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Abstract— The closed-loop stability and infinite-horizon per-
formance of receding-horizon approximations are studied for
non-stationary linear-quadratic regulator (LQR) problems. The
approach is based on a lifted reformulation of the optimal
control problem, under assumed uniform controllability and
observability, leading to a strict contraction property of the
corresponding Riccati operator. Leveraging this contraction
property, a stabilizing linear time-varying state-feedback ap-
proximation of the infinite-horizon optimal control policy is
constructed to meet a performance-loss specification. Its synthe-
sis involves only finite preview of the time-varying problem data
at each time step, over a sufficiently long prediction horizon.

Index Terms— Non-stationary discrete-time systems, LQR,
model predictive control, Riccati difference equations

I. INTRODUCTION

Consider the following infinite-horizon linear-quadratic
regulator (LQR) problem:

min
u

∞

∑
k=0

x′kQkxk +u′kRkuk, (1a)

where x0 = ξ , and

xk+1 = Akxk +Bkuk, k ∈ {0,1,2, . . .}, (1b)

for given problem data (Ak,Bk,Qk,Rk) and initial state ξ .
The task is to determine the cost minimizing infinite-horizon
control input sequence u = (u0,u1, . . .) and corresponding
state sequence x = (x0,x1, . . .).

Under stabilizability and detectability conditions, a linear
state-feedback characterization of the optimal control policy
is well-known [1], [2]. It involves the stabilizing solution
of a corresponding non-stationary infinite-horizon Riccati
recursion. As such, without ab initio knowledge of the
problem data over all time, one can only approximate the
optimal policy at each time step.

In this paper, a lifted reformulation of (1) is employed to
construct a receding-horizon approximation of the infinite-
horizon optimal control policy. The key feature of the ap-
proximation is the use of only finite preview of the problem
data over a prediction horizon at each time step. It is
established that the receding-horizon policy is exponentially
stabilizing. Further, explicit bounds are given for setting
the prediction horizon length to achieve specified tolerance
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of infinite-horizon performance degradation. This is the
main contribution. The receding-horizon approximation is
ultimately a linear time-varying state-feedback controller.

Related time-varying work appears in [3] and [4]. In [3],
the analysis of infinite-horizon performance degradation is
somewhat implicit. By contrast, the explicit bounds pro-
vided here can be used for direct synthesis of a receding-
horizon approximation that achieves a performance-loss
specification. In [4], a Smoothed Online Convex Optimiza-
tion (SOCO) sensitivity analysis is used to study the perfor-
mance of a receding-horizon approximation of the optimal
policy for a possibly long but finite horizon problem in
terms of dynamic regret. The distinguishing feature of the
developments presented below relates to the way prediction
horizon length is linked to infinite-horizon performance loss.
In particular, the link is established via a strict contraction
property of the time-varying Riccati operator in the lifted
domain, as recently established in [5], which builds upon a
foundation result from [6]. Recent Riccati contraction based
analysis of receding-horizon schemes can be found in [7], [8]
for linear time-invariant (i.e., stationary) problems. Earlier
related work for stationary nonlinear problems appears in [9].

The paper is structured as follows. Notation and prelimi-
nary results are presented next. The lifted reformulation of
problem (1) is developed in Section II. Approximation by
receding-horizon control policies is discussed in Section III.
Results pertaining to exponential stability under receding-
horizon control are given in Section IV. Infinite-horizon
performance bounds and receding-horizon controller synthe-
sis are then considered in Sections V and VI. Concluding
remarks are given in Section VII.

A. Preliminaries

Notation: N denotes the set of natural numbers, N0 :=
N∪{0}, and for i ≤ j ∈ N0, [i : j] := {k ∈ N0 | i ≤ k ≤ j}.
The field of real numbers is denoted by R, and R>0 :=
{γ ∈ R | γ > 0}. For m,n ∈ N, the Euclidean space of
real-valued n-vectors, with norm | · |, and the space of real
m×n matrices, are denoted by Rn, and Rm×n, respectively.
The space Rn is implicitly associated with Rn×1. The n×n
identity matrix is denoted by In. The m×n matrix of zeros
is denoted by 0m,n. The transpose of M ∈ Rm×n is denoted
by M′ ∈ Rn×m; note, |x|2 = x′x for x ∈ Rn. When it exists,
the inverse of square M ∈ Rn×n is denoted by M−1 ∈ Rn×n

