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Abstract— We consider two “kidnapped” unicycle vehicles
released in an unknown environment. Each one is in sight
of a ranging sensor (anchor) and has to choose a trajectory
that enables it to localise itself relying only on its anchor
measurements, on its odometry and on the information (state
and mutual distance) that it can exchange with the other vehicle
when they are sufficiently close. We propose a motion planning
algorithm that solves the simultaneous localisation problem in
this challenging scenario.

Index Terms— Nonholonomic systems; Autonomous vehicles;
Robotics

I. INTRODUCTION

Mobile robots are constantly increasing their capabilities
to operate in different scenarios and to execute complex
tasks. For many of their applications, robots are required
to navigate across partially unknown and dynamic environ-
ments, for which it is essential to know their pose. Pose
estimation algorithms can rely on different sensors to collect
information and reduce the localisation uncertainty. One of
the most robust and cheapest sensor used in mobile robotics
is the so-called ranging sensor, i.e. a sensor measuring the
distance between the robot and a fixed point in the space.
Different techniques can be used to reconstruct this informa-
tion from wireless emitters, such as Wi-Fi fingerprinting [1],
Radio Frequency IDentification (RFID) [2], Ultra-Wide Band
(UWB) [3]. These techniques are used in combination with
a variety of passive tags or active sensors placed in the
environment in known locations. In the rest of the paper, we
will refer to these devices by the terms anchors, landmarks
or markers. Because of the remarkable costs of deploying
and maintaining the anchors, it is imperative to explore the
minimal localisation abilities of a mobile robot when the
deployed infrastructure is very lean. In our past work [4],
[5], we have studied the problem from the perspective of
a single agent that travels across an unknown environment
and “occasionally” comes in sight of one anchor. In this
paper, we take the first steps toward the extension of these
results to a multi-robot system, in which the agents collect
information from their anchors, and are themselves equipped
with a “mobile” anchor that allows them to measure their
mutual distance when they meet. We consider the challenging
scenario in which two “kidnapped” agents, each one being
within the range of an anchor but completely unaware of
their position and orientation, need to develop a navigation
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strategy to localise themselves when they meet. The main
points made in this paper are twofold: 1. since each of
the vehicles can rely only on a limited amount of informa-
tion, i.e. measurements collected from its reference anchor,
which are not sufficient to estimate the current position and
orientation of the vehicle, the two vehicles need to meet
and collect relative measurements in order to achieve global
constructibility; 2. each vehicle can plan its next manoeuvres
by simply relying on the (limited) information available at
each time step.

Related work: Since ranging sensors are one of the most
popular and widely used sensors in mobile robotics, due to
their limited cost, observability analyses and active trajectory
planning techniques have been developed in the technical
literature. Cedervall et al. [6] present an active control
technique, whereby the vehicle estimates its state. With the
same rationale, Salaris et al. [7] propose a perception-aware
control strategy maximising for local constructibility (see
also [8]). These ideas are extended to multiagent systems
in [9], where the vehicles use mutual range measurements
to localise themselves in the environment. Range–based
information have been used in [10], [11] to maximise ob-
servability (measured by the Fisher Information Matrix and
by the Observability Matrix, respectively), while Mandić et
al. [12] combine observability maximisation with the leader-
follower idea. Active sensing techniques have also been used
in multiagent system to improve the localisation estimate of
the agents of the system itself, relying on bearing [13] or on
ranging data [14].

The papers cited above deal with local properties based
on the Gramians, the Fisher Information Matrix or on the
Observability Matrix. Instead, we consider global observ-
ability properties and a peer-to-peer framework in which all
the agents have the same role.

Paper contributions: We consider an environment
equipped with 2 fixed-frame range sensors, where 2 unicycle
vehicles are free to move. Each vehicle is completely un-
aware of its initial position and orientation and has to plan
its trajectory to reconstruct its state only relying on the mea-
surements from its “reference” anchor, on the manoeuvres
executed, and on the mutual measurements and information
exchanged with the other vehicle, available only when they
come sufficiently close to each other. We propose a control
strategy, based on three phases, allowing the two vehicles to
avoid indistinguishability. In the first phase the robots execute
some manoeuvres to extract the maximum information from
the anchors. In the second phase, they follow circular trajec-
tories, which (under appropriate assumptions) enable them to
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meet. The third phase consists of a sequence of manoeuvres
that enables the vehicles to rule out the remaining ambiguity.

