and
a new evaluation rollout. Single subscripts on the states
and actions, Xt and Ut, refer to the evaluation rollout at
time t. The superscript on the expectation denotes that the
inputs applied in the evaluation rollout follow the policy
Ut = π(Xt;Z). Note that due to the dependence of the
terminal cost QT (A(θ), B(θ)) on the unknown parameter θ,
the learner does not explicitly know the cost function it is
minimizing. This is not an issue: it simply means that the
learner must infer the objective function from the data.

The following assumption guarantees the existence of a
static state feedback controller that minimizes V π

T (θ).
Assumption 1.1: Assume (A(θ), B(θ)) is stabilizable,

(A(θ), Q1/2) is detectable, R ≻ 0 and QT (A(θ), B(θ)) =
P (θ), where P (θ) = DARE(A(θ), B(θ), Q,R).

Under this assumption, the optimal policy for the known
system is Ut = K(θ)Xt, where K(θ) is the LQR controller:

K(θ) = −(B(θ)⊤P (θ)B(θ) +R)−1B(θ)⊤P (θ)A(θ).

In light of this, we focus on the case in which the search
space of the learner is the class of linear time-invariant state
feedback policies where the gain is a measurable function of
the past N experiments. This set is denoted Πlin.

The stochastic LQR cost V π
T (θ) may be represented in

terms of the gap between the control actions taken by the
policy π and the optimal policy, as shown below.

1Access to a stabilizing controller is often assumed for unstable sysID
[10]. Open-loop unstable identification leads to poor conditioning.

2The choice to place a budget on the exploratory input Ũt,n rather than
the total input Ut,n is for ease of exposition. The energy of the exploratory
input is bounded by the total budget, which is sufficient for our bounds.

Lemma 1.1 (Lemma 11.2 of [11]): We have that

V π
T (θ) = tr(P (θ)ΣW ) +

1

T

T−1∑
t=0

Eπ
θ ∥Ut −K(θ)Xt∥2Ψ(θ) ,

where Ψ(θ) := B⊤(θ)P (θ)B(θ) +R.
Using the above lemma, the objective of the learner may

be restated from minimizing V π
T (θ) to minimizing the excess

cost:

ECπ
T (θ) :=V π

T (θ)−inf
π̂

V π̂
T (θ)=

1

T

T−1∑
t=0

Eπ
θ ∥Ut−K(θ)Xt∥2Ψ(θ).

(4)
The second equality follows from the representation of the
stochastic LQR cost in Lemma 1.1 by cancelling the constant
terms. Note that the infimum in the second term is given
access to the true parameter value θ, and will therefore be
attained by the optimal LQR controller. In particular, it does
not rely upon the offline experimental data. We denote this
optimal policy by πθ(Xt;Z) = K(θ)Xt.

Our objective is to lower bound the excess cost for any
learning agent in the class Πlin. To this end, we introduce
the ε-local minimax excess cost:

EC lin
T (θ, ε) := inf

π∈Πlin

sup
∥θ′−θ∥≤ε

ECπ
T (θ

′). (5)

To motivate this choice, first note that if we were instead
interested in an excess cost bound for only a single value
of θ that holds for all estimators, the optimal policy would
trivially be the LQR, π(Xt,Z) = K(θ)Xt. This policy
would result in a lower bound of zero. By instead requiring
that the learner perform well on all parameter instances in a
nearby neighborhood, we remove the possibility of the trivial
solution, and can achieve meaningful lower bounds. The
emphasis of the nearby neighborhood in (5) is essential. As
the neighborhood defined by the ball of radius ε, B(θ, ε) =
{θ′| ∥θ′ − θ∥ ≤ ε}, becomes sufficiently small, we can pro-
vide instance-specific lower bounds. Therefore, the ε-local
minimax excess cost is a much stronger notion than the stan-
dard global minimax excess cost, infπ∈Πlin

supθ′ ECπ
T (θ

′),
as it does not require our estimator to perform well on
all possible parameter values but only those in a small
(possibly infinitesimal) neighborhood. Indeed, the global
minimax excess cost for learning the optimal controller of the
class of unknown stable scalar systems is infinite, as shown
in Corollary 2.2, and illustrated in Figure 1.

