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Abstract— A fundamental problem for state space system
identification is guaranteeing stability of the fitted model. Here
we consider state space subspace methods for noise models. The
few existing algorithms that guarantee stability have various
limitations. Most of these algorithms do not scale well to large
state space dimension; have statistical biases and some have
arbitrary tuning parameters that can introduce additional bias
in the estimates. Here we present a new simple, computationally
cheap method that guarantees stability and needs no tuning
parameters. We illustrate its strong performance in comparative
simulations.

I. INTRODUCTION

Over several decades, state space identification problems
have been widely explored by researchers in control [1],
signal processing [2] and other areas. The class of state
space subspace (S4) methods are among the most important
solution techniques thanks to special advantages, such as
no need for explicit system parameterization, computational
simplicity, and a range of ‘tailored’ algorithms [3].

Subspace methods involve projections on the row spaces
of some data matrices extracted from the input-output data
(or output only data for noise modeling) which are used to
estimate the unobserved states. The associated computations
only involve little more than Cholesky decomposition and
singular value decomposition (SVD). Then further simple
computations such as least squares generate estimates of the
system matrices [3].

However, in a wide range of applications, it is crucial
that the estimated system be stable; but S4 methods do not
guarantee this. In an early attempt to rectify this, authors of
[4] proposed an algorithm which alters the unstable poles
by iteratively appending the state-related matrix. Authors of
[5] enforced stability by using regularizations and showed
that the methods in [4] were special cases of their method.
However, they had a matrix tuning parameter and the reg-
ularization might be too restrictive. In [2], an optimization
problem was formulated to minimize the weighted 2-norm
between the original unstable state transition matrix Â0 and
the stable one on the noise model, subject to a stability
constraint captured in a Lyapunov equation. It was solved
by semidefinite-programming (SP). In [6], SP in [2] was
extended to the input-output model. Linear-matrix inequality
(LMI) constraints were used in [7] for the more general
constraints on poles, besides stability. Two methods were
developed in [8] : Firstly, they iteratively kept restricting a
singular value constraint on Â0 and refitting until stability
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is attained. Secondly, they proposed a gradient sampling
and searching algorithm, which exhibits better computational
efficiency.

However, all the methods above have problems. Firstly,
they need a preliminary estimate of the state transition
matrix. Secondly, they use iterative methods to find a stable
surrogate from this initial estimate. The method of [9] is not
iterative, but is known to have large bias. In this paper, we
deal with the purely stochastic state space model (aka, noise
model), i.e. where there are no input signals. We propose a
new method, which does not need a preliminary estimate, is
not iterative, has low bias and yet guarantees stability. The
new method builds on a vector auto-regression algorithm of
Nuttall-Strand (N-S) [10][11]. It is, to the best of the authors’
knowledge, the first time that the N-S algorithm has been
applied for S4 identification.

The rest of the paper is organized as follows. Section II
reviews state space identification and the state space subspace
approach. Section III summarizes the existing S4 algorithms
that guarantee stability. In section IV, we propose the new
closed-form stable subspace algorithm, which we call S5.
In section V, we compare the algorithms in simulations and
show the new algorithm has several advantages. Section VI
contains conclusions and likely future work.

The following notations will be used throughout the paper.
(·)′ is transpose. (·)∗ is conjugate transpose. ·̄ takes the
conjugate. (·)† is Moore-Penrose pseudo-inverse. · ≥ 0(≤ 0)
means positive semidefinite/psd (negative semidefinite/nsd).
· > 0(< 0) means positive definite/pd (negative definite/nd).
‖ · ‖2 denotes the matrix 2-norm, and ‖ · ‖F denotes the
Frobenius norm.

II. Preliminaries: State Space Subspace Methods

We first specify the state space identification problem and
review a standard state space subspace (S4) method.

A. Stochastic State Space Model

We focus on S4 identification of the stochastic state space
model.

xt+1 = Axt + wt

yt = Cxt + νt, t = 1, · · · , T̄ ,

where xt is the n-dimensional vector state, yt is the d-
dimensional vector output signal, wt, νt are zero-mean white
noises with covariance

E [(wt
νt ) (w′s ν

′
s )] =

(
Qn×n Ψn×d

Ψ′ Rd×d

)
δt,s,
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where δt,s=

{
1, if t = s

0, if t 6= s
is the Kronecker delta function.