II. BACKGROUND AND PROBLEM FORMULATION

We consider a pair of vehicles, denoted by the superscripts
a and b, described by the unicycle kinematic model, whose
state consists of their coordinates x, y in the world reference
frame 〈W 〉, and of their heading θ with respect to a reference
axis. Their dynamics is described in discrete-time as in [15]

xk+1 = xk+AkCk, yk+1 = yk+AkSk, θk+1 = θk+ωkTs,
(1a)

with Ak = 2 vkωk
sin
(
Ts

2 ωk
)

(where limωk→0Ak = vkTs),
Ck = cos

(
θk + Ts

2 ωk
)

and Sk = sin
(
θk + Ts

2 ωk
)
. The

control inputs vk and ωk represent the forward and angular
velocity respectively, while the subscript k denotes the k-
th time instant kTs, while Ts is the sampling period. Each
vehicle is equipped with a range sensor with sensing range R,
measuring its distance from its reference fixed-frame land-
mark Mi = [Xi, Yi]

>, i = 1, 2. Without loss of generality,
we consider M1 = [0; 0]>, and M2 = [D; 0]>, with D > 0.
Moreover, the vehicles can measure their relative distance
whenever they come sufficiently close (within R) to each
other. Therefore, the measurement model for the robots is

zak = [ρ2
k,1; ρ2

k]>, zbk = [ρ2
k,2; ρ2

k]>, (1b)

with ρak
2 = (xak − X1)2 + (yak − Y1)2 if ρak ≤ R, ρbk

2
=

(xbk −X2)2 + (ybk − Y2)2 if ρbk ≤ R, and with ρ2
k = (xak −

xbk)2 + (yak − ybk)2 if ρk ≤ R. For the sake of clarity, we
introduce here a new notation to denote the reference frame
that will be used in the forthcoming.

Notation: We denote the position of the vehicle a in
the world reference frame 〈W 〉 as qak = [xak, y

a
k ]> and its

position sequence Qa = {qak}. Furthermore, we define by
〈a(M1)〉 the reference frame centred in M1 and with the
x-axis aligned with one point of the trajectory followed by
vehicle a that will be specified from time to time; the state
of the vehicle a in 〈a(M1)〉 will be denoted by pak. The same
definitions apply to vehicle b.

Remark 1: The knowledge of two positions qak1 and qak2 ,
k1 < k2, and the knowledge of vk and ωk, ∀k ∈ [k1, k2]
together with the discrete dynamics (1) determine uniquely
θak , ∀k ∈ [k1, k2]. Hence, the localisation problem can be
recast into the reconstruction of two positions qak1 and qak2 .

A. Theoretical background

We deal with the localisation of the vehicles in the world
reference frame 〈W 〉, by relying on the control inputs vk, ωk
and on the measurement outputs zak , z

b
k over a given time

interval [k0, kf ]. This task is associated with the concept of
u-indistinguishability, introduced in the following definition.

Definition 1: Given a nonlinear discrete-time system
sk+1 = f(sk, uk), zk = h(sk), a time interval K = [k0, kf ],
and an admissible control input history u?k, k ∈ K, two states
s0 and s̄0 are said to be u?-indistinguishable if the output
histories zk and z̄k, k ∈ K of the trajectories satisfying the
initial conditions s0 and s̄0 respectively, are identical.

To compact the notation, in the rest of the paper, we will
refer to indistinguishable trajectories as trajectories having
u-indistinguishable initial conditions.

The indistinguishability properties of the trajectories fol-
lowed by a vehicle depend on the number of measurements
that are collected, on their distribution among different fixed-
frame landmarks, and on the manoeuvres executed by the ve-
hicle itself. We recall here the analysis of indistinguishability
of some trajectories followed by a vehicle with respect to an
anchor, which will prove useful in the following analyses.

