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Adaptive Optimal Output-Feedback Control of Discrete-Time Systems
based on Hybrid Iteration

Sitong Liu!, Weinan Gao' and Zhong-Ping Jiang?

Abstract—1In this paper, a novel adaptive dynamic pro-
gramming (ADP) algorithm, named output-feedback hybrid
iteration (HI), is proposed to address the adaptive optimal
control problem of discrete-time linear systems. The proposed
output-feedback HI strategy learns the optimal control policy
through two phases. First, a novel data-driven value-iteration
(VI) scheme is employed to learn an admissible output-feedback
control policy using the input/output data without relying on the
knowledge of system matrices. Then, with the obtained admis-
sible control policy, the optimal output feedback-control policy
is approximated with an accelerated convergence rate through
output-feedback policy iteration (PI). Online input/output data
are utilized to reconstruct the full state of the system and
integrated into the new output-feedback HI algorithm. Sim-
ulation results are presented and demonstrate the efficacy and
practicality of the proposed output-feedback HI approach in
comparison with traditional PI and VI techniques.

I. INTRODUCTION

The aim of optimal control problems is to design optimal
controllers with respect to a predefined performance index.
The design process usually relies on the prior knowledge
of system dynamics [I1]. As an enhancement of optimal
control, adaptive optimal control techniques have emerged,
aiming to design optimal control policies when the system
model is partially or completely unknown. Adaptive dynamic
programming (ADP) represents a data-driven approach that
does not require accurate knowledge of the system model.
see, e.g., [2]-[8]. Rather than directly solving the algebraic
Riccati equations (AREs) via the system model, ADP ap-
proaches the optimal control policy through iterations—thus
reducing the computation burden associated with directly
solving AREs.

There are two typical methods in the area of ADP, i.e.,
policy iteration (PI) and value iteration (VI). PI is usu-
ally quadratically convergent to the optimal control policy
for linear systems [9]-[12]. For instance, a computational
ADP method is proposed for adaptive optimal state-feedback
control of continuous-time linear systems without requiring
the knowledge of the state and input matrices [13]. The
authors of [14] have combined ADP and the small-gain
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theory to propose robust adaptive dynamic programming
to deal with dynamically perturbed nonlinear systems [15],
[16]. However, an admissible control policy is required
to initiate the learning process, which severely limits the
practical implementation when the system models are not
exactly known. On the contrary, the VI method eliminates the
requirement of an initial admissible control policy but usually
yields a slower convergence rate towards the optimal solution
[17]-[19]. Recently, hybrid iteration has been proposed to
solve the problems associated with the slow convergence
from VI and the need for an admissible control policy from
PI [20], [21].

It is noteworthy that the majority of the existing ADP
results are based on state feedback. In other words, the
complete state information has to be available when imple-
menting these algorithms. It is imperative to develop ADP
methods when dealing with unknown system dynamics and
unmeasurable states. In order to overcome these challenges,
an output-feedback ADP methodology has been proposed
in [22] for discrete-time linear systems. The authors of
[23] have proposed a novel computational output-feedback
ADP approach for continuous-time linear systems with
completely unknown dynamics via sampling-data strategy.
Output-feedback @-learning methods have been developed
in [24], [25] to solve the discrete-time and continuous-
time optimal control problems by combining ()-learning and
PI. However, both Pl-based and VI-based output-feedback
control designs inherit their limitations from state-feedback
designs. Specifically, output-feedback PI requires an admis-
sible control policy, while output-feedback VI inherently
converges more slowly. The main objective of this paper is to
integrate VI and PI methods to overcome these limitations.
The main challenge in accomplishing this objective is to find
an admissible control policy with unknown system dynamics
and unmeasurable state.

Compared with the state-of-the-art studies in ADP, the
main contributions of this paper are summarized as follows.

1) We propose a novel output-feedback ADP method
aimed at approximating the optimal control policy
along with the corresponding value function with rig-
orous proof of stability and convergence.

2) We propose a sufficient condition to determine the ad-
missibility of any control policy obtained from output-
feedback VI.

3) We combine the HI and ADP for the output-feedback
adaptive optimal control of linear dynamical systems.

The rest of this paper is organized as follows. Section
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II formulates the problem to be studied and presents some
preliminaries related to optimal control and state reconstruc-
tion. Section III develops a novel adaptive optimal output-
feedback control approach for discrete-time linear systems
based on HI and ADP. Section IV contains simulation results
to demonstrate the performance of the proposed controller.
Finally, Section V closes the paper with some brief conclud-
ing remarks.