We assume that the underlying system is stable, i.e.
eigenvalues of A are inside the unit circle, so that there is
a steady state for which the state variance matrix obeys a
Lyapunov equation

E[xtx
′
t] = Π = AΠA′ +Q.

The task is to identify the system order n, the system
matrices A ∈ Rn×n, C ∈ Rd×n (within a similarity trans-
formation) and the noise covariances Q,Ψ, R, given only
the output data yt. For completeness, we give a brief review
of S4 methods and the unconstrained estimates of system
matrices. The noise covariances can be obtained from the
residual mean squares.

B. Canonical Correlations Analysis Subspace Algorithm

We review the canonical correlations analysis (CCA) sub-
space algorithm originally due to Akaike (see [3]). Some
other S4 algorithms are spelled out in [3].

First, choose a lag m > n. Let N = md, T = T̄ −2m+1,
and define the past and future output matrices

Yp =


Y (1)
p

Y (2)
p

...
Y (m)
p

 Yf =


Y

(1)
f

Y
(2)
f

...
Y

(m)
f

 ,
where Y

(r)
p =

[
ym−r+1 ym−r+2 · · · ym−r+T

]
and

Y
(r)
f =

[
ym+r ym+r+1 · · · ym+r+T−1

]
.

Define the near block Hankel matrix H = 1
T YfY

′
p , and

the near block Toeplitz matrices Σp = 1
T YpY

′
p and Σf =

1
T YfY

′
f . Then carry out the singular value decomposition

(SVD) Σ
− 1

2

f HΣ
− 1

2
p = UΛV ′, where Λ has decaying singular

values down the diagonal.
We choose n = arg minr AIC(r) by minimizing the AIC

[12] as a function of r

AIC(r) = (T − 1)
∑N
j=r+1 ln(1− λ2

j )− 2(N − r)2,

(2.1)

where λr is the r-th largest singular value in Λ.
Then, let U1 and V1 be the first n columns of U and

V , respectively, and Λ1 be a diagonal matrix with first n
diagonal entries of Λ. The state estimates are given by

X̂ =
[
x̂m+1, · · · , x̂m+T

]
= Λ

1
2
1 V
′
1Σ
− 1

2
p Yp.

For subsequent computation, we need the following state
covariances. Define the shifted state matrices

X̂0 =
[
x̂m+1 · · · x̂m+T−1

]
X̂1 =

[
x̂m+2 · · · x̂m+T

]
and set

Sij =
1

T − 1
X̂iX̂

′
j , i, j ∈ {0, 1}.

C. Preliminary Estimates of A and C
Some of the methods (but not ours) require preliminary

estimates of the system matrices. The simplest are given as
follows. Introduce

P =
1

T
X̂X̂ ′ = Λ1, the estimate of Π= E[xtx

′
t],

Syy =
1

T
Y

(1)
f Y

(1)′

f and Syx =
1

T
Y

(1)
f X̂ ′.

The least squares problems minA ‖X̂1 − AX̂0‖2F and
minC ‖Y (1)

f − CX̂‖2F , deliver estimates

Â0 = X̂1X̂
†
0 = S10S

−1
00 (2.2)

Ĉ0 = Y
(1)
f X̂† = SyxP

−1. (2.3)

Of course, Â0 is not guaranteed to be stable.

III. Existing Methods Guaranteeing S4 Stability
We now summarize three existing stability enforced S4 al-

gorithms. Algorithm 1 and 2 are iterative, whereas Algorithm
3 has explicit formulae.

A. Iterative Augmentation (IA)
Iterative Augmentation (IA) 1 [4] starts with an unstable

initial estimate Â0 and iteratively appends the shifted state
matrices X̂0, X̂1, in a way such that at convergence, the
resulting least squares estimate Â = X̂1X̂

†
0 is guaranteed

stable and all unstable initial eigenvalues are moved to a
magnitude of the tuning parameter 0 < δ < 1. We state
below their key stability lemma without proof.

Lemma I. [4] Let Z0 =
[
z0 z1 · · · zN−1

]
, Z1 =[

z1 z2 · · · zN
]
, Z0, Z1 ∈ Rn×Nm and Ân×n = Z0Z

†
1 .

If the last block zN = z0Γ ∈ Rn×m is a linear transformation
of the first block z0, where the largest singular value of
Γm×m is less than or equal to 1, then the spectral radius
of Â is less than or equal to 1.

We have applied IA to noise modeling as follows.