1) Single anchor: In our previous work [5], we have anal-
ysed the situation with a vehicle sensed by a single anchor,
whose results are summarised in the following proposition:

Proposition 1: Given the vehicle a, its position sequence
Qa = {qak}, k = 0, . . . , N − 1, and the set of measurements
ρak collected from anchor M1, a position sequence Q̄a is u-
indistinguishable from Qa if: (1) For any N , Q̄a is a rotation
of Qa about the anchor; (2) For N = 2 (or for N > 2
collinear measurement points), Q̄a is symmetric to Qa with
respect to an axis passing through the anchor.
By the analysis in [5], Proposition 1 collects the sufficient
and necessary conditions for the case N ≥ 2. In light of it,
any measurement beyond the third, provided that the mea-
surement points are noncollinear, adds no further information
to the state of the vehicle. Indeed, the vehicle is aware of its
distance from the anchor and of its orientation with respect to
the line joining the anchor with the vehicle itself. Therefore,
we consider this to be the condition where the vehicle has
extracted the maximum amount of information from one
anchor. On the other hand, when only 2 measurements are
collected, the vehicle can compute a distance-orientation pair
for each one of the two axial symmetric trajectories. This
result will prove useful in the analysis with more anchors,
presented hereafter.

2) More anchors: To compact the notation, we list the
number of measurements collected from each anchor, divided
by a “+” sign. With a 3 + 1 setting, i.e. 3 measurements
from one anchor and 1 from another, the vehicle a is aware
of its distance from the first anchor at any time. Thus, qa3 ,
related to the second anchor, lies on an intersection between
the circles centred in the two anchors, hence defining two
indistinguishable sequences Q̄a and Qa. With the same ratio-
nale, 2 measurements from the first anchor yield 2 potential
distances from it, and thus a 2+1 setting yields a maximum
number of 4 indistinguishable trajectories. When the indis-
tinguishable trajectories are known, the vehicle can explicitly
design a further manoeuvre to obtain a measurement ruling
out the ambiguities. This procedure will be detailed out more
in our specific case at the end of Section III.

B. Problem statement

Given the position of the two anchors M1 and M2 in 〈W 〉,
we aim at designing the manoeuvres of the two vehicles
that solve the localisation problem. Furthermore, we will
use the measurements collected along the trajectories and
the sequence of manoeuvres executed by the vehicles to
reconstruct their trajectories in 〈W 〉.

6131



M1 M2

Phase 1 Phase 2 Phase 3Phase 1 Phase 2 Phase 3

qb0qa0

Fig. 1. Trajectory planning algorithm: the paths of the two vehicles
are represented in blue and red respectively, while the three phases are
highlighted with different colours. The black dashed lines represent the
sensing range of the anchors, while coloured dashed lines represent the
“orbiting” distance of the two vehicles, which will be defined in phase 2.

III. TRAJECTORY PLANNING ALGORITHM

The two vehicles a and b start from unknown initial
positions qa0 and qb0 in the range of the respective anchor.
Then, each vehicle implements its perception-aware trajec-
tory planning algorithm to meet the other agent and share the
collected information in order to simultaneously localise the
agents. The planning algorithm comprises three main phases:
(1) collecting the largest amount of information by the
reference anchor, (2) meeting the other vehicle by “orbiting”
about the anchors, (3) designing the last manoeuvres to
avoid indistinguishability. The three phases are presented in
Figure 1, and are described separately in the next sections.

A. Phase 1: Fixed-frame marker

In this phase, highlighted in green in Figure 1, the vehicles
are far away from each other and cannot communicate or
exchange information, thus they have to plan their trajectory
separately. Without loss of generality, we will analyse vehicle
a, dropping the superscript a for readability. At the initial
time, the vehicle collects its distance ρ0 from the anchor
and has to determine v0 and ω0 to the second measurement
point. To cope with a potential measurement noise, making
two near points be sensed as a unique point, we plan the first
manoeuvre to maximise the distance between q0 and q1, by
maximising A0 in (1), i.e., v0 = vmax and ω0 = 0. Since the
vehicle is not aware of its position in 〈W 〉, it may or may
not collect ρ1 at k = 1. The two cases are treated separately.

1) ρ1 is collected after the first manoeuvre: If the vehicle
remains in the sensing range of the anchor and collects the
measurement ρ1, it can now build two position sequences,
Q and Q̄, compliant with the measurements and with the
manoeuvres in its local reference frame 〈a(M1)〉: p0 =
[ρ0, 0]

>, and p1 = [ρ0 +A0 cosα,±A0 sinα]
>
, with

α = arccos
(
ρ21−ρ

2
0−A

2
0

2ρ0A0

)
, (2)

yielding ‖p0 − p1‖ = A0, and ‖p1 −M1‖ = ρ1. From p1,
the vehicle has to plan the next manoeuvre (v1, ω1). By the
definition of p1 and by applying the controls, we can compute
the distance from the anchor the robot will reach in p2, i.e.

