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Abstract— Planning optimization of gas networks under
emission constraints prioritizes gas supply with the smallest
emission footprint. As this problem includes complex gas flow
physical laws, standard optimization solvers cannot guarantee
convergence to a feasible solution, especially under strict
emission constraints. To address this issue, we develop an input-
convex neural network (ICNN) aided optimization routine which
incorporates a set of trained ICNNs approximating the gas flow
equations with high precision. Numerical tests on the Belgium
gas network demonstrate that the ICNN-aided optimization
dominates non-convex and relaxation-based solvers, with larger
optimality gains pertaining to stricter emission targets.

I. INTRODUCTION

Energy system operators worldwide introduce carbon
reduction measures to control the CO2 content of energy
supply [1]. Such measures include soft monetary penalties
(e.g., carbon tax) or hard emission constraints (e.g., carbon cap
or renewable portfolio standard) within operational planning
routines. When operation planning is insufficient, more
expensive long-term planning optimizes network design in
order to accommodate more environment-friendly supply.

In gas networks, which connect spatially distributed supply
and demand hubs, carbon reduction measures can be used to
prioritize pipeline-quality gas from renewable suppliers, such
as biogas produced from organic matter, syngas produced by
steam reforming, or hydrogen produced from electrolysis at
large offshore wind sites, like the proposed North Sea hub [2].
However, solving emission-constrained planning optimization
problems is challenging due to complex gas flow physics.

A. Contribution.

To address emission-constrained network planning, in this
paper we devise a new optimization method that substitutes
the non-convex Weymouth equation of gas flows with a
composition of trained input-convex and input-concave neural
networks (ICNNs). Together, they explain the dependency
of gas flows on nodal pressures. We embed trained ICNNs
into planning optimization problems which are then solved
using standard mixed-integer solvers. Tests on the Belgium
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gas network demonstrate the improvement of our methods
over standard solvers, especially under strict emission targets.

B. Related Work.

1) Gas network optimization: Designing optimization
methods to aid operation planning dates back to at least
1979 [3]. Since then, solvers based on mixed-integer [4],
piece-wise linear [5], quadratic [6], [7] and semi-definite [8]
programming have been introduced. The CO2 footprint of
integrated gas and electricity networks has been addressed by
integrating renewables [9], [10], [11], [12], [13] or directly
incorporating carbon reduction measures in operational [14],
[15] and long-term expansion planning problems [16], [17],
[18]. We refer to [19] for a comprehensive literature review.

2) Neural networks to aid optimization: Using the mixed-
integer neural network (NN) reformulation [20], [21], [22],
NNs can be used for approximating complex input-output
dependencies within optimization, e.g., in power systems
problems [23], [24], [25], [26]. The reformulation represents
the activation of each ReLU function using linear and binary
constraints parameterized by NN weights and biases, which
can be computationally challenging at scale [22]. Here, we
explore an alternative functional approximation that relies
on input-convex NNs, which constrain network weights to
ensure the output is a convex function of inputs [27]. Since
trained ICNN mappings can be recast as linear optimization
problems [27], [28], we leverage them to convert non-convex
optimization problems into bilevel optimization problems
which are linear in both their upper- and lower-levels [29].

II. EMISSION-CONSTRAINED GAS NETWORK PLANNING

Here, we detail the baseline operational and long-term
planning models for gas networks under emission constraints.

A. Operational Planning Problem.

A gas network includes n nodes, representing injections,
extractions or network junctions, and ℓ edges, representing
pipelines. The operational planning problem identifies the
least-cost supply allocation ϑ ∈ Rn that satisfies nodal
gas demands δ ∈ Rn, while ensuring that nodal pressures
π ∈ Rn and gas flows φ ∈ Rℓ remain within technical limits.
This problem is solved using the following optimization
formulation [12]:

minimize
φ,ϑ,π∈F

c⊤ϑ (1a)

subject to Aφ = ϑ− δ, (1b)

φ ◦ |φ| = diag[ω]A⊤π, (1c)
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which minimizes linear gas supply costs subject to technical
constraints. Using graph admittance matrix A ∈ Rn×ℓ,
equation (1b) ensures the conservation of gas mass. Given the
fixed friction coefficients ω ∈ Rℓ, the steady-state Weymouth
equation (1c) enforces the non-convex dependency of gas
flows on pressure variables. A convex set F is used to respect
the technical limits on gas mass and pressures. Note that
vector π contains squared pressures to reduce non-linearities
in (1c) [5]. We disregard compressors, which can be incor-
porated with fixed [6], [7] or varying [5], [12] compression
rates without significant impacts on computational costs.