Algorithm 1. Iterative augmentation (IA).
1) Choose a large 0 < δ < 1.
2) Find an unstable Â = Â0 by (2.2).
3) Choose an unstable eigenvalue |λ| > 1 of Â and the

corresponding right eigenvector v ∈ Rn.
4) If λ is real, set c =

√
|λ|/δ−1

v′(X̂0X̂∗0 )v̄
and append a column

cv to X̂0 and 0 to X̂1. Skip step 5) and step 6).
5) If λ is complex, compute [ v

∗

v̄∗
](X̂0X̂

∗
0 )−1[ v v̄ ] =

[w x
y z ]. Then solve 0 = (wz−xy)c4+(w+z)c2+1− |λ|

2

δ2

for c > 0. Append [ cv cv̄ ] to X̂0 and [ 0 0 ] to X̂1 .
6) If the resulting solutions s1, s2 to the equation s2 −

(1+c2z)λ+(1+c2w)λ̄
Φ s+ |λ2|

Φ , where Φ = (1 + c2w)(1 +
c2z) − c4xy, are real but either |s1| or |s2| > δ, then

replace c =

√
−q+(q2−4pr)

1
2

2p , where p = z2r+xy|λ|2,

q = 2zr, r = Re{λ} − |λ|2.
7) Get Â = X̂1X̂

†
0 with the augmented X̂0, X̂1. Go to

step 3) until Â has all eigenvalues inside the unit circle.
1We have modified the name used in [4] to indicate the iterative nature.
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B. Semidefinite Programming (SP)

The SP method [2] starts with an unstable Â0. It then
modifies Â0 by solving a SP problem that constrains Â to
be stable by a penalty based on a Lyapunov inequality as
follows

min
Â,P0

‖(Â0 − Â)P0‖22

s.t. P0 > εI

P0 − ÂP0Â
′ > εI, (3.1)

The tuning parameter ε > 0 must be chosen to ensure P0 is
not too close to 0. ε will also cause problems in high state
dimension cases. The problem can be converted to a linear
programming problem with linear matrix inequality (LMI)
constrains as follows.

Algorithm 2. Semidefinite Programming (SP).
With an initial unstable Â0, choose a small ε > 0 and

solve for G, P0 = P ′0 and scalar γ

min
γ,P0,G

γ

s.t.
[

γI P0Â
′
0 −G′

Â0P0 −G I

]
≥ 0[

P0 − εI G
G′ P0

]
≥ 0.

Then the estimate Â = GP−1
0 is guaranteed to be stable.

SP can be solved iteratively by e.g. [13], [14], [15] and
MATLAB LMI solvers which use state-of-the-art tools.

C. Data Attenuation (DA)

The following algorithm is a simpler version of IA which
avoids iterations.

Algorithm 3. Data Attenuation (DA).
Append the estimated state matrix as X̂ =[
x̂m+1 · · · x̂m+T x̂m+1

]
, and then Â = S10S

−1
00

is stable.

DA is a special case of IA where we append the state
matrix only once and let the transformation matrix Γ = I .
Note that now S00 = S11. Then, the residual mean square
Sw = S11 − S10Â − Â′S01 + ÂS00Â

′ = S00 − ÂS00Â
′ >

0, forms a discrete-time Lyapunov inequality to establish
stability.

D. Other methods

Space limits preclude comparisons to other (iterative)
methods. But we note that [7], [6] are essentially identical
to [2] under noise modeling.

IV. New Method: S5

We now propose a simple S4 algorithm that guarantees
system stability with closed-form formulae and does not
depend on an initial estimate of A as others do. The idea is
to apply a version of Nuttall-Strand (N-S) algorithm [10][11]
to estimate A. We call it S5 (S4 with guaranteed stability).

N-S algorithm is a Burg-type algorithm developed in
1970’s for vector autoregressive (VAR) model fitting. It
involves minimizing a sum of forwards and backwards
prediction error mean squares. The resulting estimates of the
VAR filters are then guaranteed to be stable.

Although Strand [10] has a proof, it is for the more
general VAR(p). It is also very hard to follow because of a
proliferation of terminology and notation together with some
ambiguities and absences in the defined notation. For these
reasons we provide a simple, direct and accessible proof here.
It only covers the VAR(1) case, but that is all we need, thanks
to state space modeling.