Notations. Throughout this paper, Z, denotes the set
of nonnegative integers. I,, denotes the identity matrix of
dimension n. | - | denotes the induced norm operator for
matrices and the Euclidean norm operator for vectors. 7(-)
denotes the rank for matrices. ® denotes the Kronecker
product operator. Given a matrix A € R"*™, with a; € R"
are the columns of A, vec(A) = [aT,al, - al]T.
Given a vector z € R™ and a matrix P = PT ¢ R™x™,
P > (=)0 and P < (=X)0 indicate that P is the positive
definite (semidefinite) and negative definite (semidefinite),
respectively. vecs(P) = [p11,2p12, ", 2D1m, P22, 2D23,

 2Dm—1m, Pmm) 7€ REFDand veev(z) =
[Z%, Z1R2y ey R12n, Z%, 2223y .-

T
s Zn—1%n, Z%] €
1
Rgn(n+1).

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a class of discrete-time linear systems with
single-input-single-output (SISO) as follows

Trp1 = Azy + Buy,
yr = Cxyp, (D

where z € R” is the state vector, u € R is the control input
vector, y € R is the output vector, and k € Z_ is the step.
System matrices are A € R"*", B € R", C € R*" with
the pair (A, B) controllable, the pair (A, C') observable, and
the matrix A invertible.

For any k > n, the extended state equation using in-
put/output sequences on time horizon [k — n, k — 1] can be
written as

Ty = An$k7n + V(n>ﬂk717kfna

U—1k—n = U(M)Zg—pn + T(n)Uk—1k—n (2)
where
Uy k— n‘*[uz 19 Uk 2#"au£—nP¥
Yk—1,k— n:[yZ 17yk 27" ,yi_n}T»
V(n) = [B,AB,--- , A" D],
U(n) = [(CA™ 1) SRI(eVENeL B
0 CB (CAB CA™ 2B
0 O CB CA 3B
T(n)=|: - - :
0 --- 0 CB
0 O 0 0 0

The following lemma, Lemma 1, discusses and shows the
methodology of reconstructing the state at step £ > n in
terms of measured input/output data.

Lemma 1 ( [26]). Given a controllable and observable
system (1), the system state is uniquely obtained in terms
of measured input/output sequences by

Uk—1,k—n
— M, M, | L e 3
T [ y] [ Yk—1,k—n } “k ®)
where M, = A"U~*(n), M,, = V(n) — M,T(n), © =
(M., My is full row rank, z, =[G} 1 s U1 n) €

R?",

Remark 1. It is checkable © must be full row rank under
the condition of the pair (A, B) controllable and the pair
(A, C) observable.

Based on Lemma 1, one can generalize the idea of
state-feedback ADP to tackle the output-feedback adaptive
optimal control problem. For discrete-time system (1) and
an arbitrary initial state o € R", define the performance
index as
=Y (Qvi + Rui) @)

k=0

J(z0; u)

where () > 0 and R > 0. A linear control law in the form
of uy = —K*xp, which minimizes the performance index,
can be found by linear optimal control theory of discrete-
time systems. In more detail, there must be a unique solution
P* = (P*)T > 0 for the following ARE.

ATPA—-P+C"QC — ATPB(R+ B"PB)"'BTPA =0,
®)

and the optimal feedback control law K™ can be obtained as
follows

=(R+B"P*B)"'BTP*A. (6)

Solving P* directly from (5) is difficult since (5) is
nonlinear in P*. In order to overcome this difficulty, one
can leverage two methods for solving the ARE, i.e. PI and
VI methods. The rest of this section recalls these approaches.

A. Policy Iteration

PI is an iterative approach that is proposed by Hewer in
[27]; the details are as follows.

Lemma 2. Given K such that A — BKy is Schur stable,

which means all of its eigenvalues are less than one in

absolute value, and P; PT > 0 is the solution of the

Lyapunov equation. The quuence {P } o is generated by
the following equations for j = 0,1

0=(A- BKj)TPj(A - BKj) ~P;
+C"QC + K RK;, (7)
K1 =(R+ BTP;B)"'BTP; A, (8)

the following properties are satisfied:

1) A— BKj is a Schur matrix for any j € Z .
2) P2 Pj1 2P}
3) lim K; = K*,

]*)OO

lim Pj = P*.
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Algorithm 1 Model-based Hybrid Iteration