Although cost function (1a) typically includes only
marginal production costs, it can also internalize an emission
(carbon) tax to penalize gas producers with higher environ-
mental impact. Alternatively, emissions can be regulated by
carbon cap constraints on the total emission level. Although
the equivalence of carbon tax and carbon cap can be shown
through the Karush–Kuhn–Tucker conditions of (1) [30],
the carbon cap is preferred due to non-convexities in (1c).
Indeed, the same emission goal may not be achieved under
the carbon tax, since local search algorithms may fail to
minimize the penalty term globally; meanwhile, the carbon
cap is introduced through the hard constraint, i.e.,

e⊤ϑ ⩽ e, (2)

with vector e ∈ Rn of carbon intensities and carbon cap e,
which must be satisfied at all times.

B. Long-Term Planning Problem.

Since a carbon cap may significantly affect the operating
cost in (1a), the long-term planning problem optimizes the
network design to enable more economical satisfaction of the
emission constraint (2). This problem is especially relevant for
the design of future hydrogen gas transport networks which
governments are actively considering [31]. Let the diameter
d ∈ Rℓ of gas pipelines be the design variable. Since pipeline
friction is often modeled as being linearly proportional to
diameter [32], a constant ω̂i can be used to relate friction and
diameter via ωi = ω̂idi. The diameter enters the operational
problem (1) through the Weymouth equation (1c) as

diag[d]−1φ ◦ |φ| = diag[ω̂]A⊤π, (3)

where the right-hand side has no dependence on diameter. By
defining a vector λ ∈ Rℓ of expansion costs, we obtain a long-
term planning optimization from problem (1) by augmenting
the total cost of expansion λ⊤d to (1a) and substituting
equation (1c) with its dynamic counterpart in (3).

III. INPUT-CONVEX NEURAL NETWORK APPROACH TO
EMISSION-CONSTRAINED PLANNING

A. Aiding Non-Convex Network Optimization with ICNNs.

Addressing the non-convex equation (1c), we observe that
its left-hand side f(φl) = φl|φl| is convex for φl ⩾ 0 and
concave for φl ⩽ 0. Hence, f(φl) can be approximated
with a sum f(φl) ≈ Φ+(φl) + Φ9(φl) of one input-convex
Φ+(φl) and one input-concave Φ9(φl) neural network. We use

the following k−layer architectures under ReLU activation
functions of hidden neurons:

Φ+(φl) : z
1
+ = max

(
0,W 0

+ φl + b0+
)
,

zi+1
+ = max

(
0,W i

+z
i
+ + bi+

)
,∀i = 1, . . . , k − 1.

Φ9(φl) : z
1
9 = max

(
0,W 0

9 φl + b09
)
,

zi+1
9 = max

(
0,W i

9z
i
9 + bi9

)
,∀i = 1, . . . , k − 1,

with a scalar input φl, scalar output zk, and weights and biases
W and b, respectively. In Φ+(φl), the weights W i

+,∀i =
1, . . . , k − 1 are non-negative to render the output a convex
function of the input. In Φ9(φl), the weights W i

9 are also
non-negative for i = 1, . . . k−2, but they are non-positive for
i = k−1 to render the output a concave function of the input.
With such architectures, we have a piece-wise functional
approximation f(φl) → zk+ + zk9 . From [27, Appendix B],
we can then retrieve the output of the trained ICNNs from
the input by solving a linear program, e.g.,

minimize
z1
+,...,z

k
+

zk+ (4a)

subject to z1+ ⩾ W 0
+ φl + b0+ (4b)

zi+1
+ ⩾ W i

+z
i
+ + bi+, (4c)

zi+ ⩾ 0, ∀i = 1, . . . , k − 1, (4d)