First, we derive N-S method in the state space context.
Note that we assume the state sequence is stationary and
follows a stable forwards Markovian model in Section II.A,
therefore, it is associated with a backwards model [16]

xt−1 = Abxt + wb,t, t = m+ 1, · · · ,m+ T ,

where Ab = PA′P−1 and P is any consistent estimator of
Π = E[xtx

′
t]. In practice, if we choose P = 1

T X̂X̂
′, then

the best estimate Q̂b = P −AbPA′b of backwards prediction
error covariance E[wb,tw

′
b,t] is minimized.

Given the state estimate X̂ , we estimate A by minimizing
the sample mean squares of the weighted forwards and
backwards errors as follows

Â = arg min
A
J, J = tr{P−1(Sw,f + Sw,b)},

where

Sw,f =
1

T − 1

∑m+T−1
t=m+1 (x̂t+1 −Ax̂t)(x̂t+1 −Ax̂t)′

= S11 −AS01 − S10A
′ +AS00A

′

Sw,b =
1

T − 1

∑m+T−1
t=m+1 (x̂t −Abx̂t+1)(x̂t −Abx̂t+1)′

= S00 − S01A
′
b −AbS10 +AbS11A

′
b.

This leads to the following result.

Theorem I.
(a) The solution to minA J obeys the following Sylvester

equation

AS00P
−1 + S11P

−1A = 2S10P
−1. (4.1)

and is the solution to the explicit equation

(I ⊗ S11P
−1 + P−1S00 ⊗ I)vec(Â) = vec(2S10P

−1),
(4.2)

where vec(Â) vectorizes matrix Â by stacking the columns.
(b) Â is stable.

Proof: (a) Introduce the auxiliary matrix G = AP =
PA′b. Then elementary algebra gives

Sw,f = S11 −GP−1S01 − S10P
−1G′ +GP−1S00P

−1G′

Sw,b = S00 − S01P
−1G−G′P−1S01 +G′P−1S11P

−1G.
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We use the perturbation method to minimize J . Perturbing
G by δG results in a first-order perturbation in J of

δJ = 2 tr{P−1[(GP−1S00 + S11P
−1G− 2S10)]P−1δG′}.

For this to vanish for arbitrary δG′, we must have

GP−1S00 + S11P
−1G = 2S10

⇒AS00 + S11P
−1AP = 2S10

⇒AS00P
−1 + S11P

−1A = 2S10P
−1,

as required.
Then, take vec operation on both sides and use

vec(ABC) = (C ′ ⊗A)vec(B) to get (4.1).
(b) We now prove the stability of Â. It suffices to show

that U1 = P−APA′ is pd. Then the discrete-time Lyapunov
theorem delivers stability.

Rearrange the Sylvester equation (4.1) to get

AP = PS−1
11 (2S10 −AS00).

Now put this into the U1 equation to get

U1 = P − PS−1
11 (2S10 −AS00)A′

⇒ S11P
−1U1 = S11 − 2S10A

′ +AS00A
′ (4.3)

⇒ U1P
−1S11 = S11 − 2AS01 +AS00A

′. (4.4)

Setting Φf = −P−1S11 and adding (4.3) and (4.4) gives

Φ′fU1 + U1Φf = −2Sw,f .

Note that Φf has the same eigenvalues as −P− 1
2S11P

− 1
2 ,

which are real and negative, and also that −2Sw,f < 0.
Applying the Lyapunov theorem shows U1 is pd and the
result follows.

We conclude S5 in the following algorithm.

Algorithm 4. S5

Given the state estimates X̂ , let P = 1
T X̂X̂

′, Sij =
1

T−1X̂iX̂
′
j , i, j ∈ {0, 1}. Estimate Â as (4.2) and Â is

guaranteed stable.

We make the following remarks. Firstly, to effectively
solve (4.2) in the higher dimensional case, one would like
to avoid directly inverting the Kronecker sum I⊗S11P

−1 +
P−1S00⊗I . Instead, one should use the Schur decomposition
on S11P

−1 and P−1S00 and solve an equivalent Sylvester
equation [17]. The MATLAB command ‘sylvester’ does the
above automatically.

Secondly, N-S algorithm should not be confused with the
algorithm of Morf et al [18] which reparameterizes in terms
of partial correlation matrices and thus generates a positive
definite spectrum, but cannot be used to generate a stable
state space model. This basically is because of the difference
between singular value decomposition (Morf) and eigenvalue
decomposition (N-S).