(i.e., M−1M = MM−1 = In); when the relevant inverses
exist, the Woodbury matrix identity (M1 + M2M3M4)

−1 =
M−1

1 −M−1
1 M2(M−1

3 +M4M−1
1 M2)

−1M4M−1
1 holds. The in-

duced norm of M ∈ Rm×n is ∥M∥2 := max|x|=1 |Mx|. The
respective subsets of symmetric, positive semi-definite, and
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positive definite matrices, are denoted by Sn := {M ∈
Rn×n | M = M′}, Sn

+ := {M ∈ Sn | (∀x ∈ Rn) x′Mx ≥ 0},
and Sn

++ := {M ∈ Sn
+ | (∃γ ∈ R>0)(∀x ∈ Rn) x′Mx ≥ γ|x|2}.

For M ∈ Sn, all eigenvalues are real; the minimum value
is denoted by λmin(M) = min|x|=1 x′Mx, and the maximum
value by λmax(M) = max|x|=1 x′Mx. Also, given M1,M2 ∈ Sn,
the notation M1 ≺ M2 (resp. ⪯ M2) means (M2 − M1) ∈
Sn
++ (resp. (M2 − M1) ∈ Sn

+.) For M ∈ Sn
+, λmin(M) ≥ 0

and the matrix square-root is denoted by M1/2 ∈ Sn
+ (i.e.,

M1/2M1/2 = M.) The vector space of Rn-valued sequences is
denoted by ℓ(Rn), and (Rn)m denotes the m-times Cartesian
product Rn × ·· · ×Rn. For w = (w0,w1, . . .) ∈ ℓ(Rn) and
a ≤ b ∈ N0, the vector w[a:b] := (wa, . . . ,wb) ∈ (Rn)(b−a+1);
note, w[a:a] = wa.

Definition 1. Given Y,Z ∈ Sn
++, the Riemannian distance is

δ (Y,Z) :=

√
n

∑
i=1

log2
λi, (2)

where {λ1, . . . ,λn} = spec{Y Z−1} ⊂ R>0 is the spectrum
(i.e., set of eigenvalues) of Y Z−1 ∈ Rn×n.

II. A LIFTED REFORMULATION

A lifting approach is used to transform (1) into an LQR
problem that is 1-step controllable and observable; see [5].
Given problem data Ak ∈ Rn×n, Bk ∈ Rn×m, Qk ∈ Sn

+, Rk ∈
Sm
++, for k ∈ N0, define the d-step state transition matrix,

d ∈ N, by

Θk,d := Ak+d−1Ak+d−2 · · ·Ak, (3)

with Θk,0 := In. The corresponding d-step controllability
matrix is defined by

Ck,d :=
[
Θk+1,d−1Bk Θk+2,d−2Bk+1 . . . Θk+d,0Bk+d−1

]
.

(4)

Further, the d-step observability matrix is defined by

Ok,d :=


CkΘk,0

Ck+1Θk,1
...

Ck+dΘk,d

 , (5)

where Ck := Q
1
2
k .

Assumption 1. There exist a,b,q,r ∈ R>0 such that for all
k ∈ N0, ∥Ak∥2 ≤ a, ∥Bk∥2 ≤ b, ∥Qk∥2 ≤ q, and ∥Rk∥2 ≤ r.

Assumption 2. Ak in (1b) is non-singular for all k ∈N0. This
is a standard assumption, which holds when (1b) arises from
the discretization of continuous-time dynamics, for example.

Assumption 3. There exists d ∈ N such that for all k ∈ N0,
Ck,d has full row rank, and Ok,d has full column rank.

With d ∈ N as per Assumption 3, define

Ât := In(d+1)−
[

0n,nd 0n,n
diag(Adt , . . . ,Ad(t+1)−1) 0nd,n

]
, (6a)

B̂t :=
[

0n,md
diag(Bdt , . . . ,Bd(t+1)−1)

]
, (6b)

Ĉt :=
[
diag(Cdt , . . . ,Cd(t+1)−1) 0nd,n

]
, (6c)

for t ∈ N0, where Ct := Q
1
2
t . With

Φt :=
[
0n,nd In

]
Â−1

t

[
In

0nd,n

]
, (7a)

Γt :=
[
0n,nd In

]
Â−1

t B̂t , (7b)

Ξt := Ĉt Â−1
t

[
In

0nd,n

]
, (7c)

∆t := Ĉt Â−1
t B̂t , (7d)

the lifted problem data comprises

Q̃t := Ξ
′
tΞt −Ξ

′
t∆t R̃−1

t ∆
′
tΞt , (8a)

R̃t := diag(Rdt , . . . ,Rdt+d−1)+∆
′
t∆t , (8b)

Ãt := Φt −Γt R̃−1
t ∆

′
tΞt , (8c)

B̃t := Γt . (8d)

Remark 1. Under Assumption 2, and with d ∈ N as per
Assumption 3, Ãt is non-singular [5, Lem. 6], B̃t is full row
rank [5, Rem. 1], and Q̃t ∈ Sn

++ [5, Lem. 5], for all t ∈ N0.