Our focus in obtaining the lower bound on EC lin
T (θ, ε) is

to gain an understanding of what system-theoretic quantities
render the learning problem statistically challenging. To this
end, our lower bound depends on familiar system-theoretic
quantities, such as P (θ). The covariance of the state under
the optimal LQR controller also appears in our analysis.
Under the optimal LQR controller, the covariance of the state
converges to the stationary covariance as T → ∞:

ΣX(θ) = lim
t→∞

Eπθ

θ

[
XtX

⊤
t

]
= dlyap((A(θ) +B(θ)K(θ))⊤,ΣW ).
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Fig. 1. Consider the scalar system Xt+1 = aXt + bUt + Wt. We
plot a lower bound arising from Corollary 2.1 letting V =

[
0 1

]⊤ for
the system a = 1 − γ, b = γ as γ ranges from 10−3 to 10−2 with
F = 0, σ2

ũ = 1, ΣW = 1. As γ → 0 the optimally regulated system
approaches marginal stability and controllability is lost. The problem of
learning a controller therefore becomes challenging as γ → 0, which is
reflected by our excess cost lower bound; it approaches ∞. This illustrates
the observation that systems which are difficult to control are also difficult to
learn to control. This plot illustrates the result Corollary 2.2 in demonstrating
that the global minimax excess cost is uninformative.

A. Contributions

Our first contribution is the following theorem. For the
formal statements, see Theorem 2.2 and Corollary 2.1.

Theorem 1.1 (Main result, Informal): The ε-local mini-
max excess cost is lower bounded as

excess cost ≥ system-theoretic condition number
# data points × signal-to-noise ratio

.

The above theorem is similar to the lower bound in
[12]. The primary difference is that while [12] focus on
obtaining matching upper and lower bounds, we focus on
expressing the system-theoretic condition number in terms
of familiar quantities such as the covariance of the state
under the optimal controller, and the solution to the Riccati
equation. The signal-to-noise ratio depends on how easily
the system is excited via both the exploratory input and the
noise. This signal-to-noise ratio may be quantified in terms
of the controllability gramian of the system, as well as the
exploratory input budget.

We also study several consequences of the above result
by restricting attention to the setting where all system
parameters are unknown, i.e. vec

[
A(θ) B(θ)

]
= θ. In this

setting, Theorem 1.1 may be reduced to EC lin
T (θ, ε) ≥ c(θ,ε)

NT ,
where c(θ, ε) is easily interpretable. In particular, we may
reach the following conclusions:

• For classes of system where the operator norm of system-
theoretic matrices such as the controllability gramian and
the solution to the Riccati equation are constant with
respect to dimension, we may take c(θ, ε) ∝ dUdX. We
demonstrate that this is the optimal dependence on system
dimension for this class of systems.
• There exist classes of systems for which we may take
c(θ, ε) ∝ exp(dX). This demonstrates that the excess cost
of a learned LQR controller may grow exponentially in the
dimension.
• We may take c(θ, ε) to grow with iterpretable system-
theoretic quantities, such as the eigenvalues of both the
solution to the Riccati equation, P (θ), and the state covari-
ance under the optimal controller, ΣX(θ). This suggests
that the problem of learning to control a system with a

small gap from the optimal controller is data intensive when
controlling the underlying system is hard.

B. Related Work

a) System Identification: System identification is often
a first step in designing a controller from experimental
data, and has a longstanding history. The text [10] covers
classic asymptotic results. Control oriented identification was
studied in [13], [14]. Recently, there has been interest in finite
sample analysis for fully-observed linear systems [6], [15]–
[17], and partially-observed linear systems [15], [18]–[22].
Lower bounds for the sample complexity of system iden-
tification are presented in [23], [24]. For a more extensive
discussion of prior work, we refer to the survey by [9].

b) Learning Controllers Offline: Learning a controller
from offline data is a familiar paradigm for control theorists
and practitioners. It typically consists of system identifica-
tion, followed by robust [25] or certainty-equivalent [26]
control design, see Figure 2. Recent work provides finite
sample guarantees for such methods [6], [27]. Upper and
lower bounds on the sample complexity of stabilization from
offline data are presented in [28]. The RL community has a
similar paradigm, known as offline RL [7]. Policy gradient
approaches are a model-free algorithm suitable for offline
RL, and are analyzed in [29]. Lower bounds on the variance
of the gradient estimates in policy gradient approaches are
supplied in [30]. Most similar to our work, [12] provide
matching upper and lower bounds for offline linear control
with the objective of designing optimal experiments. The
bounds in [12] express the dependence of the excess cost
on the Hessian of the control objective with respect to the
unknown parameters, but do not illustrate how this quantity
relates to familiar system-theoretic quantities. We instead
focus on the LQR setting to understand the dependence of
the excess cost on interpretable system-theoretic quantities.