Lastly, S5 offers a brand new mechanism for the stability
enforced subspace algorithms, because almost all existing
ones seek to minimize the distance of the stable estimate
and the preliminary unstable one, under stability constrains,

while in S5, minimizing the forwards-backwards errors au-
tomatically produces stable estimates. Also, S5 does not rely
on a preliminary unstable estimate as IA and SP do, has
explicit results and is simple.

V. Simulations

We now compare our new method with the existing
methods in some simulations. We compare:

1) their accuracy in a low order case.
2) higher order cases (n ≥ 100) - rarely done in the S4

literature.
3) computation times - also rarely done in S4 literature.

A. Simulations with model order n = 5

We simulate n = 5-th order single-output noise model as
follows:

We design the poles of the state space model to be
0.7± 0.707i

= 0.995e±0.791i , −0.2± 0.775i
=0.8e±1.82i , −0.95. The poles are cho-

sen close to the unit circle such that the standard least squares
is more prone to give unstable estimates.

The true state transition matrix A is taken as the transpose
of the observable canonical form and

C =
[
−0.97 0 −0.98 1 0.75

]
,

and the zero-mean noises have covariances

Q =

[ 2.14 · · · ·
−0.51 2.43 · · ·

0 −0.26 2.24 · ·
−0.27 −0.31 −0.71 0.5 ·
2.55 −2.69 −1.18 0 0.45

]
, R = 5.46,

Ψ′ =
[
0 −0.38 −0.74 1.07 0.77

]
,

where the dots in Q can be completed by symmetry and Q
has eigenvalues 0.0027, 0.13, 1.89, 2.65, 8.48.

We consider three record lengths: T̄ = 120, 240, 480 and
set the lag m = 7. Since IA and SP need to alter an unstable
initial estimate, we simulate a large number of repeats,
sufficient to generate 1, 000 ‘unstable’ realizations for each
T̄ , and apply each algorithm to each ‘unstable’ realization.
18.1%, 7% and 0.68% initial least squares estimates Â0’s are
unstable for T̄ = 120, 240, 480 respectively.

For IA we set δ = 0.99. For SP we set ε = 10−12 and we
use the MATLAB LMI solver to solve the SP.

We compare the algorithms by comparing: 1) the system
pole locations, 2) the relative prediction errors, and 3)
computational times.

1) Pole Locations: We first display the results by plotting
the locations of the system poles (i.e. eigenvalues of Â)
on the complex plane in Fig. 1, Colors represent different
algorithms and the black ’×’ marks are the true poles. It
is sufficient to show only the poles with zero or positive
imaginary part.

Fig. 1 gives a rough impression of estimated pole loca-
tions. All algorithms give stable solutions and give better
estimates as T̄ increases and the poles are more concentrated
around the true ones, including the non-dominating poles.

However, to better compare the algorithms, in Fig. 2,
we plot the histograms of the magnitudes of the estimated
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Fig. 1. Pole locations for T̄ = 120, 240, 480: The black cross marks are the true poles and the colored shapes are poles of estimated systems, with each
color representing a method. Only the first 50 of the total 1000 repeats are shown for clearer presentation.

Fig. 2. Histograms of the magnitude of the dominating poles for the 1000 estimated systems for T̄ = 120, 240, 480: The red mark means the true
dominating magnitude.

dominating poles based on the 1, 000 ‘unstable’ repeats. The
true magnitude 0.995 is marked ‘∗’ in red.

Some interesting features are apparent from Fig. 2:
(a) The estimated poles from DA are furthest from the unit

circle and have the greatest mean square errors.
(b) SP has the poles closest to the unit circle.
(c) The histogram of S5 is centered at the true value at

T̄ = 120, but it moves closer to the unit circle for
larger T̄ .

(d) Estimated poles being closer to the unit circle than the
true value is natural because the realizations are such
that the least squares gives unstable results. Therefore,
the estimated poles are expected to be closer to the
unit circle, minimizing the prediction errors.

(e) For IA, the dominating poles are fixed at the magnitude
0.99 equal to the value of the user defined parameter
δ. It maps the initial unstable poles only onto a
small subset of the open unit disc, which results in
a distortion/bias.

2) Relative Prediction Errors: We now compare the rel-
ative prediction errors of the algorithms defined as

e =
‖X̂1 − ÂX̂0‖F − ‖X̂1 − Â0X̂0‖F

‖X̂1 − Â0X̂0‖F
× 100%.