Assumption 4. The observability and controllability prop-
erty in Assumption 3 holds uniformly in the sense that
inft∈N0 λmin(Q̃t) > 0, and inft∈N0 λmin(B̃t B̃′

t) > 0. It is also
assumed that inft∈N0 λmin(Ãt Ã′

t)> 0.

Given T ∈ N, for t ∈ N0, χ ∈ Rn, and w =
(wt , . . . ,wt+T−1) ∈ ((Rm)d)T , let

JT (t,χ,w) :=
t+T−1

∑
j=t

z′jQ̃ jz j +w′
jR̃ jw j (9a)

where

z j+1 = Ã jz j + B̃ jw j, j ∈ [t : t +T −1], (9b)

with zt = χ , and Q̃t , R̃t , Ãt , B̃t , as given in (8). For ũ ∈
ℓ((Rm)d) define the infinite-horizon cost at time t ∈ N0 as

J(t,χ, ũ) := lim
T→∞

JT (t,χ, ũ[t:t+T−1]), (10)

and the optimal cost-to-go as

V∞(t,χ) := min
ũ∈ℓ((Rm)d)

J(t,χ, ũ). (11)

It is well-known (e.g., see [1, Section 3.3] and [2]) that

V∞(t,χ) = χ
′Pt χ, (12)

where (Pt)t∈N0 ⊂ S+ is the bounded positive semi-definite
solution of the (backward) recursion

Pt =Rt(Pt+1), (13)
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where the Riccati operator is defined by

Rt(P) := Q̃t + Ã′
t(P−PB̃t(R̃t + B̃′

tPB̃t)
−1B̃′

tP)Ãt (14)

for P ∈ Sn; n.b., the recursion does not have a boundary con-
dition. Existence and uniqueness of a bounded positive semi-
definite solution (Pt)t∈N0 is guaranteed under Assumption 3,
which implies uniform stabilizability and detectability [10].
The optimal control input ũ∗ = argminũ∈ℓ((Rm)d) J(0,ξ , ũ)
corresponds to the linear state-feedback control policy

ũt = µ
∗(t, x̃t) :=−(R̃t + B̃′

tPt+1B̃t)
−1B̃′

tPt+1Ãt x̃t (15)

for the dynamics of the lifted system state given by

x̃t+1 = Ãt x̃t + B̃t ũt , t ∈ N0, (16)

with initial condition x̃0 = ξ . In particular, ũ∗t = µ∗(t, x̃t) [1],
[2]. The following result is taken from [5, Lemma 4].

Lemma 1. The optimal cost associated with the original
infinite-horizon problem (1) is equal to V∞(0,ξ ) = ξ ′P0ξ .

Remark 2. As shown in the proof of [5, Lemma 4], the
solution u∗ ∈ ℓ(Rm) of the original problem (1) can be
recovered from (15) as follows:

u∗[dt:d(t+1)−1] = µ
∗(t, x̃t)− R̃−1

t ∆
′
tΞt x̃t .

Remark 3. Since R̃t , R̃−1
t ∈ Smd

++,

D(P) := (P−PB̃t(R̃t + B̃′PB̃t)
−1B̃′

tP)

= P1/2(I +P1/2B̃t R̃−1
t B̃′

tP
1/2)−1P1/2 ∈ Sn

+

for all P ∈ S+; the equality holds by the Woodbury matrix
identity. So Rt(P) = Q̃t + Ã′

tD(P)Ãt ∈ Sn
++, because Q̃t ∈

Sn
++ as noted in Remark 1. Therefore, the unique positive

semi-definite solution (Pt)t∈N of (13) is positive definite, with
λmin(Pt)≥ λmin(Q̃t)> 0.