c) Online LQR: The problem of learning the optimal
LQR controller online has a rich history beginning with [31].
Regret minimization was introduced in [32], [33]. The study
of regret in online LQR was re-initiated by [5], inspired
by works in the RL community. Many works followed to
propose algorithms which were computationally tractable
[27], [34]–[39]. Lower bounds on the regret of online LQR
are presented in [4], [8], [40]. The results in this paper follow
a similar proof to [8]. The primary difference is that since
our controller is designed via offline data, we may not make
use of the exploration-exploitation tradeoff to upper bound
the information available to the learner, as is done in [8].

II. EXCESS COST LOWER BOUND

We now proceed to establish our lower bound. Missing
proofs and further details may be found in [41]. As we are
interested in the worst-case excess cost from any element of
B(θ, ε), we make the additional assumption that F stabilizes
(A(θ′), B(θ′)) for all θ′ ∈ B(θ, ε).3 This also ensures that
the optimal LQR controller exists for all θ′ ∈ B(θ, ε).

3We ultimately study the limit as ε becomes small. Therefore, this is not
significantly stronger than assuming that F stabilizes (A(θ), B(θ)).
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Fig. 2. A classic model-based pipeline for learning a controller from data.

To obtain a lower bound on the local minimax excess
cost, we lower bound the maximization over θ′ ∈ B(θ, ε)
by an average over a distribution supported on B(θ, ε).
This reduces the problem to lower bounding a Bayesian
complexity. Instead of fixing the parameter θ, we let Θ
be a random vector taking values in RdΘ and suppose
that it has prior density λ. Doing so enables the use of
information theoretic tools to lower bound the complexity
of estimating the parameter from data. The lower bound on
the maximization is shown in the following lemma.

Lemma 2.1: Fix ε > 0 and let λ be any prior on B(θ, ε).
Then for any π ∈ Πlin with π(Xt,Z) = K̂(Z)Xt,

sup
θ′∈B(θ)

ECπ
T (θ

′) ≥

E tr
(
[K̂(Z)−K(Θ)])⊤Ψ(Θ)[K̂(Z)−K(Θ)]Σ

K̂(Z)
Θ

)
,

where Σ
K̂(Z)
Θ := 1

T

∑T−1
t=0 Eπ

[
XtX

⊤
t |Z,Θ

]
. The expecta-

tion is over the prior Θ ∼ λ, and the randomness of both
the offline rollouts and the evaluation rollout. We recall the
shorthand Ψ(Θ) = B(Θ)⊤P (Θ)B(Θ) +R.

We may treat the data from offline experimentation, Z , as
an observation of the underlying parameter Θ. In particular,
Z may be expressed as a random vector taking values in
RNT (dX+dU) with conditional density p(·|θ). The following
Fisher information matrix and prior density concentration
matrix measure estimation performance of Θ from the sam-
ple Z with respect to the square loss:

Ip(θ) :=

∫ (
∇θp(z|θ)
p(z|θ)

)(
∇θp(z|θ)
p(z|θ)

)⊤

p(z|θ)dz, (6)

J(λ) :=

∫ (
∇θλ(θ)

λ(θ)

)(
∇θλ(θ)

λ(θ)

)⊤

λ(θ)dθ. (7)

The first quantity (6) measures the information content of
the sample Z with regards to Θ. The second quantity (7)
measures the concentration of the prior density λ. As the
gradient operator ∇θ maps to a vector of dimension dΘ,
both Ip(θ) and J(λ) are dΘ × dΘ dimensional. See [42] for
further details about these integrals and their existence.

As we seek lower bounds for estimating K(Θ) instead
of just Θ, we must account for the transformation from a
quadratic loss over the error in esimating Θ to the error in
estimating K(Θ), as appears in Lemma 2.1. To do so, we
introduce the van Trees inequality [43], [44]. We first impose
the following standard regularity conditions:

Assumption 2.1:

1) The prior λ is smooth with compact support.
2) The conditional density of Z given Θ, p(z|·), is

continuously differentiable on the domain of λ for
almost every z.

3) The score4 has mean zero;
∫ (∇θp(z|θ)

p(z|θ)

)
p(z|θ)dz = 0.

4) J(λ) is finite and Ip(θ) is a continuous function of θ
on the domain of λ.