Note that e > 0 because Â0 = S10S
−1
00 minimizes the

Frobenius prediction error.
The histograms are shown in Fig. 3. Red ‘∗’ marks indicate

the median and blue ‘|’ marks indicate the upper and lower
quantiles. Some observations can be drawn:

(a) SP has the smallest errors for all T̄ , because it is
designed to minimize such error.

(b) DA has the largest errors.

Fig. 3. Histograms of the relative errors (%) of 1, 000 repeats for T̄ =
120, 240, 480: The values at the upper right corners is the median values.
The medians are also marked ∗ in the histogram.

(c) S5 has reducing errors as T̄ grows. Its error equals IA’s
at T̄ = 240 and outperforms IA at T̄ = 480.

(c) The errors of IA stop reducing at T̄ = 240, because the
dominating poles are fixed at δ as discussed above. IA
only has small error when the user defined parameter
δ happens to be set close to the true magnitude of the
dominating pole.

Despite SP showing the smallest relative errors, the rela-
tive errors of S5 are quite acceptable.

Now we turn to computation times.
3) Computation Times: The total computation time for

completing the 1, 000 repeats, is summarized in the Table I
for each algorithm. We conclude that,

(a) DA is fastest but has the worst performance.
(b) SP performs best, but takes ≈ ×700 more time than

S5.
(c) IA takes ≈ ×2 time as long as S5 does at T̄ =
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Method T̄ = 120 T̄ = 240 T̄ = 480
S5 0.15s 0.215s 0.300s
IA 14.4s 0.315s 0.551s
SP 18.5s 18.3s 18.4s
DA 0.094s 0.115s 0.226s

TABLE I
TOTAL COMPUTATIONAL TIMES (S) FOR 1, 000 REPEATS OF

n = 5-ORDER MODEL .

240, 480. But at small T̄ = 120, it takes ≈ ×100 time
as long as S5. This is probably because, if the data size
is small and a real pole has similar magnitude to the
dominating complex pole, then slow convergence of
IA will occur. This also happens when IA is unable to
continue with large δ = 0.99 and needs to be restarted
with a smaller δ.

(d) S5 is the most computationally efficient regarding also
the performance. Also note that S5 does not need the
initial computation of Â0 while IA and SP require it.

B. Higher Order Cases

We randomly generate 100 models each, of order n =
100, 150, 250, 500, 1000 with T̄ = 5n, and simulate a single
realization to compare the computational times. We assume
that the model order n is known so that each computation
will be conducted on the system of the correct order.

Here we need to use an external MATLAB package,
SDPT-3, from [19]. By comparison, LMI is more efficient
in lower order case; it takes 1/10 time compared to SDPT-3
with order n = 5. However, with order n = 100, LMI solver
could not even finish one iteration in 12 hours.

The average computation times are summarized in Table
II. We completed all model computations for S5, IA and
DA. But for SP we could only take the average on up to
10 models and up to order n = 150, because computation
became prohibitive. The main problem was storage. Even
state space models with sparse SP constraint matrices did not
make much difference. Of course a bigger storage system or
the use of clusters could overcome this. But it would not
change the growth of storage required by SP as n rises.

S5 is shown to be computationally efficient for all orders.
It completes in almost no time for all cases. But SP becomes
computationally prohibitive as order increases.

C. Summary

IA: places dominating poles at a user defined magnitude,
which distorts pole locations.
SP: has the smallest prediction error but is computationally
intensive in time and storage, becoming prohibitive in high
order cases.
DA: introduces largest bias.
S5: is computationally cheap even in higher order cases and
has competitive precision.

VI. Conclusions and Future Work
In this paper, we proposed a new, closed-form state space

subspace algorithm, S5, to identify stable noise models from
time series data. Compared to existing methods, S5 has

Method n = 100 n = 150 n = 250 n = 500 n = 1000
S5 0.0085s 0.022s 0.053s 0.28s 1s

IA 22.2s 49.9s 114s 155s 1861s
=31mins

SP 1947s
=32mins

14026s
=4hrs - - -

DA 0.0042s 0.014s 0.035s 0.2s 0.75s

TABLE II
AVERAGE COMPUTATIONAL TIME FOR HIGHER ORDER MODELS.

several advantages as shown in the simulation study: low
bias; high precision; extremely cheap computation which
allow scaling up to huge state dimensions. Such big dimen-
sion state space models are increasingly arising in numerous
applications.

In the future, we will extend S5 to input-output state
space models and also seek to develop maximum-likelihood
methods.
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