
Robust Model Reference Gaussian Process Regression:
Enhancing Adaptability through Domain Randomization

Hyuntae Kim

Abstract— Nonlinear data-driven control strategies, partic-
ularly Model Reference Gaussian Process Regression (MR-
GPR), have been effective in designing controllers directly
from system input/output data, bypassing the need for explicit
system modeling. This approach is advantageous for complex
nonlinear systems where traditional modeling methods may
be inadequate. MR-GPR employs Gaussian Process Regres-
sion to provide a non-parametric control method, enhancing
adaptability and performance. However, real-world applications
present challenges due to variability in system parameters,
such as ensuring robustness and consistent performance. To
address these challenges, this paper proposes a robust MR-GPR
controller incorporating domain randomization to improve
adaptability to varying operational conditions. This extension
aims to maintain stable performance across diverse settings,
mitigating the impact of parameter changes on control efficacy.

I. INTRODUCTION

In the field of control theory, the exploration and imple-
mentation of nonlinear data-driven control strategies have
become increasingly important. These approaches offer ad-
vanced mechanisms for handling complex systems, partic-
ularly when conventional modeling techniques are inade-
quate. Specifically, the Model Reference Gaussian Process
Regression (MR-GPR) controller [1], [2] is recognized for its
capability to handle nonlinear systems effectively. It enables
the direct use of system input/output data for controller
design, eliminating the need for explicit system modeling.
This method utilizes Gaussian Process Regression (GPR) [3],
[4] to provide a dynamic, non-parametric representation of
system behavior. It facilitates the incorporation of extensive
datasets and existing knowledge into the control scheme,
thereby improving the system’s operational reliability and
performance [4]–[7].

However, real-world applications of these control systems
reveal significant challenges, particularly when transitioning
from controlled or simulated environments. A core issue lies
in the variability of system parameters—such as changes
in mass or length—which can introduce discrepancies be-
tween the modeled behaviors and actual system dynamics.
These discrepancies can severely impact the controller’s
performance, leading to reduced accuracy or even insta-
bility. Traditional system identification-based control design
methodologies [8], [9] have encountered similar challenges,
underscoring their commonality across different approaches.

This work was supported by the grant from Hyundai Motor Company’s
R&D Division.

The author is with ASRI, Department of Electrical and Computer
Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul,
08826, Korea. Corresponding author: htkim@cdsl.kr

As a result, these models may face limitations when applied
beyond their initial training domain, risking performance
degradation or failure in the face of novel or unanticipated
parameter changes. This situation highlights the imperative
for control systems that are robust to parameter variations
not explicitly encountered during training.

Addressing this issue requires innovative approaches that
enhance a model’s ability to generalize from simulated train-
ing scenarios to real-world applications. Domain randomiza-
tion emerges as a key strategy in this context, involving train-
ing the model across a wide range of simulated conditions.
This approach aims to increase the model’s robustness and
flexibility, making it more adept at handling unforeseen sce-
narios in real-world deployments. By systematically varying
simulation parameters, including environmental conditions
and system dynamics, and observing a wider range of the
system’s past inputs and outputs, domain randomization
exposes the model to a comprehensive spectrum of potential
operational scenarios. This method has shown promising
results in several fields, including robotics and autonomous
systems, where real-world data collection may be challenging
or infeasible [10]–[12].

This paper presents a robust MR-GPR controller that
leverages domain randomization to effectively handle dis-
crepancies between the modeled system parameters used
during controller design and the actual parameters encoun-
tered in real-world experiments. By enriching the training
dataset with simulated instances of parameter variations, the
controller is crafted to ensure consistent performance and
stability under conditions where the system’s actual parame-
ters diverge from those anticipated during the design phase.
This approach introduces a method in nonlinear data-driven
control that is flexible and robust, enabling the control system
to perform effectively even when there is a discrepancy
between the system parameters used in design and those
encountered in actual operation.

The paper is structured as follows: Section II introduces
the problem setup, discussing a specific category of nonlinear
systems and establishing foundational assumptions. Section
III details the proposed methodology for enhancing the
robustness of the MR-GPR controller against variations in
system parameters through GPR. An illustrative example
demonstrating the efficacy of the robust MR-GPR controller
is presented in Section IV. The paper concludes with a
summary in Section V.