for the Φ+(φl) architecture, and it takes a similar form for
the Φ9(φl) architecture. Thus, to approximate the Weymouth
equation, we need to embed two linear programs (one convex
and one concave) for each pipeline. The computational burden,
however, will depend on the number of hidden layers and
neurons. To reduce the burden, we note that for φl ⩾ 0,
solution zk+ is an outer approximation of the trained ICNN
output, and the number of approximating hyperplanes 2p

is the number of unique combinations of p hidden neurons.
For small – yet sufficient to represent a convex function –
architectures, we can screen approximating hyperplanes and
leave only a set H+ of supporting hyperplanes, for which
there exists an input φl which makes such hyperplanes active
(binding). Such hyperplane parameters are obtained from the
trained ICNN as∏0

r=k(s
r
j ◦W r

+ )φl +
∑k

i=0

∏i
r=k(s

r
j ◦W r

+ )b
i

= wj
+φl + vj+, ∀j ∈ H+,

with slope wj
+ and intercept vj+. Vector sj ∈ Rp collects a

unique combination of ReLU activations (1 if active, and 0
if otherwise) of hyperplane j, and srj is a subset of sj with
hidden neurons of layer r. Similarly, we obtain the active
hyperplanes for the outer approximation of the concave part
of f(φl).

We now put forth the bilevel operational planning opti-
mization which embeds the trained ICNNs:

minimize
φ,ϑ,π∈F

c⊤ϑ (5a)

subject to Aφ = ϑ− δ, (5b)

e⊤ϑ ⩽ e (5c)

t+ + t9 = diag[ω]A⊤π, (5d)
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tl+ ∈ minimize
tl+

tl+

subject to wi
+φl + vi+ ⩽ tl+,

∀i ∈ H+,∀l ∈ 1, . . . , ℓ

(5e)

tl9 ∈ maximize
tl9

tl9

subject to wi
9φl + vi9 ⩾ tl9,

∀i ∈ H9,∀l ∈ 1, . . . , ℓ

(5f)

where (5e) and (5f) are lower-level optimization problems,
each including a single auxiliary variable tl which returns the
ICNN output. Indeed, problem (5e) is a light-weighted version
of (4) producing the identical approximation result. Next
Section III-B provides a tractable mixed-integer reformulation
of (5) using Karush–Kuhn–Tucker (KKT) conditions of (5e)
and (5f). Then, in Appendix A, we show that the dynamic
Weymouth equation (3) can also be approximated by ICNN.

B. Reformulation of ICNN-Aided Optimization via Karush–
Kuhn–Tucker Conditions.

We consider the lower level problem from (5e) associated
with the input-convex NN (the concave case is dealt with
similarly) for a single line l:

minimize
t+

t+ (6a)

subject to wi
+φ+ vi+ ⩽ t+ : µi

+ ∈ RE , ∀i ∈ H+, (6b)

where µi
+ is the Lagrange multiplier associated with the ith

inequality constraint. The Lagrangian function [33] associated
with this linear program is given by

L(t+, µ+) = t+ +
∑
i∈H+

µi⊤
+ (wi

+φ+ vi+ − t+). (7a)

The KKT conditions associated with the linear program (6)
may now be derived. Primal and dual feasibility can be
directly stated:

primal feasibility: wi
+φ+ vi+ ⩽ t+, ∀i ∈ H+

dual feasibility: µi
+ ⩾ 0, ∀i ∈ H+.

(8)

The stationarity condition can be computed by taking the
derivative of the Lagrangian (with respect to the primary
variable) and setting it equal to 0:

∂

∂t+
L(t+, µ+) = 1−

∑
i∈H+

µ+ ≡ 0. (9)

Therefore, stationarity conditions and complementary slack-
ness are given as

stationarity:
∑

i∈H+
µi

+ = 1,
complementary: µi

+ · (wi
+φ+ vi+ − t+) = 0,∀i ∈ H+.