5) vecK is differentiable on the domain of λ.
The following theorem is a less general adaption from [44]

which suffices for our needs.
Theorem 2.1 (Van Trees Inequality): Fix two random

variables (Z,Θ) ∼ p(·|·)λ(·) and suppose Assumption 2.1
holds. Let G be a σ(Z)-measurable event. Then for any
σ(Z)-measurable K̂:

E
[
vec(K̂(Z)−K(Θ)) vec(K̂(Z)−K(Θ))⊤1G

]
⪰

E[Dθ vecK(Θ)1G ]
⊤[E Ip(Θ) + J(λ)]

−1E[Dθ vecK(Θ)1G ].
(8)

The notation Dθ vecK(·) above follows the standard conven-
tion for a Jacobian: it stacks the transposed gradients of each
element of vecK(·) into a dXdU × dΘ dimensional matrix.

We see from Theorem 2.1 that the transformation to the
error in estimating K(Θ) is accounted for by Dθ vecK(·).

We now massage the lower bound in Lemma 2.1 to a
form compatible with Theorem 2.1. Doing so requires us to
express the lower bound as a quadratic form conditioned on
some σ(Z)-measurable event G. We therefore select an event
G for which we may uniformly lower bound the quantities
Ψ(Θ) and Σ

K̂(Z)
Θ . To this end, we define positive definite

matrices Ψθ,ε and Σθ,ε that satisfy

Ψ(θ′) ⪰ Ψθ,ε and
1

2
ΣX(θ′) ⪰ Σθ,ε ∀θ′ ∈ B(θ, ε). (9)

The matrix Ψθ,ε will serve to uniformly lower bound Ψ(Θ).
When the learned controller is close to the optimal controller,
the covariance of the state under the learned controller will
be close to the covariance of the state under the optimal
controller, which is in turn lower bounded in terms of Σθ,ε. In
particular, if

∥∥∥K̂(Z)−K(Θ)
∥∥∥ is sufficiently small, we can

argue that ΣK̂(Z)
Θ ⪰ 1

2ΣX(Θ) ⪰ Σθ,ε. The aforementioned
condition on

∥∥∥K̂(Z)−K(Θ)
∥∥∥ will hold only if there is a

large amount of data available to fit K̂(Z). To achieve a
bound that holds in the low data regime, we observe that the
state covariance under the learned controller is always lower
bounded by the noise covariance: ΣZ

Θ ⪰ ΣW . For this reason,
the subsequent results will be presented in two parts: one in
which we condition on an event where

∥∥∥K̂(Z)−K(θ)
∥∥∥ is

small, and one that holds generally. To present these results
concisely, the positive definite matrix Γθ,ε is used to denote
either ΣW or Σθ,ε. The Kronecker product of these lower
bounds arises frequently, motivating the shorthand

Ξθ,ε := Γθ,ε ⊗Ψθ,ε. (10)

4The score is the gradient of the log-likelihood. It evaluates to ∇θp(z|θ)
p(z|θ) .
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Lemma 2.2 (Application of van Trees Inequality): For
any smooth prior λ on B(θ, ε) and any π ∈ Πlin with
π(Xt,Z) = K̂(Z)Xt,

sup
θ′∈B(θ,ε)

ECπ
T (θ

′) ≥

tr
(
Ξθ,ε E[Dθ vecK(Θ)1G ]E[Dθ vecK(Θ)1G ]

⊤)
∥E Ip(Θ) + J(λ)∥

,
(11)

where either:
1) Γθ,ε = ΣW and G = Ω, or

2) Γθ,ε = Σθ,ε and G = E , if T ≥ sup
θ′∈B(θ,ε)

16 ∥ΣX(θ′)∥
λmin(ΣX(θ′))

.

The event Ω is the entire sample space, i.e. P[Ω] = 1, and

E =

{
sup

θ′∈B(θ,ε)

∥∥∥K̂(Z)−K(θ′)
∥∥∥ ≤ α

}

α = inf
θ′∈B(θ,ε)

min

{
∥Acl(θ

′)∥
∥B(θ′)∥

,

λmin(ΣX(θ′))/24

∥Acl(θ′)∥ ∥B(θ′)∥J (Acl(θ′)) ∥ΣX(θ′)∥

}
.

Here, Acl(θ) = A(θ) + B(θ)K(θ) and J (Acl(θ)) =∑∞
t=0 ∥Acl(θ)

t∥2.
The proof of the above result follows by applying The-

orem 2.1 to the lower bound in Lemma 2.1 after replacing
Ψ(Θ) by Ψθ,ε and Σ

K̂(Z)
Θ by Γθ,ε1G .