Notation: For column vectors a and b, [a; b] denotes
[aT , bT]T . For discrete-time vector sequences y(t) and z(t),

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 3341

we define a vector

z[k,k+T] := [z(k); z(k + 1); · · · ; z(k + T)],

and a set

{(y(t), z(t))}k+T
t=k

:= {(y(k), z(k)), · · · , (y(k + T), z(k + T))}.

II. PROBLEM FORMULATION

Consider a single-input single-output (SISO) nonlinear
discrete-time control-affine system characterized by a relative
degree one in the Byrnes-Isidori normal form [13]:

y(t+ 1) = f(λ, z(t), y(t)) + g(λ, z(t), y(t))u(t), (1a)
z(t+ 1) = h(λ, z(t), y(t)). (1b)

In this model, u(t) ∈ R represents the control input, z(t) ∈
Rn−1 denotes the internal state associated with the system’s
zero dynamics, λ ∈ Rj is a fixed but unknown parameter
of the system, and y(t) ∈ R is the observed output. It is
assumed that the functions f(·, ·, ·), g(·, ·, ·), and h(·, ·, ·)
are unknown but smooth, and similarly, the parameter λ is
unknown; the system is understood through its input/output
data.

To proceed with the controller design, we introduce the
following assumption regarding the system properties:

Assumption 1: The system (1) satisfies the following:
(a) There exists ḡ > 0 such that |g(λ, z, y)| ≤ ḡ and

g(λ, z, y) ̸= 0 for all [λ; z; y] ∈ Rn+j . Also, the system
dimension n and the global relative degree one are
known.

(b) The internal dynamics (1b) are input-to-state stable with
the input being y. □

Discretizing a continuous-time physical system generally
results in a discrete-time model with a relative degree of
one [14], suggesting the adaptability of the structure in
(1). We assume that the state z(t) is observable from past
input/output data, as formalized below.

Assumption 2: There exists a smooth mapping Oz : Rj ×
R2n−1 → Rn−1 such that

z(t) = Oz(λ, [y[t,t+n−1];u[t,t+n−2]])

for any input sequence u[t,t+n−2] and output sequence
y[t,t+n−1] of the system (1). □

Assumption 2 establishes the observability of the system’s
z dynamics, meaning that the state z(t) can be consistently
deduced from past input/output data, given the parameter λ.

Additionally, we consider a stable target model expressed
as:

yr(t+ 1) = fr(yr(t)) ∈ R, (2)

assuming that

yr(t+ 1) = fr(yr(t)) + η(t)

maintains stability in response to inputs, with η(t) treated as
an external input.

To synchronize the controlled system (1) with the target
model (2), the control input needed is:

u(t) =
fr(y(t))− f(λ, z(t), y(t))

g(λ, z(t), y(t))
. (3)

However, applying the control law (3) requires not only
knowledge of the functions f(·, ·, ·) and g(·, ·, ·), but also
the state z(t) and, importantly, the parameter λ.

Previous work [1] has shown that it’s possible to design
a controller akin to (3) by relying solely on the input/output
data of system (1) for a fixed λ. This suggests that the
controller can function correctly for a predetermined λ
using the acquired input/output data. However, in practical
applications, the system parameters may vary, and the system
from which data was obtained may differ from the actual
system in operation due to changes in physical parameters.

This highlights the need for a control strategy that is
robust against variations in system parameters not accounted
for during the initial data collection phase. Therefore, our
objective is to establish a method for designing a controller
that maintains its effectiveness even when λ differs from the
values used to obtain the initial dataset. This underscores the
importance of adaptability and robustness in control systems
to handle real-world uncertainties and variations in system
dynamics.

To facilitate the estimation of the system parameter, we
introduce the following assumption:

Assumption 3: It is assumed that there exists a smooth
mapping Oλ : R2m−1 → Rj that determines the parameter
λ as

λ = Oλ([y[t,t+m−1];u[t,t+m−2]])

for any pair of input u[t,t+m−2] and output y[t,t+m−1] of the
system (1). An upper limit for m, denoted as m̄, is known.