Within the time-varying context of this work, it is impor-
tant to note that implementation of (15) requires knowledge
of the lifted problem data (Ã j, B̃ j, Q̃ j, R̃ j) for all j ≥ t, as
needed to determine Pt+1 according to (13), and thus, u∗t
at time t ∈ N0. To overcome this impediment, a so-called
receding-horizon approximation can be employed. The im-
pact of such an approximation on stability and performance
is investigated in the subsequent developments.

III. RECEDING-HORIZON APPROXIMATION

A receding-horizon scheme is presented here to approxi-
mate the optimal policy (15) for the lifted reformulation of
the original infinite-horizon LQR problem (1); i.e., for (11)
with t = 0. With T ∈ N, and d ∈ N as per Assumption 3,
define LT : N0 ×Rn × ((Rm)d)T ×Sn

++ → R≥0 by

LT (t,χ,w,X) := JT (t,χ,w)+ z′t+T Xzt+T (17)

with JT and zt+T as per (9) for the given w =
(wt , . . . ,wt+T−1). Given bounded terminal penalty matrix
sequence (Xt+T )t∈N0 ⊂ Sn

++, the T -step receding-horizon
scheme is defined by the state-feedback control policy

ũt = µ
RH
0 (t, x̃t), (18a)

where

(µRH
0 (t, x̃t), . . . ,µ

RH
T−1(t, x̃t)) = argmin

w∈((Rm)d)T
LT (t, x̃t ,w,Xt+T ).

(18b)

Remark 4. The receding-horizon policy (18) corresponds to
a sampled-data policy in the domain of the original problem:

u[td:(t+1)d−1] = µ
RH
0 (t,xtd)− R̃−1

t ∆
′
tΞtxtd , (19)

where xk evolves according to (1b) from x0 = ξ .

The quality of this receding-horizon policy, as an approx-
imation of the optimal policy (15), is investigated subse-
quently in terms of both closed-loop stability and infinite-
horizon performance degradation. First, it is noted that
the receding-horizon policy (18) recovers the least infinite-
horizon cost with particular terminal penalty matrices; how-
ever, this requires ab initio knowledge of the problem data
over the infinite horiozon. Given T ∈ N, define WT : N0 ×
Rn ×Sn

++ → R≥0 by

WT (t,χ,X) := min
w∈((Rm)d)T

LT (t,χ,w,X), (20)

where LT is defined in (17).

Lemma 2. For all t ∈ N0, and χ ∈ Rn,

WT (t,χ,X) = χ
′(Rt ◦ · · · ◦Rt+T−1(X))χ, (21)

with R•(·) as per (14). In particular,

WT (t,χ,Pt+T ) = χ
′Pt χ =V∞(t,χ), (22)

where (Pt)t∈N0 is the bounded positive definite solution
of (13).

Proof. See the proof of [11, Lemma 7].

For given initial state ξ ∈ Rn, and control input ũ ∈
ℓ((Rm)d), the performance loss with respect to the optimal
control input ũ∗ ∈ ℓ((Rm)d) as per (15), is defined by

β (ξ ) := J(0,ξ , ũ)− J(0,ξ , ũ∗), (23)

where the performance index J is given in (10). Note that
β (ξ ) = J(0,ξ , ũ)− ξ ′P0ξ . It quantifies the infinite-horizon
performance degradation. The aim here is to obtain an upper
bound on (23) for the control input generated by (18), and
a method for selecting the prediction horizon T ∈ N and
penalty matrix sequence to achieve specified performance-
loss tolerance.

IV. CLOSED-LOOP STABILITY

For suitable sequences of terminal penalty matrices, the
receding-horizon policy (18) is exponentially stabilizing.

Theorem 1. Given T ∈ N, let (Xt+T )t∈N0 ⊂ Sn
++ be any

bounded terminal penalty matrix sequence such that

Xt+T ⪰Rt+T (Xt+T+1) (24)

for all t ∈ N0, with Rt+T (·) as per (14). Then, the origin
is exponentially stable for (16) under the corresponding
receding-horizon state-feedback control policy (18).
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Proof. With reference to (20), note that WT (t, x̃t ,Xt+T ) =
x̃′t(Rt ◦ · · · ◦Rt+T−1(Xt+T ))x̃t by Lemma 2. Thus, in view
of Remark 3, and the hypothesis Xt+T ∈ S++, WT is positive
and radially unbounded as a function of x̃t . Further, it can be
shown that t 7→ WT (t, x̃t ,Xt+T ) is strictly decreasing for the
evolution of x̃t according to (16) with ũt as per (18). Indeed,
given (24),

WT (t +1, x̃t+1,Xt+T+1)−WT (t, x̃t ,Xt+T )

≤−x̃′tQ̃t x̃t − ũ′t R̃t ũt ; (25)

see the proof of [11, Thm. 1] for details. This bound is
strictly negative for non-zero x̃t since inft∈N0 λmin(Q̃t) > 0
by Assumption 4, and R̃t ≻ 0. Therefore, WT is a Lyapunov
function for the closed-loop dynamics, and the claimed ex-
ponential stability property follows from [12, Thm. 5.7].