1 Select a small constant ¢ > 0 and a matrix Py = (Po)"
0.
7« 0.
repeat
K; « (B'"P;B+ R)” ' B'P;A
P11 + (A—BK;)' P (A~ BK))
K] RK;
6: j—i+1
7. until P] — Pj—l < CTQC
8
9

+ CTQC +

: Pj — Pj—l
: repeat
1. K1+ (BTPB+R)”
11: Solve Pjy from (7)
12: j—i+1
13: until [P; — Pj_1| <e

BTP;A

B. Value Iteration

In contrast to PI, the VI does not require an initial
stabilizing control policy. Instead, an arbitrary initial value
matrix Py = P§ = 0 is employed to start the VI. The
subsequent Lemma revisits the model-based VI strategy.

Lemma 3 ( [28]). For an arbitrary initial value matrix Py >
0, the sequence {P;}52, converges to P* as j — oo by
iterating the following step

(A— BK;)"Pj(A- BK;)+ K] RK] + CTQC
©))

Pj+1 =

where Kj = (R+ BTPjB)ilBTPjA.

In order to relax the limitation of slow convergence of VI
and the reliance on stabilizing control policies for PI, the
authors in [20] has proposed an HI approach; see [20] for
more detail.

III. OUTPUT-FEEDBACK ADAPTIVE OPTIMAL
CONTROLLER DESIGN BASED ON HI

In this section, we propose a novel data-driven HI ap-
proach for discrete-time systems via output-feedback control.
Notably, the system matrices A, B and C are all unknown,
the state xj, is unmeasurable, and an admissible control
policy is unknown.

A. Phase 1: Learning Towards an Admissible Control Policy

Let two matrices of H; and H ; take the form of

ot g2 B'PB BTPA
J— ] ] ——
H] - |: H21 H22 :| i |: ATPB ATPA :| (10)
7 — H11 H12 o B'PB BTPA©
J H21 H22 | ©TATPB QTATPAOG
(11
From (9) and the control gain defined by K, = (R +

BTP;B)~'BTP; A, one obtains

Py = ATPj A+ CTQC —

12)

A"P;B(R+ B'P;B)"'B'P;A.

By collecting the input/output data (12) can be rewritten
as follows.

21 CTQCT 1 = — T F(P)) g1 + Ty P +11‘k(+113)
where
F(P;) =A"P;A— A"P,B(R+ B B)"'B"P;A

Further, x£+1Pj+1xk+1 in (13) can be written as follows.

:(A{,Ck + Buk)TPj+1(A:L‘k + Buk)
T T
_|uk o u| w5 (wk
L] e o] = 1] o 2]
(14)

Through substituting (10) and (14) into (13), the following
equation can be obtained

T
Ty Pjr1%k41

y£+1ka+1 __xk+1[H22 (H; ) R+H11) 1H12]$k+1
ug,
] [:ck ]) vt
Zk+1[H22 j12 T R+H11) 1H12}Zk+1
T
+ |:V€CV(|: ])} vees( J+1)
—¢i+1+<wk) vees(Hj11), (15)
where

¢§c+1 :zz+1[l_{]22 - (H;Q)T(R + FI;1>_1HJ‘12]ZI@+17
P =vecv ([u{ zg]T> .

Define
U =[thrg Yy n, )T
®) =y, Quro + 1y Uk, Qui, + 411",
s =[vecv(zk, ), veev(zr, ), - - , veev(zx, )],
=[2ky ® Uy, Zhy @ Uky, "+ 2k, @ Uk, ]"

271/ [Z )
[ ,Vecv(uks)]T.

veev(uk, ), veev(ug, ), - - -
where n < kg < ky < ---

\If}/vecs(lf[jﬂ) = <I>;-/.

< k. Equation (13) indicates that
(16)

It is worth to note that )" and ®)" are matrices related to
input and output data, and then we can use (16) to compute
H;1 for each iteration. The uniqueness of the solution to
(16) can be guaranteed by a rank condition which will be
discussed in the Lemma below.

Lemma 4 ( [23]). If there exists a positive integer s* such
that for all s > s*

r([Cz, T, Ta]) =n2n+1) 4+ 2n+1, (17)
then (16) has a unique solution.

The primary goal of the first phase is to keep repeating
(16) until a stabilizing control policy is found. This task
is nontrivial, particularly in scenarios where the system
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matrices are entirely unknown and the state information is
unmeasurable. In order to tackle this grand challenge, this
paper proposes a novel data-driven scheme to check the
admissibility of control policy learned via VI. The following
Lemma is helpful to determine the admissibility via online
data.