□
Unlike Assumption 2, which relates to state observability,

Assumption 3 allows us to infer that λ is time-invariant and
can be determined from past input/output data. While this
assumption facilitates the estimation of λ, it may impose
stringent conditions, especially when input/output data lead
to undefined values for λ.

Remark 1: Consider a simple first-order physical model
where the next output y+ is defined by the equation y+ =
λu. In this scenario, λ can be explicitly derived as λ =
y+/u. However, this direct method encounters a fundamental
challenge if u becomes zero, leading to an indeterminate
form for Oλ. A practical approach involves ensuring that u
does not equal zero, possibly by adding a small perturbation
to the input. This maintains the definability and smoothness
of Oλ, even when direct computation would fail. □

It is important to note that the exact form of Oλ need not
be known. This paper aims to demonstrate that it’s feasible to
design a controller operating as in (3) using only the system’s
input/output data from (1), even for λ values not previously
encountered.

3342

III. MAIN RESULT

This section introduces a data-driven controller designed
to emulate the control input suggested by (3) through the
application of GPR, trained exclusively on the input/output
data from the system (1).

First, we show that the system’s state and parameter, z(t)
and λ, can be inferred from its past input/output data. Let
n̄ := max(n, m̄), and define:

η0(t) := [y[t−n+1,t−1]; u[t−n+1,t−1]] ∈ R2(n−1),

ζ0(t) := [y[t−n̄+1,t−1]; u[t−n̄+1,t−1]] ∈ R2(n̄−1),

ζ1(t) := [ζ0(t); y(t)] ∈ R2n̄−1,

ξ(t) := [ζ1(t); y(t+ 1)] ∈ R2n̄,

where these vectors represent segments of an arbitrary in-
put/output trajectory of the system (1), and E denotes the set
containing all possible instances of ξ(t).

Lemma 1: Under Assumptions 2 and 3, there exist smooth
functions θλ : R2n̄−1×R → Rj and θz : R2n̄−1×R → Rn−1

such that the parameter λ and the state z(t) of the system
described by (1) can be determined as follows:

λ = θλ(ζ0(t), y(t)),

z(t) = θz(ζ0(t), y(t)),

applicable at every time step t.
Proof: We start by applying Assumption 2, which

provides a smooth mapping Oz:

z(t− n+ 1) = Oz(λ, [y[t−n+1,t];u[t−n+1,t−1]]),

linking λ to the input/output data and deducing the system’s
previous state, z(t− n+ 1).

Subsequently, the system dynamics, represented by the
function h, are recursively applied to determine the current
state z(t). This process unveils a dependency on λ and the
system’s historical input/output:

z(t) = h(λ, z(t− 1), y(t− 1))

...
= h(· · · (h(λ,Oλ([y[t−n+1,t];u[t−n+1,t−1]]),

y(t− n+ 1)), · · ·), y(t− 1))

=: θ(λ, η0(t), y(t)).

Incorporating Assumption 3, z(t) is expressed as:

z(t) = θ(λ, η0(t), y(t))

= θ(Oλ([y[t,t+m−1];u[t,t+m−2]]), η0(t), y(t))

= θ(Oλ([y[t−m+1,t];u[t−m+1,t−1]]), η0(t), y(t))

=: θz(ζ0(t), y(t)).

Furthermore, leveraging Assumption 3, λ is deduced from
the input/output sequence:

λ = Oλ([y[t,t+m−1];u[t,t+m−2]])

= Oλ([y[t−m+1,t];u[t−m+1,t−1]])

=: θλ(ζ0(t), y(t)),

thereby aligning λ and z(t) with their respective mappings,
θλ and θz , derived directly from the system’s input/output
data.

Let us define the function c : R2n̄ → R as follows:

c([ζ1(t); s]) :=
s− f(θλ(ζ0(t), y(t)), θz(ζ0(t), y(t)), y(t))

g(θλ(ζ0(t), y(t)), θz(ζ0(t), y(t)), y(t))
.

This function facilitates the generation of the ideal control
input as outlined in (3), specifically:

u(t) = c([ζ1(t); fr(y(t))]), (4)

where C denotes the set encompassing all feasible instances
of [ζ1(t); fr(y(t))], clearly a subset of E , i.e., C ⊂ E .