d2 = ∆2 + 2ρ0A1 cos(±α+ δ1), (3)

where δ1 = ω1Ts/2 and ∆2 = ρ2
0+A2

0+A2
1+2A0A1 cos δ1+

2ρ0A0 cosα, which yields two solutions, say d+ and d−. By
Proposition 1, any pair (v1, ω1), such that v1 6= 0, ω1 6= jπ,
j ∈ Z, is suitable to get the maximum amount of information.
We design the pair (v1, ω1) maximising the difference∣∣d2

+ − d2
−
∣∣ = 8ρ0 sinα

v1

ω1
sin2

(
Ts
2
ω1

)
.

This way, we maximise the intensity of a potential measure-
ment noise that is necessary to “confuse” the two predicted
distances with each other, thus increasing the robustness of
this process to measurement noise. More precisely, we define

max
v1,ω1

v1

ω1
sin2

(
Ts
2
ω1

)
, s.t. |v1| ≤ vmax, |ω1| ≤ ωmax, (4)

thus the optimal value of ω1 can be found by computing
the partial derivative of the cost function with respect to
ω1 and setting it to 0. This procedure yields cos(Tsω1) +
Tsω1 sin(Tsω1) − 1 = 0, whose solution cannot be found
in closed form, but numerically yields ω1 = 2.3311/Ts.
Since the optimisation problem in (4) is constrained, the
optimal value for ω1 is min{2.3311/Ts, ωmax}. Although
the forward velocity solving (4) is v1 = vmax, we have no
guarantee that at least one of the two measurement points
will fall in the sensing range of the anchor. However, by
using (3), we can enforce that min{d+, d−}2 ≤ R2 by
choosing v1 as in (5). Hence, if the vehicle falls outside the
sensing range, i.e., no measurement is collected, a virtual
measurement ρ2 = max{d−, d+} is collected. Therefore, by
Proposition 1, with three non-collinear measurement points,
the vehicle collects the largest amount of information from
its reference anchor.

2) ρ1 is not collected after the first manoeuvre: To collect
the second measurement, the vehicle turns on the spot by
π/2, i.e., v1 = 0 and ω1 = π

2Ts
, and starts moving on a

circle with centre q0 and radius A0, i.e., vk/ωk = A0, with
k = 2, . . . , kρ−1, where kρ is the time instant when the mea-
surement is collected. Since q0 is within the sensing range
of the anchor and A0 < R, an arc of the circular trajectory
of the vehicle, with amplitude 2π − 2η, will be inside the
sensing range, leading the vehicle to collect the measurement
ρ1, as in Figure 2(a), where η = arccos

(
R2−ρ20−A

2
0

2A0ρ0

)
.

However, since measurements occur only at sampling times
kTs, the vehicle travels an arc of maximum amplitude
2π − 2η during Ts, hence upper-bounding its velocity to
ωk = min{ωmax,

2π−2η
Ts

, vmax

A0
} and leading to the forward

velocity vk = ωkA0. After Nl manoeuvres, the vehicle enters
the sensing range of the anchor, collects ρ1, and computes α
by using (2): this way, the vehicle can find two trajectories
Q and Q̄ (associated with ±α as in the previous case), that
are compliant with the measurements and the manoeuvres,
hence indistinguishable. In the reference frame 〈a(M1)〉, the
vehicle can compute the coordinates, and consequently the
distance dl, of each point pl in Q and Q̄

d2
l = ρ2

0 +A2
0 + 2ρ0A0 cos(±α− lωk), l = 1, . . . , Nl.
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v1 =
ω1

2 sin
(
Ts

2 ω1

) [√R2 −
(
ρ0 sin(α+ Ts

2 ω1) +A0 sin(Ts

2 ω1)
)2 − ρ0 cos

(
α+ Ts

2 ω1

)
−A0 cos

(
Ts

2 ω1

)]
(5)

2η
A0

R

ρ0

A0

R

M

2Ω
M1

M2

D/2

D

d

2R

(a) (b)
Fig. 2. (a) Phase 1, ρ1 not collected after the first manoeuvre: Circular
path followed by the vehicle after the first (straight) motion. (b) Phase 2:
orbiting paths with the definitions of the angle Ω.