Lemma 2.2 may be interpreted according to the following
intuition. To design a controller that attains low cost, it is
essential to distinguish between two nearby instances of the
underlying parameter, θ and θ′, from the experimental data,
Z . The Fisher Information term on the denominator of the
bound in Lemma 2.2 captures the ease with which we can
distinguish between θ and an infinitesimally perturbed θ′

from the collected data Z , and can be thought of as a signal-
to-noise ratio. The derivative of the controller appearing on
the numerator of the bound in Lemma 2.2 is a change of vari-
ables term that accounts for the extent to which infinitesimal
perturbations of the underlying parameter impact the optimal
controller gain. Sensitive perturbations are those which are
difficult to detect from the collected data, yet lead to a large
change in the controller gain. Such perturbations dictate the
statistical hardness of learning a LQR controller. Motivated
by this fact, we can select particularly sensitive perturbation
directions of the underlying parameter which emphasize the
hardness of the problem. To do so, we restrict the support
of the prior λ to a lower dimensional subspace. Before
presenting this result, it will be useful to see the expression
for Fisher information matrix from this experimental setup.
It can be shown via the chain rule of Fisher Information that

Ip(θ) = Eθ

N∑
n=1

T−1∑
t=0

Dθ vec
[
A(θ) B(θ)

]⊤
· [Zt,nZ

⊤
t,n ⊗ Σ−1

W ]Dθ vec
[
A(θ) B(θ)

]
,

(12)

where Zt,n =

[
Xt,n

Ut,n

]
. See, for instance, Lemma 3.1 of [8].

With this in hand, the following lemma provides a restriction

to lower dimensional priors, which allows us to understand
how poor conditioning of the information matrix along any
particular parameter perturbation direction pushes through to
a challenge in estimating the optimal controller.

Lemma 2.3: Let V ∈ RdΘ×k have orthonormal columns.
For a smooth prior λ over

{
θ + V θ̃ :

∥∥∥θ̃∥∥∥ ≤ ε
}

, and π ∈ Πlin

with π(Xt,Z) = K̂(Z)Xt,

sup
θ′∈B(θ,ε)

ECπ
T (θ

′) ≥

tr
(
Ξθ,ε E[Dθ vecK(Θ)V 1G ]E[Dθ vecK(Θ)V 1G ]

⊤)
∥V ⊤(E Ip(Θ) + J(λ))V ∥

,

where Ξθ,ε is defined in (10) and G is defined in Lemma 2.2.
In the above lemma, the columns of V may be interpreted

as perturbation directions of the system parameters.
We now upper bound the denominator arising in the above

bound. In particular, we show how to bound the Fisher
Information in any particular perturbation direction.

Lemma 2.4: For any V ∈ RdΘ×k with orthonormal
columns, ∥∥V ⊤ E[Ip(Θ)]V

∥∥ ≤ TNL̄,

where L̄ = supθ′∈B(θ,ε) L(θ
′) and

L(θ′) = sup
w∈span(V ),∥w∥≤1

4

λmin(ΣW )

·

(
ν1(w)

(∥∥dlyap((A(θ′) +B(θ′)F )⊤,ΣW

)∥∥
+σ2

ũ

( ∞∑
t=0

∥∥(A(θ′)+B(θ′)F )tB
∥∥)2

)
+2σ2

ũν2(w)

)
.

(13)

Here, ν1(w) = ∥Dθ vecA(θ′)w∥2 +
2 ∥Dθ vecB(θ′)w∥2 ∥F∥2 and ν2(w) = ∥Dθ vecB(θ′)w∥2
are change of coordinate terms that quantify the impact of
the perturbation direction on the information upper bound.
We recall that σ2

ũ is the average exploratory input energy.
The quantity dlyap((A(θ′) + B(θ′)F )⊤,ΣW ) in the

above bound is the controllability gramian from the noise
to the state, while σ2

ũ(
∑∞

t=0 ∥(A(θ′) +B(θ′)F )tB(θ′)∥)2
upper bounds the impact of exploratory input on the state
during offline experimentation.

We now present our first main result: a non-asymptotic
lower bound on the local minimax excess cost. As with
Lemma 2.2, it is presented in two components: one that
holds generally, and another that requires enough data such
that any sufficiently good policy π ∈ Πlin outputs a feedback
controller K̂(Z) which is near optimal with high probability.
Consequently, the burn-in times are larger for the second
result, and the size of the prior, ε, is required to be small.
We drop the dependence of A, B, P , Ψ, K, and ΣX on θ
when the argument is clear from context.