Implementing the ideal control strategy (3) through (4)
follows the principle of output feedback control, relying
entirely on the system’s input/output data. A challenge arises
from the need to determine the functions f(·), g(·), θλ(·),
and θz(·) to construct (4). To overcome this, GPR is used
to directly identify the function c(·). This approach treats
[ζ1(t); y(t + 1)] as the input and u(t) as the output for the
function c, utilizing the relationship in (1a) where:

u(t) = c([ζ1(t); y(t+ 1)]).

To implement the proposed strategy, input/output data
from experiments conducted under varying conditions of the
system parameter λ are first collected as follows:

{(ui
d(t), y

i
d(t))}

Ni
t=1 (5)

for each experiment i, where Ni > n̄ represents the number
of input/output data points for the i-th experiment. The
subscript d denotes the sample data collected during the
experiment, and i indexes the experiments, each possibly
associated with a different λ.

The data from each experiment i are then rearranged to
form the training input and output as:

ξid(t+ n̄− 1)

= [ζi1d(t+ n̄− 1); yid(t+ n̄)]

= [yid[t, t+ n̄− 2];ui
d[t, t+ n̄− 2]; yid[t+ n̄− 1, t+ n̄]],

with the corresponding training output being

ui
d(t+ n̄− 1),

thereby constituting the training dataset for the i-th experi-
ment:

Di :=
{
(ξid(t+ n̄− 1), ui

d(t+ n̄− 1))
}Ni−n̄

t=1
.

To synthesize the insights gained across different λ set-
tings, the datasets from all experiments are combined into a
single comprehensive dataset:

D :=

S⋃
i=1

Di, (6)

where S is the total number of experiments conducted under
varying parameters λ. Also, N :=

∑S
i=1(Ni− n̄) is the total

number of input/output data.

3343

A Gaussian Process (GP) model is defined by its mean
function m : E → R and a covariance function k : E ×
E → R. For identifying the control function c(·), our GP
model utilizes a zero mean function and adopts the squared
exponential (SE) kernel as its covariance function:

k(ξ, ξ′) = σ2
f exp

(
−1

2
(ξ − ξ′)TL−1(ξ − ξ′)

)
, (7)

where σf and L = diag(l21, . . . , l
2
2n̄) serve as hyperparame-

ters. These hyperparameters are optimized using marginal
likelihood optimization, a method grounded in Bayesian
principles as detailed in [3, Chapter 5].

In order to apply GPR to the problem of control function
c(·), we introduce the following assumption regarding the
control mappings:

Assumption 4: It is assumed that the control function
c(·) resides within a reproducing kernel Hilbert space Hk,
induced by a corresponding kernel function k [15].

Upon preparing the training dataset D as specified in (6),
the GP model provides the posterior mean and variance for
any test input ξ within E :

µD(ξ) = kT (ξ)K−1u, (8)

σD(ξ) = k(ξ, ξ)− kT (ξ)K−1k(ξ), (9)

respectively, where

u := [u1
d(n̄); · · · ;uS

d (NS − 1)],

k(ξ) := [k(ξ1d(n̄), ξ); · · · ; k(ξSd (NS − 1), ξ)],

K :=

 k(ξ1d(n̄), ξ
1
d(n̄)) · · · k(ξ1d(n̄), ξ

S
d (NS − 1))

...
. . .

...
k(ξSd (NS − 1), ξ1d(n̄)) · · · k(ξSd (NS − 1), ξSd (NS − 1))

 .

It’s important to note that these posterior functions are
precisely defined unless the training inputs include identical
elements, a situation that is rare in practice [16, Remark 3.3].

The posterior mean µD(·) effectively estimates the target
control function c(·) using solely the system’s input/output
data, whereas the posterior variance σD(·) reflects the esti-
mation’s confidence level.