Lemma 5. Under the condition that A is invertible and
Lemma 4, the following properties hold.

1) There always exists a matrix Z, € R?"*™ such that
ZTH?? Z,, is nonsingular, where all columns of Z,, are
chosen from the sequence {zi,}3_,.

2) For any © € R", one can always obtain a € R"
such that

r= 02,0, (18)

where Z,, satisfies the property 1.

Proof. To prove the first property, under the condition of
Lemma 4, there always exists an invertible matrix ( €
R27%27  where all columns of ¢ are chosen from the
sequence {zk, }5_,. Since O is full row rank, the matrix
O¢ € R™?" is also full row rank. Then there are n
linearly independent columns in the matrix ©¢. We call
the matrix formed by these n linear independent columns
as Z, = 02, € R"™". Obviously, all columns of Z,
can be found in (. The condition 7(Z,) = n implies
that r(ZYH*Z,) = r(ZYATPAZ,) = r(ATPA). Under
the condition that A is invertible, one has 7(ATPA) =
n. Therefore r(ZyH??Z,) = n which also implies that
ZyH??Z,, s nonsmgular

To prove the second property, since ZX H?2Z,, is nonsin-
gular, one have n = r(ZYH?Z,,) = r(Z1©TATPAOZ,) <
r(0Z,) < n, which proves that ©Z,, is nonsingular. Obvi-
ously for any x € R", one can always find a sequence of
parameters 3 = [B1, B2, , Bn]T such that x = ©Z,3. The
proof is thus completed. O

Remark 2. Under the condition of Lemma 4, one can always
find a Z, that satisfies Lemma 5 after making C; € 74
selections from the sequence {z, }5_,, where

sx(s=1)x--x(s=n+1)

n!

Cs = (19)

with | representlng the factorlal The resultant selections are

called Z}, 72, - - Z ™ that will be used in Algorithm 2.

Define the matrix H; as follows.

Hé,l Hé,z o H;n
1 ,2 ,n
g | TR T s 20)
j = .
;’L,l 7"L,7L
’Hj . - Hj

The element of the matrix H; is computed by Z, as
follows, where K; = (R + B'PB)™'BTPAO = (R +

= T
Hlw [ USEL } i, [

2l

U, T U
[ 11] Hj[ wl}
Zl—1 Zw—1

for any l,w € {1,2,---,n}. Vectors z; and z, are the
Ith and wth columns in Z,, respectively. [u] ,z ;|7 or
[uf 1, 2T |7 are online data at steps [ — 1 and w — 1.
Based on Lemma 5, the following theorem is presented as
a sufficient condition of admissibility of an output-feedback

control policy.

Theorem 1. If H; solved by (20) and (21) is negative definite
at the iteration j € Z,, then K; is guaranteed to be an
admissible control gain.

—I_(jzw :| .

Rw

2L

Proof. If H; is negative definite, the following equation
holds

B, B < 0,¥8 # 0
which is equivalent to
— T —
*KjZnﬂ H 7KjZn5
Znp ! ZnpB

(22)

} —(Z,8)"P;Z,8 <0
(23)
where P; = ©TP;©. Under the second property of Lemma
5, one obtains
T
[ _Igfjx ] H; { _I;jx } —2"Px <0,Yz £0. (24)

Upon substitution of (10) into (24), one reaches
2 [(A - BK;)'"Pj(A - BK;) — Pj]x < 0,Yz # 0. (25)

One can immediately have [A — BK;]"P;[A — BK,]| —
P; < 0, which is enough to show that A — BK; is Schur
stable based on the Lyapunov stability theory. It also implies
that, in correspondence with H;, K ; 18 an admissible control
gain. The proof is thus completed. O

Based on Theorem 1, one can obtain a sufficient condition
to check the admissibility of any learned policy via VL. If an
admissible control policy is obtained, it is feasible to switch
to PI to accelerate the convergence rate.

B. Phase 2: Exploring the Optimal Control Policy

By collecting the input/output data, (1) and (7), one can
obtain

yZHkaH + ZZHKJ-TRK’]-ZICH

[a] L) ] e
2k 2k Zk41 Rk+1
= {Vecv ({ Uk ])} vecs(H;)
2k
- [VCCV([ —Kjzen } } vecs(H
Zk+1
=[N, 1] vees(H;) (26)
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Algorithm 2 Output-feedback Hybrid Iteration

1: Select two constants ), R > 0 and a stopping criterion
e > 0.