If one of these distances dl ≤ R, the corresponding tra-
jectory is disregarded, thus collecting the largest amount of
information from one anchor with only two measurements
(see Figure 3(b)). Should this situation not happen, i.e.,
dl > R, ∀l = 1, . . . , Nl, the vehicle can follow the same
procedure as before to collect the third measurement ρ2, with
the proper modifications accounting for its orientation.

B. Phase 2: Meeting the other vehicle

By Proposition 1, after the first phase, the two vehicles can
now estimate their position pk and determine their orientation
µ with respect to the line joining the anchor and the vehicle
itself in their reference frame 〈a(M1)〉 and 〈b(M2)〉, with

µ =

{
ω2Ts +α− arctan2(y, x), with 3 measurements
π
2 +α− arctan2(y, x), with 2 measurements ,

where the x and y coordinates are known in the local
〈a(M1)〉 and 〈b(M2)〉 reference frames, and depend on the
procedure followed in the first phase. Moreover, the distance
from the anchor is known from the last measurement. To
reach any prescribed distance from its anchor, the vehicle
can turn by −µ on the spot (i.e. v = 0, ω = −µ/Ts), to
align to the diameter of the circle centred in the reference
anchor, and travel on a straight path, i.e. ω = 0. The vehicles
are aware of their radial coordinates with respect to their
reference anchor and of the distance D between the two
anchors themselves, and have to plan their trajectories in
order to reduce their relative distance below the sensing
range R. To this aim, the two vehicles travel on a circular
trajectory, centred in their reference anchor, with prescribed
radius d, as reported in Figure 1, highlighted in light blue.
To determine the optimal radius d, we consider the situation
represented in Figure 2(b) where the vehicles and the anchors
are aligned on the x-axis of 〈W 〉, with horizontal coordinates
X1 = 0, xa = d, xb = D − d,X2 = D, where we want the
two vehicles to have distance R, and xa > xb, and thus
d = D+R

2 . We then define Ω = arccos
(

D
D+R

)
as half of

the angle described by the two segments connecting one of
the anchors with the two intersections of the trajectories,
giving an estimate of the arc where the measurement between

the two vehicles can occur. To meet, the vehicles rotate in
opposite directions, choosing their velocities such that while
a travels over a circle, b travels an arc with amplitude 2Ω,

ωa = min
{
ωmax,

2vmax

D+R

}
, va = ωa

D+R
2 ,

ωb =−Ω
πωa, vb =− ωb D+R

2 .
(6)

With this choice of the control inputs, we can estimate an
upper bound Tmax to the time needed by the two vehicles to
meet, based on the time needed by b to travel over the entire
circle, travelling twice on the 2Ω arc, yielding

Tmax = 2π+2Ω
|ωb| = 2π

(
π
Ω + 1

)
max

{
1

ωmax
, D+R

2vmax

}
.

C. Phase 3: Designing the last manoeuvres
As soon as the two vehicles meet and collect the first

mutual measurement ρ1,m, they are aware of their sequence
Q in their local reference frame, of their distance, and of
the distance D between the two anchors. Let pa1 and pb1 be
the positions of the vehicles when the ρ1,m is collected. We
define the local reference frame 〈a(M1)〉 such that M1 =
[0, 0]> and pa1 = [D+R

2 , 0]>. With the same procedure, in
〈b(M2)〉, M2 = [0, 0]> and pb1 = [D+R

2 , 0]>, while the
heading of the two vehicles with respect to their x-axis is
±π/2 since they are travelling on the circle centred in their
reference anchor. In 〈b(M2)〉, we can regard M2 and pb1 as
fixed-frame anchors, and thus the two distances D and ρ1,m

generate a 1 + 1 setting (see Section II) for the vehicle a.
a) Second mutual measurement: With the same ratio-

nale, we can treat the next position pb2 of vehicle b as an
additional anchor in 〈b(M2)〉. Therefore, by collecting an
additional measurement, we add no further information if
the two vehicles do not move, while we have a 2 + 1 if one
of the two stays still, and a 1 + 1 + 1 if both vehicles move.
By the analysis in [5], a 2 + 1 setting should be preferred,
since it yields a number N [2+1]

IT ≤ 4 of indistinguishable
trajectories that can be computed by checking a condition
that will be detailed out later, while a setting 1+1+1 yields
N

[1+1+1]
IT ≤ 8 indistinguishable trajectories, where N [1+1+1]