The MR-GPR controller is formulated using the posterior
mean µD as follows:

u(t) = µD([ζ1(t); fr(y(t))])

= µD([y[t−n̄+1,t−1];u[t−n̄+1,t−1]; y(t); fr(y(t))])
(10)

effectuating an output feedback control mechanism.
In anticipation of our principal theorem, we establish

the groundwork that elucidates the MR-GPR controller’s
approach to approximating the desired state feedback con-
trol. This approximation critically relies on the differential
between the GPR-derived function µD(·) and the target
control function c(·). Utilizing the SE kernel, GPR provides
a mechanism to assess this discrepancy through the posterior
variance σD(·). The effectiveness of the MR-GPR controller
is directly proportional to the proximity of µD(·) to c(·),
with the potential for a bounded difference:

|µD(ξ)− c(ξ)| ≤ β
√

|σD(ξ)|, ∀ξ ∈ E ,

where β represents a constant multiplier. Studies [2], [16,
Corollary 3.11], and [17, Corollary 3.2] suggest that a
strategically curated dataset D can minimize σD(·), thereby
enhancing the alignment of µD(·) with the theoretical con-
trol function c(·), underscoring the significance of dataset
selection in achieving optimal controller performance.

The forthcoming theorem provides a detailed analysis of
the system’s stability and performance when governed by the
MR-GPR controller (10).

Theorem 1: Given Assumptions 1, 2, 3, and 4, a class-K
function γ exists, ensuring that for a dataset D meeting the
condition

|µD([ζ1; s])− c([ζ1; s])| < δ, ∀[ζ1; s] ∈ C, (11)

with a specified δ > 0, the ensuing closed-loop system (1),
under the influence of the MR-GPR controller (10), secures

lim sup
t→∞

∥[y(t); z(t)]∥ < γ(δ).

The proof follows a methodology similar to that employed
in [1], and is thus not included here for brevity.

IV. ILLUSTRATIVE EXAMPLE

In this section, we present an example to illustrate the ef-
fectiveness of the data-driven controller we propose. For ease
of expression, the notation yt might occasionally represent
y(t) throughout this discussion.

Consider a SISO system as described in prior work [1]:

y(t+ 1) = λy2(t) + z(t) + u(t), (12a)
z(t+ 1) = 0.5 sin(y(t))z(t), (12b)

where λ, u, y, z belong to R. The system, with dimension
n = 2 and a known global relative degree of one, satisfies
Assumption 1(a). Given that the internal dynamics from
y to z are input-to-state stable, the system also meets
the conditions of Assumption 1(b). Moreover, the unique
determination of z(t) as

z(t) = y(t+ 1)− λy2(t)− u(t)

= Oz(λ, [y[t,t+1];u(t)]).

ensures compliance with Assumption 2. Additionally, the
condition specified in Assumption 3 is met through the
expression

λ =
yt+2 − 0.5 sin(yt)(yt+1 − ut)− ut+1

y2t+1 − 0.5 sin(yt)y2t
,

assuming the input noise remains negligibly small. This leads
to the determination that m̄ = 3, thereby setting n̄ = 3.

Following this, the definitions for θλ and θz are derived

3344

as

λ =
yt+2 − 0.5 sin(yt)(yt+1 − ut)− ut+1

y2t+1 − 0.5 sin(yt)y2t

=
yt − 0.5 sin(yt−2)(yt−1 − ut−2)− ut−1

y2t−1 − 0.5 sin(yt−2)y2t−2

= θλ (ζ0(t), y(t)) ,

z(t) = 0.5 sin(y(t− 1))z(t− 1)

= 0.5 sin(y(t− 1))
(
y(t)− λy2(t− 1)− u(t− 1)

)
= θz (ζ0(t), y(t))

as indicated in Lemma 1.
Noting that

c([ζ1(t); y(t+ 1)])

= y(t+ 1)− θλ (ζ0(t), y(t)) y
2(t)− θz (ζ0(t), y(t)) ,

we prepare the training dataset D =
⋃S

i=1 Di, where Di

includes observations from tests with random parameter λ ∈
[0.1, 1] across Ni = 5 periods for every i. For each trial, the
dataset

ξd(t+ 2) =
[
yd[t,t+1];ud[t,t+1]; yd[t+2,t+3]

]
is collected as the training input, and

ud(t+ 2)

is used as the training output for t = 1, 2. Furthermore,
in alignment with methodologies from the paper [1], we
collect data under random initial conditions yd(0), zd(0) ∈
[−1.2, 1.2] and random inputs ud(t) ∈ [−1.2, 1.2]. With
D, we adjust the hyperparameters in (7) by optimizing the
marginal likelihood using the GPML toolbox [18]. A stable
reference model is chosen as

yr(t+ 1) = fr(yr(t)) = −0.4yr(t),

ensuring input-to-state stability with

yr(t+ 1) = −0.4yr(t) + η(t).