Theorem 2.2: Consider any matrix V ∈ RdΘ×k with k ≤
dΘ which has orthonormal columns. Let

G = inf
θ′ ,θ̃∈B(θ,ε)

tr

(
Ξθ,ε Dθ vecK(θ′)V

(
Dθ vecK(θ̃)V

)
⊤
)
,
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and L̄ be as in Lemma 2.4. Also let Ξθ,ε be as defined in
(10). Then for any smooth prior λ over

{
θ + V θ̃ :

∥∥∥θ̃∥∥∥ ≤ ε
}

,

EC lin
T (θ, ε) ≥ G

8NTL̄
(14)

is satisfied for
1) Γθ,ε = ΣW if TN ≥ ∥J(λ)∥

L̄
.

2) Γθ,ε = Σθ,ε if T ≥ supθ′∈B(θ,ε)

16∥ΣX(θ′)∥2

λmin(ΣX(θ′)) ,

TN ≥ 1
L̄
max

{
∥J(λ)∥ , G

λmin(ΣW )λmin(R)α2

}
, and ε ≤

min
{

α
2c1

, c2

}
, where

c1 = 84Φ9τ(Acl)Ldyn

c2 =
1

10τ(Acl)c1
min

{
(1 + ∥Acl∥)−2, (1 + ∥P∥)−1

}
Φ = (1 +max

{
∥A∥ , ∥B∥ , ∥P∥ , ∥K∥ ,

∥∥R−1
∥∥})

τ(Acl) =

(
sup
k≥0

{∥∥Ak
cl

∥∥ ρ(Acl)
−k
})

2/(1− ρ(Acl)
2).

The theorem follows by bounding the probability of the
event G in Lemma 2.3, then bounding the denominator using
Lemma 2.4. The above result holds non-asymptotically. It
will be helpful to present the result asymptotically, as the
number of experiments tends to ∞ for an understanding of
the dependence on control-theoretic quantities.

Corollary 2.1: For α ∈ (0, 1/2) and any V ∈ RdΘ×k with
k ≤ dΘ which has orthonormal columns, we have that

lim inf
N→∞

sup
θ′∈B(θ,N−α)

NECπ
T (θ

′) ≥ G

8TL(θ)
,

holds always for Γ = ΣW and for Γ = 1
2ΣX if T ≥

16∥ΣX∥2

λmin(ΣX) , where L is as in Lemma 2.4 and

G = tr
(
(Γ⊗Ψ)Dθ vecK(θ)V (Dθ vecK(θ)V )⊤

)
.

Using a similar argument to the derivations above, it can
be shown that the global minimax complexity is infinite.

Corollary 2.2: The global minimax excess cost is infinite
for the class of scalar systems of the form: Xt+1 = aXt +

bUt +Wt, with θ =
[
a b

]⊤
, and Q = R = ΣW = σ2

ũ = 1.
More precisely, for the class of stable scalar systems with
the offline exploration policy F = 0, we have

lim inf
N→∞

sup
a,b:|a|<1

NECπ
T (a, b) = ∞.

III. CONSEQUENCES OF THE LOWER BOUND

In this section, we examine cases where the bound in
Corollary 2.1 has interpretable dependence upon system
properties. To do so, we restrict attention to the setting where
all system parameters are unknown, i.e. vec

[
A(θ) B(θ)

]
=

θ. In this setting, the quantity Dθ vec
[
A(θ) B(θ)

]
arising

in the bounds from the previous section is the identity matrix.
The derivative of the controller multiplied by a matrix with

orthonormal columns, Dθ vecK(θ)V , arises in the bounds
from the previous section. In this section, this quantity
is expressed in terms of the directional derivative of the
controller in some direction v, denoted dvK(θ). In particular,
we represent the columns of V as v = vec

[
∆A ∆B

]

for arbitrary perturbations ∆A of A and ∆B of B which
satisfy

∥∥[∆A ∆B

]∥∥
F

= 1. The corresponding change in
the closed-loop state matrix is denoted ∆Acl

= ∆A+∆BK.
Then dvK(θ) is shown in Lemma B.1 of [4] to be

dvK(θ)=−Ψ−1(∆⊤
BPAcl+B⊤P∆Acl

+B⊤P ′Acl), (15)

where P ′ = dlyap(Acl, A
⊤
clP∆Acl

+ ∆⊤
Acl

PAcl). The
subsequent sections study the bound from Corollary 2.1
under various perturbations

[
∆A ∆B

]
.