Next, Theorem 1 is specialized to a one-step policy,
which facilitates the presentation of an explicit exponential
bound on the closed-loop state trajectory. By the dynamic
programming principle [2], for given T ∈ N, and bounded
terminal penalty matrix sequence (Xt+T )t∈N0 ⊂ Sn

++, the T -
step policy (18) is equivalent to the 1-step policy

ũt = argminwt∈(Rm)d L1(t, x̃t ,wt , X̂t+1)

=−(R̃t + B̃′
t X̂t+1B̃t)

−1B̃′
t X̂t+1Ãt x̃t , (26)

where X̂t+1 := Rt+1 ◦ · · · ◦ Rt+T−1(Xt+T ) is the terminal
penalty matrix for each t ∈ N0. Note, in particular, that

L1(t, x̃t ,wt , X̂t+1) = (Kt x̃t +wt)
′Mt(Kt x̃+wt)+ x̃′tRt(X̂t+1)x̃t ,

where Kt :=M−1
t B̃′

t X̂t+1Ãt and Mt = R̃t + B̃′
t X̂t+1B̃t . Also note

that, with Assumptions 1 and 4,

sup
t∈N0

∥Q̃t + Ã′
t(B̃t B̃′

t)
−1B̃′

t R̃t B̃′
t(B̃t B̃′

t)
−1Ãt∥2 <+∞,

which implies supt∈N0
∥Rt(X)∥2 <+∞ for any X ∈ Sn

+, since
L1(t,χ,−Kt χ,X) ≤ L1(t,χ,−B̃′

t(B̃t B̃′
t)
−1Ãt χ,X) for all χ ∈

Rn, and thus,

Rt(X)⪯ Q̃t + Ã′
t(B̃t B̃′

t)
−1B̃t R̃t B̃′

t(B̃t B̃′
t)
−1Ãt . (27)

Further, inft∈N0 λmin(Rt(X)) > 0 in view of Remark 3 and
Assumption 4.

Theorem 2. Consider the state-feedback control policy (26)
for given bounded sequence (X̂t+1)t∈N0 ⊂ Sn

++. Suppose X̂t ⪰
Rt(X̂t+1) for all t ∈ N, with Rt(·) as per (14). Then, the
evolution of (16) with ũt as per (26) satisfies

|x̃t |2 ≤
ω

ω

(
1−λ

/
ω

)t
|x̃0|2 (28)

for all t ∈ N0, with

ω := sup
t∈N0

∥Rt(X̂t+1)∥2<+∞, (29)

ω := inf
t∈N0

λmin(Rt(X̂t+1))>0, (30)

λ := inf
t∈N0

λmin

(
Q̃t +K′

t R̃tKt

)
≤ ω, (31)

and Kt := (R̃t + B̃′
t X̂t+1B̃t)

−1B̃′
t X̂t+1Ãt . Further, λ > 0.

Proof. In view of the hypothesis X̂t ⪰ Rt(X̂t+1), (25),
and (26),

W1(t +1, x̃t+1, X̂t+2)−W1(t, x̃t , X̂t+1)

≤−x̃′tQ̃t x̃t − ũ′t R̃t ũt ≤−λ |x̃t |2, (32)

with λ as per (31). Note that λ ≥ inft∈N0 λmin(Q̃t) > 0 by
Assumption 4, and that λ ≤ ω , because

x̃′tQ̃t x̃t + ũ′t R̃t ũt = x̃′tRt(X̂t+1)x̃t − x̃′t+1X̂t+1x̃t+1

≤ x̃′tRt(X̂t+1)x̃t

for t ∈N0. Now, W1(t, x̃t , X̂t+1) = x̃′tRt(X̂t+1)x̃t by Lemma 2,
and as such,

ω|x̃t |2 ≤W1(t, x̃t , X̂t+1)≤ ω|x̃t |2. (33)