(10)
Since only one inequality constraint in (6b) can be active,
the dual variables are implicitly constrained to be binary:
µi

+ ∈ {0, 1}, ∀i ∈ H+, but only one may take a nonzero
value. Since the dual variables are constrained to be binary,
the quadratic complimentary slackness constraints can be
effectively linearized using Big-M:

µi
+(w

i
+φ+ vi+ − t+) = 0 (11a)

⇔
(µi

+ − 1)M ⩽ wi
+φ+ 1vi+ − t+ (11b)

where no upper bound is needed, since wi
+φ+ 1vi+ − t+ ⩽ 0

is implied by primal feasibility. The final KKT reformulation
of the lower-level problem is:

wi
+φ+ vi+ ⩽ t+, ∀i ∈ H+

(µi
+ − 1)M ⩽ wi

+φ+ vi+ − t+ ⩽ 0, ∀i ∈ H+∑
i∈H+

µi
+ = 1, µi

+ ∈ {0, 1}, ∀i ∈ H+.
(12)

Similarly, the KKTs of the concave lower-level problem are:

wi
9φ+ vi9 ⩾ t9, ∀i ∈ H9

0 ⩽ wi
9φ+ vi9 − t9 ⩽ (1− µi

9)M, ∀i ∈ H9∑
i∈H9

µi
9 = 1, µi

9 ∈ {0, 1}, ∀i ∈ H9.
(13)

Both of these formulations are additionally applicable for
neural networks which map multiple inputs (rather than just
a single input φ) to scalar outputs.

IV. NUMERICAL TESTS ON THE BELGIUM GAS NETWORK

To demonstrate emission-constrained planning, we use a
modified Belgium system from [5], with a meshed topology,
tighter pressure bounds, and more distributed gas supply and
demand hubs. Using this system, we compare three methods
to solve operation planning: 1) an interior point solver
IPOPT [34], 2) a mixed-integer quadratic programming
(MIQP) relaxation, detailed in Appendix B, and 3) the
proposed ICNN-aided optimization. The last two are solved
with mixed-integer Gurobi solver [35]. The long-term planing
is solved by the 1st and 3rd methods only, as no convex
relaxation of equation (3) is known. The CPU time for
all methods does not exceed several minutes. The NN
architectures include 1 hidden layer with up to 15 neurons,
which was sufficient to approximate convex and concave parts
of the Weymouth equation. All data, details on the training
procedure, and codes to replicate our results are available at

https://doi.org/10.5281/zenodo.8205525

The CO2 intensity of the gas supply in the test system
varies between 0.6 and 2.7 kg/m3, and solving the operational
planning problem (1) without emission constraint (2) results
in up to 125.9 kT of emitted CO2 with the IPOPT solver.
To limit emissions, we select one moderate emission cap of
100 kT and one extreme cap of 48.9 kT, below which no
method returns a feasible solution.

The solutions for operation planning are collected in Table
I. As emission cap reduces, the IPOPT solver becomes more
sensitive to initialization and fails to provide a feasible solu-
tion with probability up to 39.0%. Although the termination
status of the MIQP relaxation is always optimal, it is never
feasible with respect to the original, non-relaxed Weymouth
equation; using it as a warm start for IPOPT, we observe the
gap between the relaxation and the feasible solution of up to
1,929.2−1,540.8

1,929.2 × 100% = 20.1%. The proposed ICNN-aided
optimization improves on the MIQP solution and consistently
returns the best solution found with IPOPT, regardless of
the emission cap value. In the most constrained case, with
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TABLE I
COST SUMMARY OF THE EMISSION-CONSTRAINED OPERATION PLANNING (e1,000).

Emission
cap, kT

1,000 random IPOPT initializations MIQP relaxation ICNN-aided solution

min mean max prob. of
failure optimal warm start

for IPOPT optimal warm start
for IPOPT

∞ 1,923.3 1,927.2 1,929.2 16.6% 1,540.8 1,929.2 1,932.3 1,923.3
100 2,225.1 2,235.1 2,256.2 16.0% 2,137.2 2,225.1 2,241.3 2,225.1
48.9 4,344.6 4,344.6 4,344.6 39.0% 4,200.8 4,344.6 4,290.1 4,291.2

TABLE II
COST SUMMARY OF THE EMISSION-CONSTRAINED LONG-TERM PLANNING (e1,000).

Emission
cap, kT

1,000 random IPOPT initializations ICNN-aided solution

min mean max prob. of
failure optimal warm start

for IPOPT

∞ 2,671.7 2,701.8 2,829.5 28.6% 2,666.4 2,671.6
100 3,057.8 3,090.2 3,191.9 30.3% 3,056.6 3,057.8
48.9 5,079.1 5,138.7 5,247.9 41.4% 5,079.9 5,079.1

e = 48.9 kT, the ICNN-aided optimization solution provides
the least-cost operation cost, thus dominating both IPOPT
and MIQP solutions.