A. Dimensional dependence

In the setting of online LQR for an unknown system, re-
cent works [4], [8] obtaining lower bounds on the regret have
used perturbation directions which cause tension between
identification and control [45]. In particular, they considered
the set of perturbation directions

∆=

{
vec
[
−∆K ∆

]∣∣∣∣∆∈RdX×dU ,
∥∥[−∆K ∆

]∥∥
F
=1

}
.

(16)
For all such perturbations, ∆Acl

= 0, making it impossible
to distinguish between the true parameters and the perturbed
parameters online without sufficient exploratory input noise.

While the tension between identification and control is no
longer present in the offline setting, ∆ retains the benefit
that the directional derivative in (15) is easy to work with.
In particular for any v = vec

[
−∆K ∆

]
∈ ∆,

dvK(θ) = −Ψ−1∆⊤PAcl. (17)

As the matrices ∆ parametrizing ∆ are dX × dU dimen-
sional, we may stack dXdU orthogonal vectors vi belonging
∆ into a matrix V =

[
v1 . . . vdXdU

]
. This allows us to

present a lower bound demonstrating the dependence of the
LQR problem upon the system dimensions dX and dU.

Proposition 3.1: For α ∈ (0, 1/2),

lim inf
N→∞

sup
θ′∈B(θ,N−α)

NECπ
T (θ

′) ≥

dXdUλmin(ΣX − ΣW )λmin(P )2

16T ∥Ψ∥
∥∥[−K I

]∥∥2 L̃ ,

as long as T ≥ 16∥ΣX∥2

λmin(ΣX) . Here, L̃ is given by L(θ) as in
(13) by replacing ν1 with 1 and ν2 with 1 + 2 ∥F∥2.

In addition to the system dimensions, we can interpret the
remaining system-theoretic parameters. Note that L̃ bounds
the information available from the offline experimentation.
It depends on the norm of the controllability gramian from
noise to the state, as well as σ2

ũ(
∑∞

t=0 ∥(A+BF )tB∥)2,
which bounds the impact of the exploratory input on the
state. The Ψ in the denominator of the above bound
may scale as λmax(P ), and therefore effectively cancels a
λmin(P ) in the numerator for well-conditioned problems.
This leaves a single λmin(P ) in the numerator. As x⊤Px
is the optimal objective value of the noiseless LQR problem
starting from initial state x, the appearance of λmin(P ) in the
bound captures the fact that as the system becomes harder
to control, it also becomes harder to learn to control. Lastly,
the variance term λmin(ΣX − ΣW ) implies that the excess
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cost is large when the optimal closed-loop system has a large
state covariance relative to the process noise covariance.

Remark 3.1: The dimensional dependence dXdU is op-
timal up to constant factors for classes of under-actuated
systems in which remaining system-theoretic quantities are
constant with respect to system dimension. In particular,
suppose that Ũt,n ∼ N (0, σ2

ũI), and that N ≥ cdX, for
some universal constant c. In this case, Theorem 2 of [27]
combined with Theorem 5.4 in [46] demonstrate the upper
bound on the excess cost scales with dXdU

NT .

B. Exponential Lower Bounds
The previous section demonstrated a lower bound that

scales with dXdU. Prior work [28] has shown that in the set-
ting of online LQR, there exist classes of systems where the
lower bounds on the regret scale exponentially with the state
dimension. This is shown by demonstrating that particular
system-theoretic terms, which are often treated as constant
with respect to dimension, may grow exponentially with the
state dimension. We demonstrate that in the setting of offline
LQR, such systems still cause exponential dependence on
dimension. Furthermore, because there are fewer restrictions
upon the perturbation directions in the lower bound for the
offline setting, we construct simpler systems which exhibit
this behavior. In particular, consider the system

A =


ρ 2 0 0 0

. . .
0 0 0 ρ 2
0 0 0 0 ρ

 , B =


0
...
0
1

 , (18)

with 0 < ρ < 1, F = 0, Q = I , R = 1, and ΣW = I .
Using the perturbation direction V = vec

[
0 B/ ∥B∥F

]
,

Corollary 2.1 may be used to reach the following conclusion.