Combining (32) and (33) yields

W1(t +1, x̃t+1, X̂t+2)≤ (1−λ
/

ω)W1(t, x̃t , X̂t+1),

for all t ∈ N0. Therefore,

W1(t, x̃t , X̂t+1)≤ (1−λ
/

ω)tW1(0, x̃0, X̂1). (34)

Finally, using (33) in (34), it follows that

|x̃t |2 ≤
1
ω

W1(t, x̃t , X̂t+1)≤
1
ω
(1−λ

/
ω)tW1(0, x̃0, X̂1)

≤ ω

ω
(1−λ

/
ω)t |x̃0|2,

as claimed.

V. BOUNDED PERFORMANCE LOSS WITH T = 1

As elaborated below, given any bounded 1-step terminal
penalty matrix sequence (X̂t+1)t∈N0 that (i) bounds the posi-
tive definite solution of (13), and (ii) satisfies X̂t ⪰Rt(X̂t+1),
it is possible to bound the infinite-horizon performance
loss associated with the corresponding state-feedback control
policy (26), relative to the optimal policy (15). The synthesis
of such a sequence is considered in Section VI.

Lemma 3. Given X ,P ∈ Sn
++, if X ⪰ P, then Rt(X)⪰Rt(P)

for all t ∈ N0, with Rt(·) as per (14).

Proof. This result is taken from [13, Lemma 10.1].

Lemma 4. Given X ,P ∈ Sn
++, if X ⪰ P, then

W1(t,χ,X)−W1(t,χ,P)≤ ∥P∥2|χ|2(exp(δ (X ,P))−1)

for all t ∈ N0, and χ ∈ Rn, with δ (·, ·) as per (2), and
W1(·, ·, ·) as per (20).

Proof. See the proof of [11, Lemma 9].

Theorem 3. Consider the state-feedback control policy (26)
for given bounded sequence (X̂t+1)t∈N0 ⊂ Sn

++. Suppose

X̂t ⪰Rt(X̂t+1), X̂t ⪰ Pt , and δ (X̂t ,Pt)≤ η ,

for all t ∈N, with η ∈R>0, δ (·, ·) as per (2), (Pt)t∈N0 as the
bounded positive definite solution of (13), and Rt(·) as per
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(14). Then, for initial state ξ ∈ Rn, the performance loss as
defined in (23) satisfies

β (ξ )≤ λ

λ

ω

ω
ω(exp(η)−1)|ξ |2,

with

λ := sup
t∈N0

∥Pt∥2 <+∞, (35)

and ω,ω,λ ∈ R>0 as per (29), (30), and (31).

Proof. Let x̃t evolve from x̃0 = ξ according to (16) with the
input ũt as per (26). Further, let l(t, x̃t) := x̃′tQ̃t x̃t + ũ′t R̃t ũt ,
noting that

l(t, x̃t) =W1(t, x̃t , X̂t+1)− x̃′t+1X̂t+1x̃t+1, (36)

where W1 is given in (20). Since W1(t, x̃t ,Pt+1) = x̃′tPt x̃t by
Lemma 2, and since X̂t+1 ⪰ Pt+1 by hypothesis,

l(t, x̃t)≤W1(t, x̃t , X̂t+1)−W1(t, x̃t ,Pt+1)

+ x̃′tPt x̃t − x̃′t+1Pt+1x̃t+1

≤ ∥Pt+1∥2|x̃t |2(exp(δ (X̂t+1,Pt+1))−1)
+ x̃′tPt x̃t − x̃′t+1Pt+1x̃t+1

≤ λ |x̃t |2(exp(η)−1)+ x̃′tPt x̃t − x̃′t+1Pt+1x̃t+1,

where λ <+∞ as (Pt)t∈N0 is bounded, the second inequality
holds by Lemma 4, and the last follows from (35) and the
hypothesis δ (X̂t+T ,Pt+T )≤ η . As such,
N

∑
t=0

l(t, x̃t)≤λ (exp(η)−1)
N

∑
t=0

|x̃t |2 +ξ
′P0ξ − x̃′N+1PN+1x̃N+1,

for all N ∈ N. Since x̃N+1 → 0 as N → ∞ by Theorem 2, it
follows from (28) that

J(0,ξ , ũ) = lim
N→∞

N

∑
t=0

lt(x̃t)

≤ λ (exp(η)−1) lim
N→∞

N

∑
t=0

|x̃t |2 +ξ
′P0ξ

≤ λ (exp(η)−1)
ω

ω

ω

λ
|ξ |2 +ξ

′P0ξ .