The proposed output feedback controller is thus defined as

u(t) = µD([ζ1(t);−0.4y(t)]). (13)

For all experiments, the initial conditions are set as:

(y(0), z(0))

∈ {(0.4, 1.1), (0.4,−1.1), (−0.4, 1.1), (−0.4,−1.1)},

with zero input u(0) = u(1) = 0 applied initially. The real
value of λ is set as λ = 1.

Figures 1 and 2 illustrate the performance of the proposed
controller, designed with training data for S = 8 as

λ = {0.2, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13}

and derived from 250 and 500 initial conditions, respec-
tively. The controllers’ performance is compared to an ideal
controller. Both figures show that the MR-GPR controller
ensures asymptotic stabilization across a variety of initial

0 5 10 15 20 25

0

1

2

Ideal

MR-GPR

0 5 10 15 20 25
-1

0

1

Ideal

MR-GPR

0 5 10 15 20 25
-1

0

1

2

Ideal

MR-GPR

0 5 10 15 20 25
-1

0

1 Ideal

MR-GPR

Fig. 1. Performance comparison via output trajectories of the system (12)
between the MR-GPR controller µD (black line) and the ideal controller c
(green line), based on a dataset generated from 250 initial conditions with
S = 8 distinct λ values.

conditions. Notably, Figure 2 reveals improved control per-
formance due to a more extensive dataset compared to
Figure 1. It is crucial to note that designing the MR-GPR
controller with training data based on a single λ value from
the set results in unstable system behavior, emphasizing the
importance of including a diverse set of λ values in the
training phase to enhance stability.

Figure 3 expands the experiment by using only four λ
values:

λ = {0.2, 0.19, 0.18, 0.17},

while maintaining a dataset size consistent with that of
Figure 2, derived from 1000 initial conditions. The com-
parison of the error observed in Figure 2 with that in
Figure 3 highlights the advantages of employing a wider
range of λ values, in accordance with the principles of
domain randomization.

Furthermore, Figure 4 explores the effects of a broader
range of λ values:

λ = {0.2, 0.18, 0.16, 0.14, 0.12, 0.1, 0.08, 0.06},

demonstrating that expanding the variety of λ values within
the dataset can further improve performance. This indicates
that incorporating a broader spectrum of system parameters
during training significantly enhances the MR-GPR con-
troller’s robustness and effectiveness.

V. CONCLUSION

This paper introduced a robust MR-GPR controller de-
signed to use domain randomization for improving control
performance across varied operational conditions. Unlike
traditional approaches that rely on explicit system modeling
or system identification, our method utilizes input/output data
through GPR to design the controller. This non-parametric
approach provides adaptability and improved performance by
incorporating a wide range of system behaviors simulated un-
der different conditions, thereby increasing the applicability
of the controller to real-world scenarios.

A key aspect of this work is the integration of do-
main randomization into the MR-GPR controller’s training

3345

0 5 10 15 20 25

0

1

2

Ideal

MR-GPR

0 5 10 15 20 25

-1

0

1

Ideal

MR-GPR

0 5 10 15 20 25

-1

0

1

2

Ideal

MR-GPR

0 5 10 15 20 25

-1

0

1
Ideal

MR-GPR

Fig. 2. Performance comparison via output trajectories of the system (12)
between the MR-GPR controller µD (black line) and the ideal controller c
(green line), based on a dataset generated from 500 initial conditions with
S = 8 distinct λ values.

0 5 10 15 20 25

0

1

2

Ideal

MR-GPR

0 5 10 15 20 25
-1

0

1

Ideal

MR-GPR

0 5 10 15 20 25

-1

0

1

2
Ideal

MR-GPR

0 5 10 15 20 25
-1

0

1

2

Ideal

MR-GPR

Fig. 3. Performance comparison via output trajectories of the system (12)
between the MR-GPR controller µD (black line) and the ideal controller c
(green line), using a reduced set of λ values while maintaining the dataset
size equivalent to that of Figure 2.

process, addressing the challenge of parameter variability
in nonlinear systems. By systematically varying simulation
parameters and expanding the dataset to include a broad
spectrum of system inputs and outputs, we demonstrated that
the controller maintains stability and performance even in
operational conditions not explicitly included during train-
ing. The illustrative example confirmed that the proposed
MR-GPR controller achieves asymptotic stabilization and
shows improved control performance as the training dataset
increases, highlighting the importance of a comprehensive
dataset in managing real-world uncertainties.