2§+ 0.p 1. Hj+ 0. K; < 0. Z, + 0.
3. Get Z},22,--- ZC" from the sequence {2, }5_.
4: repeat

5: Solve HjH from (16).

6: if Z,, = 0 then

7: if [H??,] # 0 then

8: repeat

9: Calculate | ZFTH?3 | Z |

10 p—p+1

1: until |ZZTH??, 7P| # 0

12: Lp — 2P

132 Kj < (R+H}L)THE

14: Calculate the matrix H;; with Z,,, by (20) and (21).
15: j—j+1

16: until H; < 0.

17: K (R+ HY) " H2.

18: repeat

19: Solve Hj from (27).

200 Kj < (R+H1,) T HZ,

21: j—i+1

22: until |HJ — Hj_1| <e€
where
7 _ Uk _ 7szk+1
Appq = veev ([ o }) vecv ([ i ]) .
Now, define

8 = yrQuy, + 2. K] REK 2,
A =[0],.00,. 0L,
AP RYRPYASERIO VAL
Equation (26) implies
Afvecs (Hjp1) = Af (27)

where the uniqueness of the solution is also ensured by
(17). Next, the output-feedback HI Algorithm is given in
Algorithm 2 with the proof of convergence given in Theorem
2.

Theorem 2. Under the condition of Lemma 4, the sequences

{H;}32, and {K;}52 learned from Algorithm 2 converge
to H d and K*, respectively. where

K*=K"©

_ T px* T px*

qe_ | B'P'B BTPrA©

oTATP*B ©TATP*AO©

Proof. 1If the rank condition (17) in Lemma 4 is satisfied,
(16) is guaranteed to have a unique solution. Steps 5 and 13
are equivalent to Steps 4 and 5 of Algorithm 1. Besides, from
Theorem 1, K ; calculated from the Step 18 is ensured as an
admissible control policy. Under the rank condition of (17),

P; and K ; solved from Steps 19 and 20 are equivalent to

Steps 10 and 11 in Algorithm 1. By [27], one has lim K; =
K* and lim P; = P*, which indicates that hm K =K*

‘]*)OO ]A)OO

and hm H; = H*. O

IV. ILLUSTRATIVE EXAMPLE

This section evaluates the effectiveness of the proposed
strategy using a second-order discrete-time linear system.
Consider a second-order discrete-time linear system

TR = 0.0033  1.0047 0.4128

yk:[l O](L.IW

1.0732 0.0288 } . { 0.0562 ]

(28)

and @ and R are chosen to be 1. Letting N = 2. The
initial conditions of the states zo = |1 0.5}T, and the
exploration noise is chosen as a sum of sinusoidal signals
with different frequencies expressed in the form of n =
le(i sin(w;k) where w; are randomly selected from the
range of [—100,100]. The input/output data are collected
from k£ = 0 to 40, and the output-feedback HI is started from
k = 40. For Algorithm 2, set ¢ = 0.1. At 14th iterations,
Ki4 corresponding to 14 satisfies Theorem 1. Thus, K14
is admissible and takes the following form.

Kig=[02205 —0.5528 14.24 —13.37 ].

Applying this admissible K4 to output-feedback PI, the
derived approximate optimal values are obtained at the 18th
iterations, the approximated optimal control gain K;g and
the optimal control gain K* are shown as follows.

Kig = [ 0.2470 —-0.6327 16.1739 —15.3036 } .
K* = [ 0.2470 —-0.6327 16.1739 —15.3036 } .

Fig. 1 depicts the number of iterations required for the
traditional VI and PI based output-feedback ADP, and il-
lustrates the feasibility and efficiency of the HI. And it can
be seen that the hybrid iteration converges to the optimal
solution faster than the VI under the condition without an
initial stabilizing control policy. Fig. 2 depicts the trajectories
of the input and output data, where the control policy is
updated at & = 40. Finally, one can notice the convergence
of the input and output in an optimal sense.

V. CONCLUSION

This paper has proposed a novel computational output-
feedback ADP approach—output-feedback HI—for linear
systems. Notably, the proposed algorithm does not require
the exact knowledge of system parameters or the full-state in-
formation. Additionally, it does not require any prior knowl-
edge of a stabilizing control policy, while maintaining a
fast convergence rate compared to traditional value iteration.
Simulation results for a linear system clearly demonstrate the
effectiveness of the proposed methodology.
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