Therefore,

β (ξ ) = J(0,ξ , ũ)−ξ
′P0ξ ≤ (exp(η)−1)

λ

λ

ω

ω
ω|ξ |2,

as claimed.

VI. RECEDING-HORIZON POLICY SYNTHESIS

In this section, it is shown how to set the prediction
horizon T ∈N, and construct a sequence of terminal penalty
matrices, to achieve a performance loss specification for the
receding-horizon policy (18). The approach is based on a
result, taken from [5], that establishes a strict contraction
property of the Riccati operator given in (14).

Given T ∈ N, the proposed terminal penalty matrix se-
quence (Xt+T )t∈N0 is given by

Xt+T = Q̃t+T + Ã′
t+T (B̃t+T B̃′

t+T )
−1B̃t+T R̃t+T

× B̃′
t+T (B̃t+T B̃′

t+T )
−1Ãt+T ∈ Sn

++. (37)

Remark 5. In view of Assumptions 1 and 4, with Xt+T as
per (37), supt∈N0

∥Xt+T∥2 <+∞.

Lemma 5. Given T ∈ N, and (Xt+T )t∈N0 as per (37), let

X̂t+1 :=Rt+1 ◦ · · · ◦Rt+T−1(Xt+T ), (38)

for t ∈N0. Then, X̂t ⪰Rt(X̂t+1), and X̂t ⪰ Pt , where (Pt)t∈N0
is the bounded positive definite solution of (13). Further,
supt∈N0

∥X̂t+1∥2 <+∞.

Proof. Given (37), it follows from (27) that Rt+T−1(Xt+T )⪯
Xt+T−1 for all t ∈ N, and thus, X̂t ⪰Rt(X̂t+1) by Lemma 3.
Similarly, Xt+T−1 ⪰ Rt+T−1(Pt+T ) = Pt+T−1 for all t ∈
N, and thus, X̂t = Rt ◦ · · · ◦ Rt+T−2(Xt+T−1) ⪰ Rt ◦ · · · ◦
Rt+T−2(Pt+T−1) = Pt . Boundedness of (X̂t+1)t∈N0 also fol-
lows from (27) and Assumptions 1 and 4.

The following is taken from [5, Thm. 1]. It characterizes
a strict contraction property of the Riccati operator (14) with
respect to the Reimannian metric in Definition 1.

Lemma 6. For all t ∈ N, and Y,Z ∈ Sn
++,

δ (Rt(Y ),Rt(Z))≤ ρt ·δ (Y,Z), (39)

where ρt = ζt/(ζt + εt)< 1,

ζt = ∥(Q̃t + Q̃t Ã−1
t B̃t R̃−1

t B̃′
t(Ã

′
t)
−1Q̃t)

−1∥2, (40a)

εt = λmin(Ã−1
t B̃t(R̃t+B̃′

t(Ã
′
t)
−1Q̃t Ã−1

t B̃t)
−1B̃′

t(Ã
′
t)
−1). (40b)

Lemma 7. Given T ∈ N, with (Xt+T )t∈N0 as per (37), and
(Pt)t∈N0 as the bounded positive definite solution of (13), the
Riemannian distance δ (Xt+T ,Pt+T )≤ δ for all t ∈N0, where

δ :=
√

n log
(

sup
t∈N0

∥Xt+T∥2

λmin(Pt+T )

)
≤
√

n log
(

sup
t∈N0

∥Xt+T∥2

λmin(Q̃t+T )

)
<+∞.

(41)

Proof. See the proof of [11, Lemma 12].

The following result builds upon Theorem 3. For given
prediction horizon T ∈ N, and with the terminal penalty
matrix sequence set according to (37), the closed-loop is
exponentially stable under the T -step receding-horizon pol-
icy (18), with bounded performance loss.

Theorem 4. Given T ∈N, and (Xt+T )t∈N0 as per (37), con-
sider the receding-horizon state-feedback control policy (18).
For all initial states ξ ∈Rn, the performance loss as defined
in (23) satisfies

β (ξ )≤ λ

λ

ω

ω
ω

(
exp
((

ζ

ζ + ε

)T−1
δ

)
−1
)
|ξ |2 (42)

with

ζ := sup
t∈N0

ζt <+∞, ε := inf
t∈N0

εt >0, (43)

and ω,ω,λ ,λ ,ζt ,εt ,δ ∈ R>0 as per (29), (30), (31), (35),
(40), and (41), using (X̂t+1)t∈N0 as per (38).