The results suggest that the MR-GPR controller’s ability to
adapt to varying conditions makes it suitable for applications
in fields where robustness to parameter variations is critical.
This approach contributes to advancing data-driven control
strategies by offering a flexible and effective method for man-
aging complex nonlinear systems across diverse operational
environments.

REFERENCES

[1] H. Kim, H. Chang, and H. Shim, “Model Reference Gaussian Process
Regression: Data-Driven Output Feedback Controller,” in Proceedings
of the American Control Conference, pp. 955-960, 2023.

0 5 10 15 20 25

0

1

2

Ideal

MR-GPR

0 5 10 15 20 25
-1

0

1

Ideal

MR-GPR

0 5 10 15 20 25
-1

0

1

2

Ideal

MR-GPR

0 5 10 15 20 25
-1

0

1
Ideal

MR-GPR

Fig. 4. Performance comparison via output trajectories of the system (12)
between the MR-GPR controller µD (black line) and the ideal controller c
(green line), employing an expanded λ range compared to that in Figure 2.

[2] H. Kim and H. Chang, “Model Reference Gaussian Process Regres-
sion: Data-Driven State Feedback Controller,” IEEE Access, vol. 11,
pp. 134374–134381, 2023.

[3] C. K. I. Williams and C. E. Rasmussen, Gaussian Processes for
Machine Learning, Cambridge, MA: MIT Press, 2006.

[4] J. Kocijan, Modelling and Control of Dynamic Systems Using Gaus-
sian Process Models, Cham: Springer International Publishing, 2016.

[5] R. Murray-Smith, D. Sbarbaro, C. E. Rasmussen, and A. Girard,
“Adaptive, Cautious, Predictive Control with Gaussian Process Priors,”
IFAC Proceedings, vol. 36, no. 16, pp. 1155-1160, 2003.

[6] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard,
“Gaussian Process Model Based Predictive Control,” in Proceedings
of the American Control Conference, pp. 2214-2219, 2004.

[7] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian Processes
for Data-Efficient Learning in Robotics and Control,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 37, no. 2,
pp. 408-423, 2013.

[8] A. Mauroy, Y. Susuki, and I. Mezić, Koopman Operator in Systems
and Control, Springer, 2020.

[9] L. Ljung, System Identification: Theory for the User, Upper Saddle
River, NJ: PTR Prentice Hall, 1999.

[10] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain Randomization for Transferring Deep Neural Networks from
Simulation to the Real World,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 23-30, 2017.

[11] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-
to-Real Transfer of Robotic Control with Dynamics Randomization,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3803-3810, 2018.

[12] F. Muratore, F. Treede, M. Gienger, and J. Peters, “Domain Random-
ization for Simulation-Based Policy Optimization with Transferability
Assessment,” in Conference on Robot Learning, pp. 700-713, 2018.

[13] A. Isidori, Nonlinear Control Systems, Springer Berlin Heidelberg,
1995.

[14] J. I. Yuz and G. C. Goodwin, Sampled-Data Models for Linear and
Nonlinear Systems, London: Springer, 2014.

[15] N. Aronszajn, “Theory of Reproducing Kernels,” Transactions of the
American Mathematical Society, vol. 68, no. 3, pp. 337-404, 1950.

[16] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur,
“Gaussian Processes and Kernel Methods: A Review on Connec-
tions and Equivalences,” 2018. http://arxiv.org/abs/1807.
02582

[17] A. Lederer, J. Umlauft, and S. Hirche, “Posterior Variance Analysis
of Gaussian Processes with Application to Average Learning Curves,”
2019. http://arxiv.org/abs/1906.01404

[18] C. E. Rasmussen and H. Nickisch, “The GPML Toolbox Version 4.0,”
Technical Documentation, 2016.

3346