Table II provides the summary of long-term planning
cost, which includes both operating cost and adjusted (to
a single, peak hour) expansion cost. While the IPOPT solver
exhibits a large variance and fails to produce any solution
with probability up to 41.4%, the ICNN-aided optimization
always returns the best solution discovered with random
IPOPT initializations. With respect to the worst case IPOPT
outcomes, the ICNN-aided solution yields 3.2%–5.9% cost
savings, as it requires less pipeline expansion; e.g., for
e = 48.9 kT, it expands pipelines by 117mm less on average
across the network.

V. CONCLUSION

We developed a new method based on aiding planning
optimization with trained input-convex and input-concave
neural networks, which allows for accommodating ambitious
emission reduction targets in operation and long-term planning
of gas networks in a feasible manner. We empirically
demonstrated that our method is robust even to the strictest
emission targets, for which the non-convex and relaxation-
based solvers are often intractable, failing to produce a
feasible solution. Our method achieves savings of up to 1.2%
in operational costs and 5.9% in costs for long-term emission-
constrained planning.

APPENDIX

A. Modeling diameter-dependent Weymouth equations

The pipeline friction ωi from (1c) incorporates the fixed
pipeline length, diameter, rugosity, as well as gas temperature,
compressibility and density relative to air [5]. There are a
spectrum of different methods available for modeling pipeline
friction coefficients, but in this paper, we use the simplifying
assumption that ωi is linearly proportional to diameter of the

line di, as in [32] (i.e., the Darcy—Wiesbach friction factor
is assumed constant, regardless of the pipeline’s diameter).
From (3), we then use ICNNs to build a surrogate model
which mimics the rational expression

f(φi, di) =
φi|φi|
di

. (14)

Despite its noncovnexity, (14) can be expressed as the sum
of one convex function (f+) and one concave function (f+)
across its domain: f(φi, di) = f+(φi, di)+f−(φi, di). Fig. 1
depicts the convex and concave regions of f(φi, di).

B. MIQP relaxation of the operational planning problem

The quadratic programming relaxation of the static Wey-
mouth equation (1c) is

φ ◦ |φ| = diag[ω]A⊤π
rel.⇒

{
πi − πj ⩾ 1

ωl
φ2
l if φ ⩾ 0

πj − πi ⩾ 1
ωl
φ2
l if φ ⩽ 0

,

∀l = (i, j) ∈ 1, . . . , ℓ, (15)

Fig. 1. The concave region of the function φi|φi|/di is depicted on the
left (for φi ≤ 0) in blue, and the convex region is depicted on the right (for
φi ≥ 0) in red.

1578



which distinguishes between two cases of either positive or
negative gas flow in every line l with sending and receiving
ends denoted by i and j, respectively. Using a binary variable
xl, this relaxation can be written as

(2xl − 1)πi + (1− 2xl)πj ⩾
1

ωl
φ2
l ,

∀ℓ = (i, j) ∈ 1, . . . , ℓ, (16)

such that, when xl = 1, we have φl ⩾ 0, and when xl = 0,
we have φl ⩽ 0. The bilinear terms xlπi and xlπj can be
handled using the Big-M method. Using an auxiliary variable
zli = xlπi, the first bilinear term can be restated as follows:

xlπi ⩽ zli ⩽ xlπi, (17a)
πi + (xl − 1)πi ⩽ zli ⩽ πi + (xl − 1)πi, (17b)

where πi and πi respectively denote the lower and upper
pressure limits at node i. When xl = 1, zli = πi, and when
xl = 0, zli = 0. Then, the MIQP relaxation of the Weymouth
equation is

2zli − 2zlj − πi + πj ⩾ 1
ωl
φ2
l , (18a)

xlπi ⩽ zli ⩽ xlπi, (18b)
πi + (xl − 1)πi ⩽ zli ⩽ πi + (xl − 1)πi, (18c)
∀l = (i, j) ∈ 1, ..., ℓ, ∀i ∈ 1, . . . , n.

Substituting the Weymouth equation (1c) with equations (18)
yields the relaxed planning problem.
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