Proof. As observed in the preamble to Theorem 2, with
(X̂t+1)t∈N0 as per (38), the T -step receding-horizon control
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policy (18) is equivalent to the 1-step policy (26). Now, by
Lemma 5, X̂t ⪰ Pt , and X̂t ⪰Rt(X̂t+1), for all t ∈N. Further,

δ (X̂t ,Pt)

= δ (Rt ◦ · · · ◦Rt+T−2(Xt+T−1),Rt ◦ · · · ◦Rt+T−2(Pt+T−1))

≤
(

ζ

ζ + ε

)T−1
δ (Xt+T−1,Pt+T−1)≤

(
ζ

ζ + ε

)T−1
δ ,

by repeated application of Lemma 6. In particular, Theorem 3
applies, which yields the bound (42).

It remains to show that ζ <+∞ and ε > 0. First, observe
that for all Z ∈ Sq

++, and Y ∈ Rp×q with full row rank,

λmin(Y ZY ′) = min
|x|=1

x′Y ZY ′x

= min
|x|=1

(Y ′x)′Z(Y ′x)
|Y ′x|2

x′YY ′x
|x|2

≥λmin(Z)λmin(YY ′),

and λmax(Y ZY ′) = max|x|=1 x′Y ZY ′x ≤ λmax(Z)λmax(YY ′).
Further, λmax(Z−1) = 1

/
λmin(Z), and when p= q, λmin(Z)≤

λmin(Z +YY ′) and λmax(Z +YY ′) ≤ λmax(Z) + λmax(YY ′).
Using these inequalities, it follows from (43), and (40),
that ζ = supt∈N0

1
/

λmin(Q̃t + Q̃t Ã−1
t B̃t R̃−1

t B̃′
t(Ã

′
t)
−1Q̃t) ≤

1
/

inft∈N0 λmin(Q̃t), and

ε ≥ inf
t∈N0

λmin((R̃t+B̃′
t(Ã

′
t)
−1Q̃t Ã−1

t B̃t)
−1)

×λmin(B̃t B̃′
t)λmin(Ã−1

t (Ã′
t)
−1)

= inf
t∈N0

λmin(B̃t B̃′
t)
/(

λmax(R̃t+B̃′
t(Ã

′
t)
−1Q̃t Ã−1

t B̃t)λmax(Ã′
t Ãt)

)
≥ inf

t∈N0

λmin(B̃t B̃′
t)

λmax(Ã′
t Ãt)

1
/(

λmax(R̃t)+λmax(Q̃t)
λmax(B̃′

t B̃t)

λmin(Ãt Ã′
t)

)
.

As such, with Assumptions 1 and 4, ζ <+∞ and ε > 0.

Remark 6. In Theorem 4, ω , λ , δ , and ζ can be replaced
by any corresponding upper bounds for these quantities.
Similarly, ω , λ , and ε can be replaced by any corresponding
lower bounds.

Theorem 4 can be used to set the prediction horizon T ∈N
to achieve specified infinite-horizon performance degradation
with the terminal penalty sequence given by (37).

Corollary 1. Given T ∈N, and (Xt+T )t∈N0 as per (37), con-
sider the receding-horizon state-feedback control policy (18).
Given β ∈ R>0, the performance loss as defined in (23)
satisfies β (ξ )≤ β |ξ |2 for all initial states ξ ∈ Rn, if

T ≥

(
log

(
log
(

β ·λ ·ω
ω ·λ ·ω

+1
)1/δ

)/
log
(

ζ

ζ + ε

))
+1

with ω,ω,λ ,λ ,δ ,ζ ,ε ∈ R>0 as per (29), (30), (31), (35),
(41), and (43), using (X̂t+1)t∈N0 as per (38).

VII. CONCLUSION

A link is established between prediction horizon length
and the infinite-horizon performance loss of a receding-
horizon approximation of the optimal policy for a lifted
reformulation of (1). This is achieved via a strict contraction
property of the corresponding Riccati operator, under an

assumed uniform controllability and uniform observability
property of the dynamics and stage cost in the original
domain. Ongoing work is focused on extending the approach
to accommodate cross-terms in the stage cost, uncertainty
in the problem data, and constraints on the input and state
variables.
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