Proposition 3.2: For the system in (18) suppose dX ≥ 3.
Then for α ∈ (0, 1/2),

lim inf
N→∞

sup
θ′∈B(θ,N−α)

NECπ
T (θ

′) ≥ ρ2

256Tσ2
ũ

4dX−2.

We have therefore demonstrated that accurately learning
the LQR controller from offline data may require an amount
of data that is exponential in the state dimension. The reason
that this system is particularly challenging to learn to control
is that a small misidentification of B causes the learner
to apply slightly suboptimal control inputs, which are then
amplified by the off-diagonal terms of A. The construction
used, (18), avoids the two subsystem example that was used
to derive exponential lower bounds for online LQR in [28]. A
crucial reason that we are able to bypass such a construction
in the offline setting is that the dominant statistical rate of
1

NT for offline LQR is present for any perturbation direction
of the underlying parameters. In contrast, the regret in the
online setting only has the dominant statistical rate in the
directions defined by the perturbation set in (16).

C. Interesting System-Theoretic Quantities
A consequence of the result in Section III-B is that

treating system-theoretic quantities as constant with respect

to dimension, as is done in Section III-A, may fail to capture
the difficulty of the problem. This leads to unfavorable
aspects of the lower bound in Section III-A, such as the
dependence of the denominator on ∥K∥. Such an appearance
indicates that for systems where the optimal LQR has a large
gain, the lower bound becomes small. This is in contrast to
our expectations, as a large optimal gain is often indicative of
poor controllability (consider a scalar system, with B → 0).

Motivated by the above discussion, we focus our attention
on deriving bounds which have favorable dependence upon
system-theoretic quantities. To do so, we examine a perturba-
tion direction for which the lower bound from Corollary 2.1
reduces to easily interpretable quantities which align with

our intuition. By taking V = vec

[
A B

]
∥∥∥[A B

]∥∥∥
F

, the directional

derivative expression from (15) reduces to

dV K(θ) =
2Ψ−1(B⊤dlyap(Acl, P )Acl)∥∥[A B

]∥∥
F

. (19)

This leads to the following proposition.
Proposition 3.3: Suppose that R and B⊤PB are simulta-

neously diagonalizable by U : B⊤PB = UΛB⊤PBU
⊤ and

R = UΛRU
⊤, where ΛB⊤PB and ΛR are diagonal. Also

suppose that the diagonal entries of ΛB⊤PB are sorted in
non-ascending order. Assume T ≥ 16∥ΣX∥2

λmin(ΣX) . Let L̃ be as in
Proposition 3.1. Then for α ∈ (0, 1/2),

lim inf
N→∞

sup
θ′∈B(θ,N−α)

NECπ
T (θ

′) ≥ λmin(ΣX − ΣW )

2T
∥∥[A B

]∥∥2
F
L̄

· inf
i∈[dU]

λi(B
⊤PB)

λi(B⊤PB) + ΛR,ii

dU∑
j=1

λn−j(dlyap(Acl, P )).

The assumption that R and B⊤PB are simultaneously
diagonalizable is satisfied if R is chosen as a scalar mul-
tiple of the identity. As in Proposition 3.1, λmin(ΣX −
ΣW ) highlights the dependence on the closed-loop state
covariance, and L̃ describes the how easily system is ex-
cited offline. Rather than the appearance of

∥∥[−K I
]∥∥ in

the denominator, as we saw in Proposition 3.1, we have∥∥[A B
]∥∥

F
. Therefore, the bound does not diminish as

a result of a large optimal controller gain. Lastly, observe
that

∑du
j=1 λn−j(dlyap(Acl, P )) replaces λmin(P ) from

Proposition 3.1. This quantity captures the dU smallest
eigenvalues rather than just the smallest. If dU = dX, we
get all eigenvalues of dlyap(Acl, P ). Further note that the
eigenvalues of dlyap(Acl, P ) diverge as Acl approaches
marginal stability, leading to an infinite excess cost.

IV. CONCLUSION

We presented lower bounds for offline linear-quadratic
control problems. The focus was to understand the funda-
mental limitations of learning controllers from offline data
in terms of system-theoretic properties. Several interesting
consequences arose, such as the fact that our lower bound
achieves the optimal dimensional dependence dXdU for un-
deractuated systems. We also showed that there exist systems
where the sample complexity is exponential with the system
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dimension, dX. We finally demonstrated that the lower bound
scales in a naturally with familiar system-theoretic constants
including the eigenvalues of the Riccati solution. Future work
will consider the partially observed setting.
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