IT

cannot be computed. Therefore, vehicle b stops as soon as it
collects the first measurement (i.e. pb2 = pb1), while vehicle
a follows the same procedure as in the first phase to collect
a second mutual measurement, i.e. moving straight and
possibly travelling on a circle centred in its previous position.
With these manoeuvres, we can update the reference frame
〈a(M1)〉, by adding the known position pa2 = pa1 +[δx, δy]>,
and define γ as the angle described by the two branches
of Qa intersecting in pa1 as γ = π − arctan2(δy, δx). To
compute the number of indistinguishable trajectories arising
in this 2 + 1 setting, we build a reference frame where pb1
lies on the origin, while pa1 lies on the x–axis, i.e. 〈a(pb1)〉,
which will allow us to compute the distance ‖M1 − pb1‖. In
this frame, pa1 = [ρ1,m, 0]>, pa2 = pa1 + A1[cosα,± sinα]>

and

M1 = pa1 + D+R
2 [cos(±α+ γ); sin(±α+ γ)]

>
,
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and thus, we conclude that

‖M1−pb1‖2 =
(
D+R

2

)2
+ρ2

1,m+ρ1,m(D+R) cos(±α+γ).

Therefore, in 〈b(M2)〉, the landmark M1 lies at the intersec-
tion between one of the two circles centred in pb1 with radius
‖M1 − pb1‖ and the circle centred in M2 with radius D. We
can compute the number of intersections between the circles.
In particular, each circle centred in M1 has 2 intersections
if ‖M1 − pb1‖ ∈ (|D − R|/2, (3D + R)/2), hence fixing
the maximum number of indistinguishable trajectories to 4.
If the vehicle collects the second mutual measurement after
travelling over a circular arc, it may be able to discard either
α or −α, hence yielding 2 indistinguishable trajectories.
We remark that each of these indistinguishable sequences
Qa can be roto-translated from 〈b(M2)〉 to 〈W 〉, since the
coordinates of all the positions, including M1, are known.

b) Third mutual measurement: The indistinguishable
sequences Qa in 〈b(M2)〉 can be built by using the solutions
φ,∆x,∆y of the following set of equations

‖M2 −(RφM1 + T )‖2 = D2

‖ pb1 −(Rφpak + T )‖2 = ρ2
k,m, k = 1, 2,

(7)

where Rφ =
[

cosφ − sinφ
sinφ cosφ

]
is a rotation matrix, T =

[∆x,∆y]> is a translation vector, M1, pa1 and pa2 are
expressed in 〈a(M1)〉, while M2, pb1 and pb2 in 〈b(M2)〉.
To this end, it is convenient to subtract the first equation
from the others, yielding two linear equations in ∆x and
∆y, substitute the result into the first equation, thus having
a nonlinear equation in φ with a known number of solutions.
Once the N ≤ 4 solutions to (7) are found, vehicle b is aware
of the possible positions pa2,i, i = 1, .., N in 〈b(M2)〉. For
simplicity’s sake, a stops as soon as it collects ρ2,m. Vehicle b
plans (v2, ω2) and moves to the next point pb2, whose distance
d from vehicle a is one of the N possible di = ‖pa2,i − pb2‖.
As in the previous analysis, to cope with measurement noise,
b plans its manoeuvre such that the predicted measurements
di are as far as possible from each other, thus defining the
optimisation problem

max
v2,ω2

J, s. t. |v2| ≤ vmax, |ω2| ≤ ωmax, (8)

where J = min(i,j) |di − dj | is linear in v2, indeed with
v2 = 0 the vehicles collect the same measurement ρ2,m, and
thus we select v2 = vmax. For each pair of possible positions
of vehicle a in 〈b(M2)〉, we can compute the difference of the
distances as a function of ω2. However, the cost J is defined
piecewise, due to the min(·) operator, and thus a closed-
form solution cannot be found. Therefore, we deal with
this problem by enumeration: we select a sufficiently high
number of values for ω2 and, for each of them, we determine
and choose the smallest difference of distances, which gives
us the value of ω2 corresponding to the maximum value of
the cost function J obtained through this procedure. Once
v2 and ω2 are selected, vehicle b moves and collects the last
mutual measurement, which rules out the ambiguity between
the N possible positions pa2 . The global localisation problem
is thus solved using the planned trajectories.

IV. SIMULATION EXAMPLES

We present here two different examples, with the same
parameters R = 3 m, D = 10 m, Ts = 1 s, vmax =
1 m/s and ωmax = π rad/s, with different initial conditions.
Different initial states will lead the vehicles to take different
decisions, thus covering all the described cases. We remark
that the representation of the trajectories will consist in a line
connecting the successive positions of the vehicles, while
the path followed by the vehicles (see discretisation in (1a)),
consists of straight lines and arcs of circles.

1) First simulation: In the first simulation example,
in Figure 3, we choose the initial conditions as sa0 =
[2.4,−1.2, 4.8]>, sb0 = [11.3,−0.4, 3.6]>. Figure 3(a) shows
the position sequences Qa in blue and Qb in red, during
the whole simulation. Phase 1 of vehicle a is described
in Figure 3(b), where the vehicle moves straight falling
outside the sensing range of M1, represented by the solid
black line, travels on a circle and eventually collects the
second measurement. These two measurements are sufficient
to collect the maximum amount of information from the
anchor, since the dotted trajectory, associated with −α, has
points inside the sensing range that should have been sensed
by the anchor, thus allowing vehicle a to avoid the potential
ambiguity ±α. The same outcome is obtained by b by
collecting three measurements from M2. During phase 2,
the two vehicles reach their orbiting distance, dashed red
and blue lines in Figure 3(a), until they meet. A screenshot
of the first mutual measurement is reported in Figure 3(d1),
where b stops, while a proceeds straight, i.e. on the tangent
of its orbiting circle, as depicted in Figure 3(d2). After the
second mutual measurement, vehicle a stops, while b finds
the 4 potential trajectories followed by a in 〈b(M2)〉, getting
to the setting in Figure 3(c), thus finding the optimal value
for ω2, maximising the smallest difference of the distances,
generating the motion in Figure 3(d3). Despite the natural
intuition, vehicle b does not move on the bisector between
two axes in Figure 3(c), but it seeks for a trade-off between
this behaviour and the maximum possible displacement.

2) Second simulation: For the second simulation example,
presented in Figure 4, we choose the initial conditions sa0 =
[−1.5,−1.7, 2.6]>, sb0 = [10,−0.1, 6]>. In phase 1 the two
vehicles collect 3 measurements each from their reference
anchors, then reach the prescribed orbiting distance (phase
2). The noteworthy difference with the previous example
occurs in phase 3. Indeed, by following a straight path,
vehicle a falls outside the sensing range of b, travels over
a circle, and eventually falls inside the sensing range of b,
ruling out the ambiguity ±α in (3), thus decreasing to 2 the
number of indistinguishable trajectories. Vehicle b plans its
last manoeuvre in the same way as before, maximising the
only difference of the two distances, as in Figure 4(b).

V. CONCLUSIONS

We have proposed a control algorithm for a pair of
vehicles, unaware of their initial state in the space, allowing
them to localise themselves in the environment. Each of them
collects information from its reference anchor, navigates in
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Fig. 3. First simulation example. (a) Path followed by vehicle a in blue, and
by b in red. The black crosses the position of the two landmarks M1, M2,
with sensing range R (black dashed line), whereas the dashed lines represent
the orbiting distances. (b) Phase 1: 〈a(M1)〉, two trajectories ±α of vehicle
a, where the solid line represents the sensing range R, the dashed lines
represent the measurements ρ0 (outer) and ρ1 (inner). The dotted trajectory
is discarded, since some of its points are inside the sensing range. (c) Phase
3: 〈b(M2)〉 after the second mutual measurement. The black solid line
represents the points reachable by b with v2 = vmax, the red line and the
red crosses denote the best choice for ω2, the blue dots are the four potential
positions of the vehicle a, with distance ρ2 denoted by the black dashed
line, while the thin black lines represent the axes of the segments with a
pair of blue dots as endpoints. (d) Phase 3, zoom from (a): the vehicles
collect their first mutual measurement (d1), a moves on the tangent (black
solid line) of the dashed circle (d2), and eventually b moves according to
the control inputs described in (c), i.e. turning slightly left.

the environment with a reduced knowledge of its state until
the two vehicles meet. As soon as they meet, they plan their
last two manoeuvres that are needed to collect the necessary
information on their state. In this work, the two vehicles
rely on known and perfect actuation and communication: we
plan to analyse the same scenario as in this case, considering
also process noise or a malicious agent that broadcasts wrong
information on the executed manoeuvres.
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